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Abstract

As XML (eXtensible Markup Language) has emerged as a standard for information exchange on the World Wide Web, it has

gained attention in database communities to extract information from XML seen as a database model. XML queries are based on

regular path queries, which find objects reachable by given regular expressions. To answer many kinds of user queries, it is necessary

to evaluate queries that have multiple regular path expressions. However, previous work on subjects such as query rewriting and

query optimization in the frame work of semistructured data has usually dealt with a single regular path expression. For queries that

have multiple regular path expressions we suggest a two phase optimizing technique: query rewriting using views by finding the

mappings from the view�s body to the query�s body and for rewritten queries, evaluating each query conjunct and combining them.

We show that our rewriting algorithm is sound and our query evaluation technique is more efficient than that of previous work on

optimizing semistructured queries.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Recently, as XML (Bray et al., 1998) has emerged as

a standard for information exchange on the World Wide

Web, it has gained attention in database communities

to extract information from XML seen as a database

model. As XML data is self-describing we can issue

queries over XML documents distributed in heteroge-
neous sources and get the necessary information.

Since XML data is an instance of a semistructured

data model, semistructured query languages can be used

to process it. Here, query languages such as XQuery

(Chamberlin et al., 2001), Lorel (Abiteboul et al., 1996),

XML-QL (Deutsch et al., 1999), etc. are based on reg-

ular path expressions. For example, the regular path

expression ð � :movieÞ:ð � :actor: � :ðTom Cruisej
Brad PittÞÞ denotes all of the paths that first have the

edge �movie� at some point, next, arbitrary edges and

then the edge �actor�, and finally arbitrary edges fol-

lowed by the �Tom Cruise� or �Brad Pitt� edge.

Many researchers have addressed the problem of

processing the single regular path query that is defined

as follows: Given a regular path expression r and a data

graph D, the result of r on D is the set of objects on D

that are reachable by the regular path expression r.

However, user�s queries are usually composed of

several regular path expressions. For example, one can

issue the following query that asks for movies which
have actors �Tom Cruise� or �Brad Pitt� and were pro-

duced in 2000. (The clear semantics of the query lan-

guage is defined in Section 3.)

qðp2Þ : �p1ð � :movieÞp2; p2ð � :year:2000Þp3;
p2ð � :actor: � :ð\Tom Cruise"j\Brad Pitt"ÞÞp4;

where pi are variables binding to nodes in the semi-

structured database, and the variables are connected by

regular path expressions. Here, the usual semantics
holds, i.e. piripj is the set of all nodes ðu; vÞ such that

there is a path satisfying ri from u to v.

This kind of query that has more than one regular

expression is frequently used in XML queries. However,

previous work such as query rewriting using views

(Grahne and Thomo, 2000), rewriting regular path

queries (Calvanese et al., 1999) and query optimization

(Goldman and Widom, 1997) have dealt with the single
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regular path query. So, if we apply the proposed tech-

niques in processing queries having multiple regular

path expressions, they cannot achieve greater efficiency.

We propose a two-phase algorithm for processing

semistructured queries having multiple regular path ex-

pressions. Our technique has the following contribu-
tions.

• We propose a unified two-phase optimization solu-

tion to process queries having multiple regular path

expressions.

• In the query rewriting phase, we show that our map-

ping algorithm is sound and more efficient than the

previous work.
• We show that our query evaluation technique is more

efficient than that of the previous work in the query

processing phase.

The paper is organized as follows. Section 2 mentions

related work, and Section 3 defines the data model and

the query language. Section 4 describes our query re-

writing algorithm using views. In Section 5, we propose
our query optimization technique, and finally, we con-

clude in Section 6.

2. Related work

Many researchers have discussed the problems of

materialized views that we used in step 1 of our algo-

rithm in the relational model (Chaudhuri et al., 1995;

Levy et al., 1995; Larson and Yang, 1985) and the object

model (Abiteboul and Bonner, 1991; Rundensteiner,

1992). That is, issues including the definition of views
and incremental maintenance of views, query rewriting

and complexity problems have been studied. In partic-

ular, in Chaudhuri et al. (1995), the authors propose an

optimization algorithm that generalizes the traditional

join enumeration algorithm (Selinger et al., 1979). It

adds new query evaluation plans that use materialized

views to the plan space and finds the optimal plan in the

whole plan space. This paper addresses the same prob-
lem in the context of semistructured data.

In the semistructured data model, there has been

much work rewriting queries using views. Authors in

Papakonstantinou and Vassalos (1999) presented an

algorithm of query rewriting for TSL, a semistructured

query language and showed the soundness and com-

pleteness of it. TSL has restructuring capabilities and is

composed of multiple path expressions. However, it
does not support regular path expressions, whereas our

work supports regular path expressions but does not

support restructuring capabilities. The complexity

problem of query containment in STRUQL0 is described

in Levy and Suciu (1998). In Calvanese et al. (1999) and

Grahne and Thomo (2000), the problem of finding

queries q0 that access the views, given a semistruc-

tured query q and a set of semistructured views

V ¼ fv1; . . . ; vng, is studied. However, they dealt with

queries and views having a single regular path expres-

sion.

