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Abstract 

XML is represented as a tree and the query as a regular 
path expression. The query is evaluated by traversing each 
node of the tree. Several indexes are proposed for  regular 
path expressions. In some cases these indexes may not cover 
all possible paths because of storage requirements. In this 
papec we propose a signature-based query optimization 
technique to minimize the number of nodes retrieved from 
the database when the indexes cannot be used. The signa- 
ture is a hint attached to each node, and is used to prune 
unnecessary sub-trees as early as possible when travers- 
ing nodes. For this goal, we propose a signature-based 
DOM(s-DOM) as a storage model and a signature-based 
query executor(s-NFA). Our experimental results show that 
the signature method outpegorms the original. 

1. Introduction 

XML is an emerging standard for data representation and 
exchange on the World-Wide Web. A database system is 
required for efficient manipulation of XML data, as large 
quantities of information are represented and processed as 
XML. However, because the data model of XML is dif- 
ferent from those of conventional databases, a new storage 
method and a query processing model are required. Semi- 
structured data[ 1, 51, which has been intensively studied in 
recent years by the database research community, is very 
similar to XML data. Therefore, the research results in 
the area of semi-structured data are now broadly applica- 
ble to XML[20]. There are several semi-structured or XML 
database systems, e.g., Lore[ 191 and excelon[ 111. 

XML is represented as a tree of which each node is 
stored as an object in the semi-structured database, and 
queries are evaluated by traversing these nodes. For effi- 
cient evaluation of the XML query, it is important to de- 
crease the number of the traversed nodes. 
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SELECT x.company.(addressltelephone) 
FROM person.*.parent x; 

The above is an example of an XML query, which is 
similar to Lorel[2]. This query retrieves person’s parents’ 
addresses or telephone numbers. It contains the regular 
path expressions[2, 6, 93, which are supported by general 
XML queries such as XML-QL[ 101 and XQL. Some syn- 
taxes, such as the star(*) in XML queries, enlarge the search 
space. In this example, almost all nodes under person 
must be visited because of per son. * . Therefore, regular 
path indexes have been studied to solve this problem. 

The path index[4] is proposed for evaluating path expres- 
sions in object-oriented databases. However, all possible 
paths cannot be covered by this index due to the high storage 
requirements. New indexing methods for semi-structured 
data are proposed in [16, 221 to evaluate the regular path 
expressions more rapidly. The 2-index[22] is for *.x.P.y, 
in which P means a regular expression. However, in the 
worst case, the number of nodes in the 2-index is the square 
of the number of nodes in the data graph. For this rea- 
son, the T-index[22] is introduced to decrease the size of 2- 
index by reducing the coverage of regular expressions such 
as *.person.x.P.y. 

As a result, some data are outside the boundary of these 
indexes. The path index and T-index do not cover all pos- 
sible regular path expressions for the storage requirements. 
It is also a problem that the index for a semi-structured data 
is another semi-structured data[ 16, 221. When the index 
is used for query evaluation, the index nodes must be tra- 
versed. However, the number of visited index nodes cannot 
be reduced even though they are index nodes. 

An s-DOM and s-NFA are proposed which are based 
on the signature method[8, 121, to reduce the search space 
when the index is not used for the regular path expressions. 
The signature of s-DOM gives a hint as to whether some 
nodes exist in the sub-tree of a specific node. The s-NFA 
is used for evaluating the regular path expressions using the 
signature information. This method can be applied to semi- 
structured indexes because they are also represented as a 
graph. To evaluate the regular path expressions many of the 
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nodes in the indexes have to be visited because of blindness 
of a sub-graph to a node in the index. The signature method 
removes the blindness, and reduces the number of visiting 
nodes of the data and index trees. 

The size of each node of s-DOM becomes larger than 
the size of the original because a signature is stored in each 
node. However, as the size of a signature is several bytes, 
the performance is not much affected. Because the opera- 
tion of signatures is a bit-wise operation, there is little over- 
head for computation of the signature. 

The remainder of this paper is organized as follows: Sec- 
tion 2 presents related work, while Section 3 defines the 
data model and the query language used in this paper. Sec- 
tion 4 presents the s-DOM for nodes that have signatures. 
The query optimization technique using signatures is given 
in Section 5 and the experimental results are discussed in 
Section 6.  Finally, conclusions are presented in Section 7. 