The second phase of our algorithm is related to the
problem of query optimization for semistructured data.

In Abiteboul and Vianu (1997), the authors define reg-

ular path queries that find all objects reachable by paths

whose labels form a word in a regular expression over an

alphabet of labels, and propose the query optimization

techniques which use information about path con-

straints.

The query optimization techniques using graph
schemas are proposed in Fernandez and Suciu (1998)

and Suciu et al. (1997). By using graph schemas which

have partial information about a graph�s structure, they
reduce the large search space by query pruning and

query rewriting. These techniques have characteristics

whereby they define graph schemas statically and pro-

cess queries for data that conforms to them.

On the other hand, DataGuides (Goldman and
Widom, 1997; Nestorov et al., 1997) focus on data and

record information about all of the paths in a database

dynamically, and use this as indexes. DataGuides can be

used efficiently in the environment where there is no

schema information provided in advance. However, this

technique can be applied only to queries with a single

regular expression. That is, it cannot be directly applied

to complex queries with several regular expressions and
variables.

Three kinds of index structures are proposed in Milo

and Suciu (1999). That is, 1-indexes, 2-indexes, and T-

indexes. 1-indexes, like DataGuides, find all of the ob-

jects reachable by a regular path expression from the

root node. However, unlike DataGuides, if we view a

data graph as an automaton, a 1-index is a nondeter-

ministic automaton. So, the storage for the 1-index is at
most linear. The 2-index is an index structure for effi-

ciently finding all pairs of nodes that are connected by a

regular path expression. We use it as a base scheme for

query evaluation. T-indexes provide index structures to

evaluate multiple regular path expressions. However,

the target query should conform to the corresponding

template.

The cost based query optimization technique is ad-
dressed in McHugh and Widom (1999a,b). It generates

optimal plans based on new kinds of indexing for

semistructured data and database statistics. Our result

can be added to its plan space as another efficient plan.

3. Data model and query language

Data in XML can be mapped to a semistructured

data model, that is, a rooted labeled graph. XML ele-
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ments are represented by nodes of the graph and ele-

ment–subelement, element–attribute, and reference re-

lationships are represented by edges labeled by the

corresponding names. Values of XML data are repre-

sented by edges which are connected to leaves in the

graph. Fig. 1 shows an example of an XML data and the
corresponding data graph. Formally, we define a data

graph DB as follows. First, we assume an infinite set O

of oids, which is disjoint from an infinite set C of con-

stants.

Definition 1. A data graph DB ¼ ðV ;E;RÞ is a labeled

rooted graph, where V 
 O is a set of nodes,

E 
 V � C � V is a set of directed edges, and R 2 V is a

root node.

For a given data graph DB, a query is based on the

following regular path expression.

Definition 2. A regular path expression is defined re-

cursively by the grammar r ¼ �jaj jðr1Þjr1:r2jr1‘j�r2jr�1,
where r, r1 and r2 are regular path expressions, a 2 C is a

label constant, denotes any label, and � denotes an

empty string.

Many semistructured query languages based on the

regular path expression have been proposed. For ex-

ample, XQuery (Chamberlin et al., 2001); Quil (Cham-

berlin et al., 2000); UnQL (Buneman et al., 1996); Lorel

(Abiteboul et al., 1996); XML-QL (Deutsch et al., 1999),

and so on. We use a Datalog-like notation as follows.
However, our technique can be applied to other query

languages based on the regular path expression.

Definition 3. A query is an expression of the form

qðxÞ : �y0r0z0; . . . ; yn�1rn�1zn�1, where nvarðqÞ ¼ fy0; z0;
y1; z1; . . . ; zn�1g are the query�s node variables (they need

not be distinct), x 
 nvarðqÞ are the query�s head vari-

ables, and the ri, 06 i6 n� 1, are regular path expres-
sions. Here, the query has the following properties of

branching regular path expressions. For each query

conjunct yirizi ð06 i6 n� 1Þ, let yi be the source vari-

able and zi be the destination variable.

1. Each source variable except the first one appears as a

destination variable in an earlier step.

2. A variable may appear as a source variable in more
than one step.

3. A variable may not appear as a destination variable

in more than one step.

Fig. 1. An example of an XML data and a data graph.
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Again, for each query conjunct yirizi, letting d be a

function which maps node variables to O, i.e., dðUÞ ¼ o
where U 2 nvarðqÞ and o 2 O, there is a path which

satisfies the regular path expression ri between dðyiÞ and
dðziÞ in the data graph DB. Each substitution d defines a

tuple in a relation Rq, whose attributes are variables in q.
The result of the query q is the projection of Rq on the

variables in x.

Example 1. When the query qðbÞ : �aðmovieÞb;
bðactor:name:\Brad Pitt"Þ c which asks for movies hav-

ing the actor ‘‘Brad Pitt’’ is applied to the database in

Fig. 1, the relation Rqða; b; cÞ ¼ fð1; 2; 26Þ; ð1; 3; 26Þg. So
the result of q is pbðRqÞ ¼ f2; 3g.

Like queries views are defined as follows.

Definition 4. A view is an expression of the form

v : �y0r0z0; . . . ; yn�1rn�1zn�1. Unlike the query definition,

the head variables are not specified and the regular ex-

pressions may have variables. 1 Let d be a function

which maps node variables to O and variables in regular
path expressions to label constant. Each substitution d
defines a tuple in a relation Rv, whose attributes are

variables in v. The result of the view v is the relation Rv.

Example 2. Consider the following view:

v : �p1ðmovieÞp2; p2ðyear:LÞp3; p2ðactor:name:\BradPitt"Þp4:
ð1Þ

When the view v is applied to the database in Fig. 1, the

result of the view is as follows.

4. Query rewriting

4.1. Problem definition

We address the following query rewriting problem:

given the following form of query q, and a set of views m,
finding of the query q0 which accesses at least one view

of m and returns the same result as q.

qðuÞ : �p0r0p1; p1r1p2; p1r2p3; p3r3p4; p3r4p5
v : �q0r5q1; q0r6q2

ð2Þ

That is, given a view v and a query q, let c11; . . . ; c
1
m be the

conjuncts in the body of the view, and c21; . . . ; c
2
n be

conjuncts in the body of the query. For example, the

query conjuncts ðp0r0p1Þ and ðp1r1p2Þ in Formula (2)

correspond to c11 and c12, respectively. The problem is

finding a set of symbol mappings P which, for p 2 P,

satisfies pðc1i Þ  c2j ð16 j6 nÞ for all c1i ð16 i6mÞ, and

then obtaining v0 by applying p to v, and finally con-

structing the rewritten query q0 with v0.
If a query q and a view v are composed of n and m

query conjuncts respectively, there are nm possible

mappings. Actually, the mapping algorithm of Papa-

konstantinou and Vassalos (1999) considers all nm

mappings. Additionally, in order to show that the

equation pðc1i Þ  c2j is satisfied, we should check whether

or not Lðr1i Þ ¼ Lðr2j Þ, where r1i and r2j are regular ex-

pressions in c1i and c2j , respectively, and LðrÞ represents
the language denoted by r. This is PSPACE-complete

(Stockmeyer and Meyer, 1973). We propose an algo-

rithm that improves this potential complexity.

4.2. Our solution

4.2.1. Symbol mapping

Our mapping algorithm composed of two steps. In
step 1, it finds candidate mappings and tests the cor-

rectness of candidate mappings in step 2.

Step 1: Finding candidate mappings: First, given a

query q and a view v we define a query graph Gq and a

view graph Gv as follows. Let D be a set of symbols that

denote regular expressions.

Definition 5. A query graph Gq ¼ ðV ;E;RÞ is a labeled
rooted graph, where V 2 nvarðqÞ is a set of nodes,

E 
 V � D� V is a set of directed edges, and there exists

an edge a!d b for each query conjunct a r b where d 2 D
denotes the regular expression r. R 2 V is a root node.

The view graph Gv is defined in the same way.

Example 3. Fig. 2 shows the graph Gq and Gv for For-

mula (2).

As the query q and the view v have the properties of

branching regular path expressions, the graph Gq and Gv

are trees without cycles. From this property, we can

reduce the number of candidate mappings. For example,

there are 52 mappings from the view�s body to the

query�s body in Formula (2). However, Fig. 2 shows that

there are only four possible mappings. 2

Our mapping algorithm finds candidate mappings

from the input graphs Gq and Gv as follows. First, it

finds a node in Gq which can be mapped to the root node

of Gv using a breadth first search, and for each such a

mapping, finds the mappings of the child node recur-

sively. For a node v in Gv and a node w in Gq, if the

number of v�s child nodes and w�s child nodes are n and

p1 p2 p3 p4 L

1 2 15 26 1994
1 3 19 26 1995

1 This is for improving the applicability of views to many kinds of

queries.

2 Fig. 2 shows only two mappings but there are four possible

mappings as we can change the order of child mappings.
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m respectively, then there are mPn ¼ m!=ðm� nÞ! po-

tential mappings, and to check the possibility of a

mapping from a node v in Gv to a node w in Gq, the
condition (the depth of v 6 that of w

V
the number of

v�s child nodes 6 that of w) should hold. For example,

in Fig. 2, the node q0 cannot be mapped to the node p0
as the number of q0�s child (i.e. 2) > the number of p0�s
child (i.e. 1). In this way, the number of candidate

mappings is reduced significantly. Algorithm 1 shows

our mapping algorithm.

Example 4. For the graph in Fig. 2, Algorithm 1 first

finds the nodes p1 and p3 that can be mapped to the

root node q0. Next, it finds submappings recursively. So

the four four candidate mappings, that is, ffq0 ! p1;
q1 ! p2; q2 ! p3g; fq0 ! p1; q1 ! p3; q2 ! p2g;
fq0 ! p3; q1 ! p4; q2 ! p5g; fq0 ! p3; q1 ! p5;
q2 ! p4gg are found.