2. Related Work 

Semi-structured data[l, 51 is represented as a graph. 
The query languages for semi-structured data are influenced 
by those of object-oriented databases such as OQL[7], 
XSQL[17]. Both OQL and XSQL use a path expression 
which enhances the expressive power of the queries. How- 
ever, these query languages are not adequate for the semi- 
structured data due to a lack of schema information. Even 
if schema information is provided, the structure can be 
changed by its own data. 

To solve this problem, regular path expressions are used 
for semi-structured queries[2, 6, 91. Indexes of semi- 
structured data[l6, 20, 221 are proposed to execute regu- 
lar path expressions more rapidly. They combine the index 
structure and automata of the XML data. The target ob- 
jects can be retrieved by traversing the appropriate automata 
graph for the regular path expression. 

Theoretical foundations for query processing for semi- 
structured data are studied in [ 3 ,  211. [3] uses path con- 
straints for optimization of regular path queries. [ 131 de- 
fines a graph schema that has partial information about the 
graph structure. It reduces the search space by query prun- 
ing and query rewriting. 

Each node of a tree is stored as an object in excelon[ 1 11 
and PDOM[l5]. The original structure of XML docu- 
ments cannot be changed by storing each node as an object. 
Object-oriented databases or Lore[2] use this method. 

3. Data Model and Query 

The DOM[24] is a standard interface of XML data, 
whose structure is a tree, which is the data model used in 
this paper. Each node in DOM references its parent, child 

< ? m l  version="l. O " ? >  
<!DOCTYPE AddrList> 
<AddrList> 

<person name="Robert Johnson"> 
<company> 

<address>Heidelberg</address> 
<telephone>123-4567</telephone> 

</company> 
<f ather> 

<person> 

</person> 
<name>William Johnson</name> 

< / father> 
</person> 
<company> 

<name>Samsung</name> 
<address>Suwon</address> 
<telephone>549-0987</telephone> 

</company> 
</AddrList> 

Figure 1. Example of an XML Document 

Figure 2. DOM Graph 

and sibling nodes, and the sibling nodes are an ordered list. 
We assume that each node in DOM is stored as an object. 
When each node is stored as an object in a database, mini- 
mizing node visits is the main requirement to optimize the 
queries. 

Figure 1 is an example of an XML document, of which 
DOM structure is representedas a tree like in Figure 2. Each 
node is stored as an object and its OID is represented by '&' 
as depicted in Figure 2. For example, the OID of the root 
node is &1. There are element node, attribute node and text 
node in DOM. The element node has a name. The text node 
is a leaf node and has a value, and the attribute node has 
a name and a value. For example, object & I  and &2 are 
examples of element nodes, and object &4 is an attribute 
node. The leaf node, such as objects &I6 and &17, is a text 
node. Simple definitions useful for describing the mecha- 
nism described in this paper are: 
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1 father 1 0000001 1 11 Demon I 00100010 I 

&7 
&10 

name I ~0001000 11 company I 00001001 
address I 01000001 11 teleuhone I 00101000 

00000000 &8 00000000 &9 00000000 
00000000 & I 1  00000000 &12 10001000 

(a) Hash value of string 

& I  I 11101011 11 &2 11101011 I( &3 1 11101001 
&4 I 00000000 1 1  &5 I 01101001 1 1  &6 I 10101010 

I 

(b) Signature of a node in s-DOM 

Table 1. Hash values of the Name of each El- 
ement and the Signatures of each Node 

Definition 3.1 (label path) A label path of a DOM is a se- 
quence of one or more dot-separated labels, 11 &..& such 
that we can traverse a path of n nodes (nl ... nn), where 
node ni has label li, and the type of node is element or at- 
tribute. 

Definition 3.2 (regular path expression) A regular path 
expression is a path expression that has regular expressions 
in the label path. 

Queries in this paper are regular path expressions. They 
allow wildcard operators such as *, + and ?. The scan op- 
erator is provided for searching nodes matched to the given 
regular path expression when processing the query. If each 
node is stored as an object in unclustered fashion it  is highly 
likely that a page is read from disk to fetch a node. There- 
fore, the number of fetching nodes must be diminished to 
reduce the cost of evaluating the queries. The objective of 
this paper is to reduce the search space of the DOM tree 
by pruning the data graph to minimize disk operation when 
evaluating regular path expressions. 

XML queries can be executed by traversing each node of 
the tree. Therefore, to optimize XML queries, minimizing 
the number of visited nodes is the key issue. In this pa- 
per the terms node and object are interchangeable because 
a node is stored as an object in a database. 

4. Storing XML Documents Based on the Sig- 
nature Method 

In this paper we assume that each node of DOM is stored 
as an object, which is shown in [ l l ,  14, 19, 231. We addi- 
tionally add a signature to each node in DOM, and call it 
s-DOM. The label path contains the names of the element 
or attribute nodes in the DOM tree. Therefore only element 
and attribute nodes are involved in making the signature. 

Let the hash value of the name of a node i be Hi,  and the 
signature be Si. The Si is the ORing of all the hash values 
of its child nodes. That is, the hash value is propagated to 
its parent node. 

Then we can estimate the existence of a certain name 1 
in  the sub-tree of the node i by comparison of HI A Si. If 
Hl A Si I Hl then there may be the name 1 in the sub- 
tree. Otherwise, if Hl A Si # Si, then we can assure of no 
existence of the name 1 in the sub-tree. Table 1 (a) shows 
hash values of the element and attribute names in Figure 
2. Algorithm 1 explains how to calculate the signature of a 
node, and the results are shown in Table 1 (b). 

Algorithm 1 MakeSignature(n0de) 
I :  s t o  
2:  if node is an Element or Attribute node then 
3: 
4: 
5:  
6: end for 
7: end if 
8: nodesignature t s 

for each ChildNode of node do 
s t s V MakeSignature(Chi1dNode) 
s t s V Hash(ChildNode.Name) 

Example 4.1 (Node Traversing) When we wish to know 
whether there is a node whose name is father in the sub- 
tree of &2 in Figure 2, we perj5orm a bit-wise AND opera- 
tion between the hash value of father, H“fatheT” and the 
signature of &2, sa. Since HclfatheT” A sz E H‘GfatheT,,, it 
is possible that a node whose name is father exists in the 
sub-tree of &2. on the contrar)? since N “ f a t h e r ”  A 3 3  # 
H86fatheT”, we can make sure there does not exist such a 
node in the sub-tree of &3. Therefore, we prune the sub- 
tree of &3 when finding a node named father. 

5. s-NFA(Signature-based NFA) 

We propose a scan operator called s-NFA which attaches 
the signature information to NFA and is used to prune s- 
DOM as early as possible while traversing s-DOM to eval- 
uate a regular path expression. We will explain how a regu- 
lar path expression can be transformed to a NFA in Section 
5.1. In Section 5.2 we explain how to make s-NFA, and we 
describe the pruning mechanism in Section 5.3. To avoid 
confusion of the node in DOM and NFA, we call the node 
of DOM as an object, and the node of NFA as a state node. 

5.1. Query Evaluation using NFA 

A regular expression can be represented by an automata. 
Automata can be deterministic or non-deterministic[ 181. A 
regular path expression is a regular expression as well. In 
this paper we translate a regular path expression to an NFA. 
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Figure 3. NFA 

Any complex NFA can be constructed by composition of 
L(rl)L(rz), L(rl + r z )  and L(r*) depicted as Figure 3[ 181. 
L(T?) and L(r+) can be derived by removing certain edge 
in L(T*). 

Definition 5.1 (state set) The state set is a set of state 
nodes of NFA, elements are the result of transition in NFA 
by a certain label path. 

Every regular path expression can be represented as an 
NFA, and is evaluated by moving the state nodes in NFA 
while traversing objects in the DOM tree. When we traverse 
the DOM tree from a given object to its sub-tree, a label 
path is made. We can create a state set by the label path. If 
the state set is empty, then query evaluation will be stopped 
because state transition in NFA cannot have occurred. If a 
final state node in the NFA is an element of the state set of 
the object, by which the label path is made, it is accepted as 
an element of the query result set. 

Example51 The NFA of regular path expression Ad- 
drlist. ( (person. * )  lcompany) .name is shown 
in Figure 4.  In this case, any label can be accepted by *, so 
* is the same as (any label) *. We can obtain a result set 
R =  { & 4 ,  &18, &7}ofthisquery,  whichisprocessedin 

 figure 2 using -Figure 4. 

5.2. S-NFA 

State transition in the NFA is determined by the label of 
the edge. When arriving at the final state by transition, the 
object in DOM is accepted as an element of the result set. 
However, we cannot determine which labels appear along 
the path from the current state node to the final state node. 
So we have to change state nodes at each step. We have to 
arrive at the final state node in NFA to accept the objects 

as a result. Therefore, all labels which come out from the 
current state node to the final state node must appear when 
evaluating the queries. 