Step 2: Testing Correctness of Candidate Mappings
The candidate mappings of step 1 are only symbol

mappings constructed from structural information of

queries and views, so we should check the equality of

languages described by the corresponding regular ex-

pressions. Moreover, as regular path expressions in

views can have variables, variable substitutions, that is,

unifications (Luger and Stubblefield, 1993) are needed.
As it is expensive to check whether or not Lðr1Þ ¼ Lðr2Þ
we filter the mappings again in step 2A.

Algorithm 1. Finding Candidate Mappings

1: INPUT: Graphs Gq and Gv

2: OUTPUT: Candidate mappings

3: Procedure find-candidate-mappings(Gq, Gv)

4: initialize a queue Q to be empty;
5: rq root of Gq;

6: rv root of Gv;

7: visit rq with rv and mark rq;insert rq in Q;
8: while Q is nonempty do

9: x Q:getFrontðÞ;
10: for each unmarked vertex w adjacent to x do

11: if w’s depth < rv’s depth then

12: continue;

13: else if number of w’s children < number of rv’s
children then

14: mark w and insert w into Q;
15: else

16: mark w and insert w in Q;
17: build new mapping c fixed with root map-

ping;

18: find-sub-mappings(w,rv,c)
19: end if

20: end for
21: end while

22:

23: INPUT: vertex q, vertex v, and mapping c

24: OUTPUT: Candidate mappings

25: Procedure find-sub-mappings(q; v; c)
26: if v has no child then

27: return;

28: end if
29: nq number of q’s children;
30: nv number of v’s children;
31: for each Permutation(nq; nv) child mappings do

32: if mapping condition is hold then

33: build new mapping table d initialized to c;
34: add current mapping to d;
35: if d is filled then

36: insert d into candidate mappings;
37: else

38: for each child mapping (qc; vc) pair
39: find-sub-mappings(qc; vc; d);
40 end for

41 end if

42 end if

43 end for

Step 2A: Filtering candidate mappings: From the

graphs Gq and Gv we define the graphs G2q and G2v as
follows.

Definition 6. A graph G2q is constructed from a graph Gq

by replacing each edge labeled ri by an automaton Ai

such that LðAiÞ ¼ LðreðriÞÞ. 3 Without loss of generality,

we assume that Ai has a unique start state and a final
state, which are identified with the source and target of

the edge, respectively.

Definition 7. A graph G2v is constructed from a graph Gv

by replacing each edge labeled by ri by an arbitrary

expression in LðreðriÞÞ.

Fig. 2. A query graph and a view graph. (a) A source database; (b) the

corresponding I2 graph with extents.

3 reðrÞ refers to the regular expression denoted by r.
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Example 5. Fig. 3 shows graphs G2q and G2v from the

graphs Gq and Gv when r0 ¼ ðajbÞ, r1 ¼ cðdjeÞ, r2 ¼
cðdcÞ�, r3 ¼ gjh, r4 ¼ g, r5 ¼ LdjLe, and r6 ¼ ðLdÞ � L.
Here, the uppercase letter L is a label variable.

Algorithm 2 shows how to find filtered candidate

mappings.

Example 6. For the graphs in Fig. 3 and candidate

mappings constructed in Example 4, Algorithm 2 finds
one filtered candidate mapping: fððq0 ! p1; q1 !
p2; q2 ! p3Þ; c=LÞg. Here, the notation c=L indicates that

c is substituted for the variable L.

Algorithm 2. Finding Filtered Candidate Mappings

1: INPUT: Graphs G2q, G2v, and the candidate map-

pings c
2: OUTPUT: Filtered candidate mappings

3: initialize filtered candidate mappings to c;
4: for each candidate mapping in c do
5: for each edge e in G2v do
6: Let e0 be an expression obtained by applying

unification to e;
7: if e0’s label is not accepted by the corresponding

automaton in G2q then
8: drop the mapping from the filtered candidate

mappings;

9: break;

10: end if

11: end for

12: end for

Step 2B: Finding final mappings: The filtered candi-
date mappings obtained in step 2A are a necessary

condition to the final mappings. So, we get the final

mappings by inserting an existing Lðr1Þ ¼ Lðr2Þ checking
algorithm to Algorithm 2. As in step 2A, if variables

exist in r2, variable substitutions are required.

Example 7. For the query and the view in example 5, the

final mapping is fððq0 ! p1; q1 ! p2; q2 ! p3Þ; c=LÞg.

If there are multiple views, the part of the query

graph which is mapped to one view is condensed to a

single node and our mapping algorithm can be applied
again. In this case, the condensed node cannot be

mapped to any nodes in the view graph.

4.2.2. Query rewriting

Let P be the final mappings in the previous section.

For a given view v : �pðu;wÞ and a query qðuÞ : �p0ðx;
yÞ; sðy; zÞ, if we apply a mapping p 2 P to the view, that

is, apply variable mappings and variable substitutions,
we obtain v0 : �pðx; yÞ. Here, p  p0 by our mapping

algorithm. Finally, we rewrite the query q and obtain

q0ðuÞ : �v0; sðy; zÞ. For example, if we apply the mapping

fððp1 ! q1; p2 ! q2; p3 ! q3; p4 ! q4Þ; 1994=LÞg to the

view v in Formula (1), the view v0 is obtained as follows.