If the labels appearing to the final state node in NFA do 
not exist in the sub-tree, the objects in the sub-tree cannot 
be the result of the query, and subsequently, we do not need 
to traverse that sub-tree. The following definitions are used 
in making the signature in the NFA. 

Definition 5.2 (NFA Path) The NFA path P, i s  apath from 
a state node n to the jinal state in an NFA. 

Definition 5.3 (Path Signature) The path signature PS, 
of a state node n in NFA is dejined as 

PS, = {x I x is a value which is ORing hash values of all 
the labels along a NFA path of state node n in NFA} 

The path signature is a bit value which is merged by all 
hash values of the labels of an NFA path. There are several 
NFA paths in a state node n because there are several paths 
from n to the final state node. Therefore, the path signature 
PS, of a node n is a set. 

The s-NFA proposed in this paper is an NFA of which 
state nodes have signatures to speed the evaluation of 
queries. The signatures of the s-NFA are generated by OR- 
ing the hash values of all labels that have to be met when 
moving from the current state to the final state in the NFA. 
We can examine the existence of the labels that appear from 
a certain state node n to the final state in the sub-tree of ob- 
ject i in s-DOM. Let the path signature of the state node n 
be PS, and the signature of the object i be S,. Let one el- 
ement of PS, be S,. If S, A S, = S,, then we may guess 
that we can arrive the final state node when traversing the 
sub-tree of object i .  If not, we cannot arrive at the final state 
node when traversing all objects in the sub-tree of object i .  
Therefore, we can prune the s-DOM graph by checking the 
signature. 

Figure 3 describes how to build various types of NFA. 
Therefore, if we can make path signatures of that NFA in 
Figure 3 then path signatures of any complicated NFA can 
be built. The rules for making path signatures are described 
below. 

Rule 5.1 (L(a)) An NFA which has an atomic value as in 
Figure 3 ( a )  has a start state s and a final state f. If the 
hash value of label a is Ha. the path signature of PSs, PS f  
of s and f state nodes, respectively, are 

ps, = { H a )  
PS f  = (0) 

Rule 5.2 (L(r1 + rz))  The path signatures PS, and PSf  
are shown in Figure 3 (c) ,  in which two NFAs are concate- 
nated by V. 

PS, = PS,U PS, 
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Figure4. The NFA of Addr~ist. ( (person. * )  /company) .name 

1 { 11 101010,1 100l00l) 
2 { 10101010, l000l001} 
3 ~10101010. 1000100l~ 

8 { l0001000) 
9 { 10001000} 
10 ~ 1 0 0 0 1 0 0 l ~  

Table 2. Path Signatures 

PSf  = (0) 

Rule 5.3 (L(r*)) The value of the path signatures PS, and 
PS f  of Figure 3 (d), of which operator is *, are 0. 

P S ,  = ( 0 )  
P S f  = { O }  

Rule 5.4 (L(r+)) L(r+) can be made by removing an edge 
X from s to f in Figure 3 (d). Hence, the rules for making 
path signatures are the same except for PS,. 

P S ,  = PS, 
P S f  = ( 0 )  

The path signature of L(r?) is same as the Rule 5.3. 

Rule 5.5 (L(q)L(r2) )  L(q)L(rz) is the concatenation of 
two NFAs. While we traverse from the start state node to 
thefinal state node, the state node p in M ( r 2 )  should be vis- 
ited. So a path signature Psi of a state node i in M ( r l )  has 
to be changed by ORing PS,; that is, Psi = Psi x v PS,. 
It is the Cartesian product with the path signature of each 
state node in M(r1)  and PS,. We call it signature prop- 
agation. The path signatures of M(r2)  are not changed. 
Therefore, the path signature Psi of each node i in M(r1) 
is 

Psi = { ( x  V y) I Psi is the path signature of a state 
node in M(rl), x is an element of P s i ,  
y is an element of PS, } 

Example 5.2 (Path Signatures in NFA) Afrer applying 
the rules, we can obtain the path signature of each node in 
s-NFA, and the results are shown in Table 2. For example, 
PSI0 is { 10001001 } which is the ORing value between 
hash values of company and name because the edge 
company and name has to be visited in order to arrive at 
the final state from state node I O .  