The following theorem shows the soundness of our re-

writing algorithm.

Theorem 1. The query result of q0 which is obtained by the
rewriting algorithm is the same as that of the given query
q.

Proof.We regard each query conjunct as a predicate and

assume that p0ðx; yÞ ¼ q01ðx01; . . . ; x0iÞ; . . . ; q0mðy 01; . . . ; y 0jÞ,
sðy; zÞ ¼ r1ðv1; . . . vkÞ; . . . ; rnðw1; . . .wlÞ in our query re-

writing algorithm, and let Q01; . . . ;Q
0
m be relations cor-

responding to the predicates q01; . . . ; q
0
m, and R1; . . . ;Rn to

r1; . . . ; rn. Assume that, in v0, pðx; yÞ ¼ q1ðx1; . . . ; xiÞ; . . . ;
qmðy1; . . . ; yjÞ and let Q1; . . . ;Qm be corresponding rela-

tions. Then, the result of the query qðuÞ : �p0ðx;
yÞ; sðy; zÞ is puððQ01 ffl . . . ffl Q0mÞ ffl ðR1 ffl . . . ffl RnÞÞ. On

the other hand, the result of the query q0ðuÞ : �v0; sðy; zÞ
is puððQ1 ffl . . . ffl QmÞ ffl ðR1 ffl . . . ffl RnÞÞ. Here, as

p  p0 by our mapping algorithm, Q1 ffl . . . ffl Qm ¼
Q01 ffl . . . ffl Q0m. Thus, the result of q

0 is the same as that

of q. �

5. Query optimization

The evaluation of the following query that has two

regular expressions connected linearly becomes a basis

for evaluating queries with multiple regular expressions.

qðuÞ : �p0r0p1; p1r1p2 ð3Þ
If we regard a regular expression as a path label, we

can consider three kinds of query evaluation methods as

follows (McHugh and Widom, 1999b).

q1 q2 q3 q4
1 2 15 26

Fig. 3. A G2q graph and a G2v graph.
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1. Forward scan: From the objects bounded to the vari-

able p0, finds all objects that are reachable by the reg-

ular expression r0, and binds them to the variable p1.
Next, from the objects bound to p1, finds all objects
reachable by the regular expression r1, and binds

them to the variable p2.
2. Backward scan: It is opposite to the forward scan and

can be implemented by value indexes (McHugh and

Widom, 1999b) that find all objects with a given in-

coming edge label and satisfying a given predicate.

3. Hybrid: It is a combination of the forward scan and

the backward scan.

However, these methods are expensive because they
are based on the source database, and as our rewritten

queries may have views, they cannot be adapted directly.

So, we propose another technique named 2�-index-join.
The key idea of 2�-index-join is that each query conjunct

is evaluated independently by an index technique or by

using materialized views, and then small cost joins are

performed to them.

5.1. Review: 2-index

The 2-index (Milo and Suciu, 1999) is an index

structure for answering queries of the form select x1;
x2 from � x1Rx2, where R is a regular path expression.

First, Lv;uðDBÞ is defined as follows.

Definition 8. Lðv;uÞðDBÞ ¼ fwjw ¼ a1 . . . an, and there
exists a path v!a1 . . .!a1 u in DB}

Then, two pairs are defined to be equivalent, as follows.

Definition 9. ðv; uÞ  ðv0; u0Þ () Lðv;uÞ ¼ Lðv0 ;u0Þ
For example, in Fig. 4, the node pairs ð1; 5Þ  ð1; 7Þ
since Lð1;5Þ ¼ Lð1;7Þ ¼ a:c. From this language equivalent

relation, we can find pairs of objects connected by a

regular path expression efficiently. Although computing
 is expensive, there is a refinement based on simulation

and bisimulation, �, satisfying:
ðv; uÞ � ðv0; u0Þ ) ðv; uÞ  ðv0; u0Þ

The 2-index I2ðDBÞ of DB is defined as follows. Let

½ðv; uÞ� denote the equivalent class of ðv; uÞ.

Definition 10. The 2-index I2ðDBÞ of DB is the following

rooted graph. Its nodes are equivalence classes, ½ðv; uÞ�,
of �; the roots are all equivalence classes of the form

½ðx; xÞ�; finally, there is an edge s!a s0 iff there exist v, u, u0

s.t. ðv; uÞ 2 s, ðv; u0Þ 2 s0 and DB contains an edge u!a u0.
Here, as Lðv;uÞðDBÞ ¼ L½ðv;uÞ�ðI2ðDBÞÞ, 4 we compute

the query Ry on I2 and take the union of the extents to

evaluate select x; y from � xRy.

Example 8. Fig. 4 shows a source database and the

corresponding I2 graph with extents. The query

select x; y from � xða:dÞy is evaluated by traversing the

path a:d from the root and the extent of the node

s8 ¼ fð1; 6Þ; ð1; 8Þg is returned.

5.2. 2�-index

The 2-index technique finds all pairs of objects con-

nected by a regular path expression with an I2 graph

that usually has a small size compared to the source data

graph. However, when traversing the I2 graph, if a query
has the � �� expression, the query processor should tra-
verse the entire I2 graph.

The 2�-index technique removes the � �� expression by

considering all possible instantiations against an XML

document type definition (DTD) (Bray et al., 1998).

DTDs describe the XML document�s structures by

means of regular expressions. Although the DTD is an

optional feature of XML, the DTD can be inferred from

XML data by the technique proposed in (Garofalakis
et al., 2000). Additionally, our technique can be aided

when XML Schemas (Brown et al., 2001) that are

extensions to DTDs are available.

We assume that DTDs do not have the entity and

notation declaration and mixed contents elements whose

contents mixes strings with elements. Then, we can ab-

stract a DTD as a set of (k; n; p) triples, where k de-

scribes the kind of DTD declaration: an element (e) or
an attribute (a), and let L be a set of element names,

n 2 L, and finally, when k ¼ e, p is either a regular ex-

pression over L or PCDATA which denotes a character

Fig. 4. Example: 2-index.

4 The proof is shown in Milo and Suciu (1999).
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string, and when k ¼ a, p is the name of an attribute. We

define a DTD graph GD as follows. It is similar to that of

Shanmugasundaram et al. (1999) and our GD has no

operators in the DTD. Let N be a set of elements and

attributes names.

Definition 11. A DTD graph GD ¼ ðV ;EÞ is a graph

where V 2 N is a set of nodes and E 
 V � V is a set of
edges. For the set of nodes N, each element appears

exactly once, while attributes appear as many times as

they appear in the DTD. For each DTD declaration

ðk; n; pÞ, when k ¼ e, there is an edge n! m from an

element n to each element in p, and when k ¼ a there is

an edge n! a from the node n to the attribute name a.

Example 9. Fig. 5 shows a DTD graph GD when
DTD ¼ fðe; person; ðname; position?; companyÞÞ; ðe;
company; ðaddress; personþÞÞ; ðe; name; ðfirstname?;
lastnameÞÞ; ðe; position; PCDATAÞ; ðe; address; PCDATAÞ;
ðe; firstname; PCDATAÞ; ðe; lastname; PCDATAÞ; ða;
person; ageÞ; ða; company; nameÞg.

Given a graph GD, and a query having the � �� expres-
sion, Algorithm 3 produces new queries without the � ��
expression. When R1 ¼ /, it finds all possible paths from
each element name in the DTD. Otherwise, it finds all

possible paths from the tail of R1 to the head of R2.
When the GD has cycles, the algorithm finds the shortest

possible path. In line 15, Algorithm 3 traverses the

marked vertices that do not make a cycle with the cur-

rent path for the case of diamond hierarchy in the DTD

graph.

Algorithm 3. Star Flattening

1: Input: A graph GD and a query R ¼ R1: � :R2

2: Output: A set of queries without the ‘ �’ expression
3: Procedure Star-Flattening(GD, q)
4: if R1 ¼ / then

5: for each element e in DTD do

6: Star-Flattening(GD,e:�:R2)

7: endfor

8: else

9: head  the tail label of R1;
10: tail the head label of R2;

11: initialize a query Q to be empty;

12: mark head and insert it in Q;
13: while Q is nonempty do

14: x GetFront(Q);
15: for each unmarked and marked vertex that

doesn’t make a cycle w adjacent to x do

16: if w ¼ tail then
17: print the current path from head to tail;
18: mark w;
19: else

20: mark w and insert it in Q;
21 endif

22 endfor

23 endwhile

24 endif

Example 10. Given the DTD graph in Fig. 5 and the
query person: � :name, Algorithm 3 produces the query

(person.namejperson.company.name).

5.3. 2�-index-join

Algorithm 4 shows our query processing algorithm

named 2�-index-join when given a query q and a set of

views m. It is composed of two steps: query rewriting and

query processing. In the query rewriting phase, the given

query is rewritten using views by our mapping algo-

rithm. In the second phase, each unchanged query

conjunct is evaluated by the 2�-index technique and the
join of the result of views and unchanged query conjunct

is returned.

Algorithm 4. 2�-index-join algorithm

INPUT: The query qðuÞ : �y0r0z0; . . . ; yn�1rn�1zn�1,
the set of views m ¼ fv1; . . . ; vmg
OUTPUT: A set of oid tuples which are mapped to

head variables u of q
Step 1: Query rewriting

• Find mappings Pi from vi 2 m to q (Section 4.2.1);

• For each vi 2 m, let v0i : �pðx; yÞ be the view after

applying p 2 Pi to the view vi, and qðuÞ : �
p0ðx; yÞ; sðy; zÞ, rewrite the query as q0ðuÞ : �
v0i; sðy; zÞ (Section 4.2.2);

Step 2: Query processing

• For the final sðy; zÞ in step 1, if sðy; zÞ ¼
y 00r
0
0z
0
0; . . . ; y

0
k�1r

0
k�1z

0
k�1, and Q0; . . . ;Qk�1 are rela-

tions corresponding to each query conjunct, find

tuples of Q0; . . . ;Qk�1 by the 2�-index technique

(Section 5.2);