Algorithm 2 next() 
1: /* S is the staie set of s-NFA */ 
2: node t get next node by DFS from s-DOM 
3: while node is not NULL do 
4: ForwardLabel(S, node) 
5: 
6:  
7: return node 
8: end if 
9: 

IO: 
I I :  end if 
12: end while 

/ 

ForwardLambda(S, node) /* using Signature */ 
if there is a final state in s then 

if S is empty then 
node t get next node by DFS from s-DOM 

Algorithm3 ForwardLambddS. node) 
1: for each state node n which can go forward by X in S 

2: 
3:  
4: 
5 :  add m to S 
6: break 
7: end if 
8: end for 
9: end for 

do 
for each signature s of the path signature of n do 

7n t the state node moved from n by X 
i f s  A nodesignature E s then 

5.3. Query Evaluation using s-NFA 

This section describes query processing using s-NFA. 
The path signature of s-NFA describes what labels have to 
be visited in order to arrive at the final state from a specific 
state node in s-NFA. Conversely, the signature of s-DOM 
shows which labels exist in the sub-tree of a specific ob- 
ject in ‘s-DOM. Before traversing the sub-tree of object oi 
in s-DOM we change the state set SS  of s-NFA by label 1 
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I Daeesize I 4Kbvtes II 
Shakespeare( D s )  
Bibliography(DB) 

The Book of Mormon(Dw) 

numberofbuffer 1 20 
obiect cache size I 500 

# of Nodes File Size 
537,621 7.5 Mbytes 

19,854 247 Kbytes 
142.75 1 6.7 Mbytes 

Q5 
Q6 

Table 3. Parameters used in Simulation 

DM tstmt.*[ l].(titlelptitle) 
DM *.chapter 

Table 4. Characteristics of the XML Files 

of object oi. When we traverse the s-NFA from one of the 
state nodes n in SS  we compare the signature S, of object 
oi and one of the path signatures PS,  of the state set SS.  If 
si A PS,  E PS, then we can go forward from state node 
n. 

Algorithm 2 is a scan operator that returns a node which 
is accepted by the regular path expression. The function 
next calls Algorithm 3. In this function, the signatures 
of s-DOM and path signature of s-NFA are compared to 
determine whether or not the state of s-NFA can go forward. 
The meaning of i f  in Algorithm 3 is whether the labels 
which exist along the current state node to final state in s- 
NFA exist in the sub-tree of a node in s-DOM. If not, the 
sub-tree does not need to be visited the remaining sub-tree. 

Example 5.3 (Query Evaluation) When we translate the 
query of Example 5.1 to s-NFA, the s-NFA can be depicted 
as similar to the Figure 4,  of which each node has a path 
signature as described in Example 5.2. When object &1 is 
read, state set S = ( 2 ) .  Ifwe apply Algorithm 3 to progress 
to states, the labels of which are A, then S = ( 3 )  because 
the bit operation AND between SI and 10001001 which is 
one signature of the path signature PS2 is I0001 001. If we 
apply this operation to object &2 then S will be { 7, 13) .  
In this situation, AND operation between one signature p of 
PS7 and Ss can not be p itseF In spite of the query per- 
son. *, the sub tree of &5 does not need to be visited. We 
can obtain results by iterating this operation. 

6. Experimental Results 

The simulation program in this paper is coded in Java 
and evaluates queries in main memory. We store each node 
of s-DOM as an object and fetch by scan operator, of which 
the parameter is a regular path expression. The scan opera- 
tor requests an object from the object cache, which is built 
on a buffer manager. The object cache requests a page from 
the buffer manager. The size of each object in the page is 
not the same for either its length of element name. The 
object cache and buffer manager use the LRU replacement 
algorithm. We use two clustering methods, depth-first and 
breadth-first. The methods are fully clustering algorithms, 
but real objects may be scattered in the database. We count 
the number of fetched objects in the object cache and the 
number of page VO in the buffer manager. Table 3 shows 
all parameters used in this paper. 

Table 5. Queries Used in Simulation 

This paper compares clustering mechanisms to deter- 
mine which is better in traversing the nodes using signa- 
tures. Comparing the number of nodes visited and the num- 
ber of page U0 is the extreme case from the view point of 
clustering. The number of nodes visited is the performance 
criterion of a fully unclustered case, while the number of 
page I/O is that of a fully clustered case. When each node 
is stored as an object in a database, fetching each object re- 
quires a disk operation in the unclustered case. However, 
when the objects are clustered, fetching each object is not 
a disk operation. Traversing the tree, several objects near a 
specific object may be stored on the same page. The clus- 
tering methods are BFS and DFS as used in this paper, and 
the objects are completely clustered. However, after many 
deletion and insertion operations, objects may be scattered 
and the clustering status is between clustered and unclus- 
tered. In this paper, we show which clustering method is 
better when signature is used. The data used in this pa- 
per are Shakespeare, The Book of Mormon, and the part 
of Michael Lay’s bibliography, which are all translated into 
XML. The statistics of the data are shown in Table 4. 