• Letting vi1 ; . . . ; vil be views which participate in

query rewriting and W1; . . . ;Wl be corresponding

relations, return puðW1 ffl . . .Wl ffl Q0 . . . ffl Qk�1Þ;

Example 11. Consider the following query and view.

qðp2Þ : �p1ðmoviejdramaÞp2; p2ðyear:1995Þp3;
p2ðactor:name:\BradPitt"Þp4
v : �q1ðmoviejdramaÞq2; q2ðyear:LÞq3

Fig. 5. A DTD graph.
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The query asks for movies and dramas that have an actor

named ‘‘Brad Pitt’’ and were produced in 1995. The 2�-

index-join algorithm finds a mapping P ¼ fððq1 !
p1; q2 ! p2; q3 ! p3Þ; 1995=LÞg in step 1. Let v0 be the
view obtained by applying this mapping to the view v. The
query is rewritten to q0ðp2Þ : �v0; p2 ðactor:name:\Brad
Pitt"Þp4. If the rewritten query is applied to the data graph

in Fig. 1, the result of v0 is Rv0 ðp1; p2; p3Þ ¼ fð1; 3; 19Þ;
ð1; 4; 23Þg and the result of p2ðactor:name:\BradPitt"Þp4 is
Rðp2; p4Þ ¼ fð2; 26Þ; ð3; 26Þg. So, finally, the result of the
query is Rqðp2Þ ¼ f3g.

5.4. Evaluation

As stated earlier, we can consider three kinds of query

evaluation methods: forward scan, backward scan, and

hybrid scan. Among them, we compared the 2�-index-
join technique with the forward scan by a cost model.

The backward scan and the hybrid scan can outperform

the forward scan in certain database statistics. For ex-

ample, if only a few leaf nodes in the data graph satisfy
a given predicate, the backward scan outperforms

the forward scan. However, we assume that the three

methods usually have similar performance.

We compared query processing techniques based on

the number of objects fetched. This is reasonable since it

is difficult to enforce object clustering in semistructured

data models. So, we assume each object fetch has uni-

form cost.
One can predict that the 2�-index-join technique has

the following disadvantages compared to the forward

scan.

1. Join cost: Additional joins are required in the second

phase of step 2 in Algorithm 4.

2. Loss of binding information: Assume that a query

having two regular path expressions connected lin-
early is being evaluated. In the forward scan, when

the second query conjunct is processed, the source

graph is traversed for the second regular path expres-

sion from the objects reachable by the first regular

path expression. However, in the 2�-index-join tech-

nique, each query conjunct is evaluated indepen-

dently and joins are performed to them.

First, join operations in 2�-index-join have low cost,

since relations participating in joins have tuples of oids

that are the result of query conjuncts. For example, let

us estimate the size of joins when a query has five query

conjuncts. We use the cost formula in (Korth and Sil-

berschatz, 1991), and estimate the size of r1 ffl r2 . . .
ffl r5, and assume the following variables.

R1;R2; . . . ;R5: the set of attributes corresponding to
r1; r2; . . . ; r5
nri : the number of tuples in the relation ri

sri : the size of a tuple of the relation ri in bytes, sAi :

the size of attribute Ai

V ðAi; riÞ : the number of distinct values that appear in

the relation ri for attribute Ai

R1 \ R2 ¼ A1; ðR1 [ R2Þ \ R3 ¼ A2

ðR1 [ R2 [ R3Þ \ R4 ¼ A3,
ðR1 [ R2 [ R3 [ R4Þ \ R5 ¼ A4

If we assume uniform distribution of values, then the

query rA¼aðrÞ is estimated to have nr=V ðA; rÞ tuples. So,
as a tuple of r1 produces nr2=V ðA1; r2Þ tuples in r1 ffl r2,
all of the tuples in r1 produces nr1nr2=V ðA1; r2Þ tuples in
r1 ffl r2. In the same manner, there are nr1nr2 . . . nr5=
V ðA1; r2ÞV ðA2; r3ÞV ðA3; r4ÞV ðA4; r5Þ tuples in r1 ffl r2 . . .
ffl r5. Finally, the size of r1 ffl r2 . . . ffl r5 is nr1nr2 . . .
nr5=V ðA1;r2ÞV ðA2;r3ÞV ðA3;r4ÞV ðA4;r5Þ � ð

P5

i¼1 sri�
P4

i¼1
sAiÞ. In 2�-index-join, the value of V ðAi;riþ1Þ is the

number of distinct objects in the data graph. Let us

assume that a denotes this value. nri is the number of

pairs that satisfy a regular path expression for a query

conjunct. The upper bound of this value is Oða2Þ, but in
practice, this value is smaller than a (Milo and Suciu,

1999). So, we assume that nri ¼ a. In 2�-index-join, each
relation corresponding to each query conjunct has two

attributes, that is, the relation has tuples of (source,

target) oid pairs which are connected by the corre-

sponding regular expressions. If we assume 4 bytes for

each attribute,
P5

i¼1 sri ¼ 40 and
P4

i¼1 sAi ¼ 16. So, the

size of joins is at most 24 � a bytes. For example, if there

are 1 million distinct objects in a data graph, the size of

joins is at most 24,000,000 bytes. This value is less than
24M bytes, so the join cost in 2�-index-join is quite low.

Next, to evaluate the loss of binding information, we

compare our technique to forward scan using an ana-

lytic model as in Abiteboul et al. (1998) and McHugh

and Widom (1999b). Assume that the following quan-

tities are statistics kept by the system.

• Fanoutðx; lÞ: the estimated average number of chil-
dren with the label l that are descendants of some ob-

ject in the set of objects bound to variable x. For
example, if the objects having oids 2 and 3 are bound

to the variable z in Fig. 1, then Fanoutðz; nameÞ ¼ 1.

• jxj: the estimated number of objects bound to x. In
the above example, jzj ¼ 2.

• costðx; l; yÞ: the estimated number of objects fetched

in order to get all of the sub-objects with edges la-
beled l originating from any object in x, where

each resulting object is placed into y. This cost is

computed by jxj � Fanoutðx; lÞ. For example, given

a simple path expression 5 zðnameÞw, the cost is

costðz; name;wÞ ¼ jzj � Fanoutðz; nameÞ ¼ 2 � 1 ¼ 2.

• OIDJoin: join cost of the result sets in 2�-index-join.

5 This is defined in McHugh and Widom (1999b), and means single

step navigation in the database.
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2�-index-join evaluates the following form of queries.

q0ðuÞ : �wðx; yÞ; cðy; zÞ ð4Þ
Here, wðx; yÞ denotes rewritten queries using views

among query conjuncts and cðy; zÞ denotes unchanged

query conjuncts. When cðy; zÞ ¼ /, complete rewritings

(Levy et al., 1995) exist and when wðx; yÞ ¼ /, there is
no rewriting using views. In both cases, our technique

can be applied to answer the queries. We compute the

cost of the forward scan and 2�-index-join when

wðx; yÞ ¼ /, 6 and cðy; zÞ has the form of a query in

Formula (3). Additionally, assume that r0 ¼ a and

r1 ¼ b. In this case, the forward scan has an advantage

over 2�-index-join since the regular path expressions are

the simplest forms.
This is because that if regular path expressions are

complex, 2�-index-join has an advantage over the for-

ward scan. Then, the cost of the forward scan and 2�-
index-join are calculated as follows. Here, let jp1i j be the
number of objects bound to variable pi in the source

database and jp2i j be those in the I2 graph. Similarly,

Fanout1ðpi; lÞ denotes the average number of objects that

are traversed by label l from the set of objects bound to
variable pi in the source database and Fanout2ðpi; lÞ de-
notes those in the I2 graph.

Costforward scan ¼ jp10 jFanout1ðp0; aÞ þ jp11 jFanout1ðp1; bÞ

¼ jp10 jFanout1ðp0; aÞ þ jp10 jFanout1ðp0; aÞFanout1ðp1; bÞ

Cost2��index�join ¼ jp20 jFanout2ðp0; aÞ þ jp21 jFanout2ðp1; bÞ þ OIDJoin

In the I2 graph, jp20j ¼ jp21j ¼ the number of roots, and

these are all of the equivalence classes of the form

½ðx; xÞ�. Often, these are only a few. In particular, I2 has a
single root in acyclic databases. Also, Fanout1ðpi; lÞ �
Fanout2ðpi; lÞ. Finally, the cost of OIDJoin is very low as

it is joining between oids. So, Cost(forward scan)
� Cost(2�-index-join).

5.5. An experiment

We have implemented our technique described in this

paper with about 3500 lines of Java code to illustrate its

enhancement in query processing. Our technique is ap-

plied to a MLB database 7 that is composed of 14,646
objects including 60 teams and 2400 players.

Table 1 shows queries used in the experiment. Here,

the query Q1 is composed of a single regular path ex-

pression and the others are composed of multiple reg-

ular path expressions.

The number of objects searched to evaluate the que-

ries is presented in Table 2. We compared our technique

with naive evaluation of the query. The results show that

our technique reduces the search space significantly.

Next, Table 3 shows the total elapsed time. In this

case, we can see that the small cost OIDJoin is per-

formed in our technique. Compared to the cases Q1, Q2,

and Q3, our technique shows a poor performance result

when the query Q4 is evaluated. This is because that the

query Q4 requires almost entire graph traversal to an-
swer the query. However, our technique outperforms

naive evaluation of the query.

6. Conclusion

We propose an efficient technique to process semi-

structured queries having multiple regular path expres-

sions. Our algorithm is composed of two steps: query
rewriting using views and query processing. In step 1,

our algorithm finds symbol mappings from the given

query and the views. In this case, by using structural

information of the query and the views, we reduce the

complexity of the mapping algorithm. In step 2, we

suggest a query evaluation technique that processes each

query conjunct independently by an index technique

named 2�-index, and then combines the query result by
low cost joins. We show that our technique outperforms

the general query processing technique.
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