Six queries were used in the experiment and are de- 
scribed in Table 5. In these queries, *[2] means two paths 
whose label is an arbitrary string. The first query for each 
XML data retrieves the data that are located in a specific 
path. The next query retrieves the data located at any depth 
of the tree for each data file. Figure 5 shows the results of 
performance tests. Figures 5 (a) and (b) measure the num- 
ber of nodes fetched, and (c) and (d) measure the number of 
page VO. Queries Q1, Q2 and 4 6  fetch many more objects 
than do queries Q3, Q4 and Q5. Therefore separate graphs 
are used to distinguish the results. In these figures, zero size 
of signature means that the signature method is not used. 

For the number of retrieval of nodes in Figures 5 (a) and 
(b) the signature-based query evaluation has better perfor- 
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0 
0 2 4 6 6 10 

Signature s1m 

(a) Number of Fetching Nodes (QI,Q2,Q6) 

Ol(BF5) + 
02(BFS) +-- 
06(BFS) 0 

___ Y Y X Y X  
0 1 .I ,. - .. - ., 
0 2 4 6 8 10 

Signature size 

(c) Number of Page VO (QI,Q2,Q6) 

i;!o 2000 s,g"et"r* sue 

(b) Number of Fetching Nodes (Q3,Q4,Q5) 

400 1 

0 Q 0 0  
0 0 0  0 0  0 
0 2 4 6 8 10 

Slgnalure S,Z* 

(d) Number of Page VO (Q3,Q4,Q5) 

Figure 5. Performance Evaluation 

mance in all cases. This is obtained by decreasing the search 
space of trees by comparison of signatures between s-DOM 
and s-NFA. If each node is stored as an object in an object- 
oriented database, we can decrease the number of objects 
fetched by the signature method. The larger the signature 
size, the better the performance. However, when the sig- 
nature size reaches four bytes, performance improvement 
ceases. This varies with the number of element names in 
the XML documents. If the number of element names in- 
creases, we have to extend the size of the signature for better 
performance. 

Figures 5 (c) and (d) are the number of disk I/O when 
XML data is stored as clustering by DFS and BFS. It shows 
that disk U0 is reduced very significantly in this case. In 
the general case, we can obtain better performance by BFS. 
When the query evaluates, the query executor traverses the 
tree depth-first. However, as s-NFA prunes the sub-tree by 
the signature method, the possibility is increased of going to 
a sibling node. In the case of DFS, two sibling nodes may 

be stored in different pages. Therefore pruning may cause 
a page fault and a new page is fetched from the database. 
On the other hand, two sibling nodes may be stored in the 
same page in BFS. Fetching the sibling node does not cause 
a page fault in the case of BFS. This is the reason that BFS 
outperforms DFS. In Figure 5 (d), Q3(DFS) and Q4(DFS) 
show that the signature method causes more disk YO. The 
reason is the overhead of the signature when the objects are 
stored on disk. The node size of the bibliography is smaller 
than the other documents when it is stored in the database. 
In spite of the small size of the signature, there may be a 
large overhead. However, after many delete and update op- 
erations, the nodes cannot be fully clustered and the shape 
of the graph will be changed as in Figure 5 (b). 

7. Conclusion 

XML is represented as a tree. When each node is stored 
as an object in a database, we have to reduce the number 
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of nodes fetched from the database when the queries are 
evaluated. In this paper we explained the signature method 
for storing XML documents and evaluating regularpath ex- 
pressions. We can reduce the search space of the graph and 
disk access by s-DOM and s-NFA. This technique is very 
useful when an index cannot be used in query processing. 
The index of semi-structured data is another item of semi- 
structured data. Therefore, if this technique can be used in 
a semi-structured index the search space of the index can be 
reduced. 

Clustering is a very important factor for getting better 
performance. If we cluster the nodes by BFS we can attain 
better performance than by DFS. That is, clustering between 
sibling nodes outperforms clustering between parent-child 
nodes when we use graph traversing based on signature. 
The reason is that when the graph is pruned in the middle of 
the graph and a sibling node is traversed, the node may be 
in the same page when we use BFS. 
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