A New Query Processing Technique for XML Based on Signature*

Sangwon Park
School of Computer Science and Engineering
Seoul National University, Seoul, Korea
swpark @oopsla.snu.ac.kr

Abstract

XML is represented as a tree and the query as a regular
path expression. The query is evaluated by traversing each
node of the tree. Several indexes are proposed for regular
path expressions. In some cases these indexes may not cover
all possible paths because of storage requirements. In this
paper, we propose a signature-based query optimization
technique to minimize the number of nodes retrieved from
the database when the indexes cannot be used. The signa-
ture is a hint attached to each node, and is used to prune
unnecessary sub-trees as early as possible when travers-
ing nodes. For this goal, we propose a signature-based
DOM(s-DOM) as a storage model and a signature-based
query executor(s-NFA). Our experimental results show that
the signature method outperforms the original.

1. Introduction

XML is an emerging standard for data representation and
exchange on the World-Wide Web. A database system is
required for efficient manipulation of XML data, as large
quantities of information are represented and processed as
XML. However, because the data model of XML is dif-
ferent from those of conventional databases, a new storage
method and a query processing model are required. Semi-
structured data[1, 5], which has been intensively studied in
recent years by the database research community, is very
similar to XML data. Therefore, the research results in
the area of semi-structured data are now broadly applica-
ble to XML[20]. There are several semi-structured or XML
database systems, e.g., Lore[19] and eXcelon[11].

XML is represented as a tree of which each node is
stored as an object in the semi-structured database, and
queries are evaluated by traversing these nodes. For effi-
cient evaluation of the XML query, it is important to de-
crease the number of the traversed nodes.

*This work was supported by the Brain Korea 21 Project.

0-7695-0996-7/01 $10.00 © 2001 IEEE

22

Hyoung-Joo Kim
School of Computer Science and Engineering
Seoul National University, Seoul, Korea
hjk @oopsla.snu.ac.kr

SELECT x.company. (address|telephone)
FROM person. *.parent x;

The above is an example of an XML query, which is
similar to Lorel[2]. This query retrieves person’s parents’
addresses or telephone numbers. It contains the regular
path expressions[2, 6, 9], which are supported by general
XML queries such as XML-QL[10] and XQL. Some syn-
taxes, such as the star(*) in XML queries, enlarge the search
space. In this example, almost all nodes under person
must be visited because of person. *. Therefore, regular
path indexes have been studied to solve this problem.

The path index[4] is proposed for evaluating path expres-
sions in object-oriented databases. However, all possible
paths cannot be covered by this index due to the high storage
requirements. New indexing methods for semi-structured
data are proposed in [16, 22] to evaluate the regular path
expressions more rapidly. The 2-index[22] is for *.z. Py,
in which P means a regular expression. However, in the
worst case, the number of nodes in the 2-index is the square
of the number of nodes in the data graph. For this rea-
son, the T-index[22] is introduced to decrease the size of 2-
index by reducing the coverage of regular expressions such
as x.person.x.P.y.

As a result, some data are outside the boundary of these
indexes. The path index and T-index do not cover all pos-
sible regular path expressions for the storage requirements.
It 1s also a problem that the index for a semti-structured data
is another semi-structured data{16, 22}. When the index
is used for query evaluation, the index nodes must be tra-
versed. However, the number of visited index nodes cannot
be reduced even though they are index nodes. .

An s-DOM and s-NFA are proposed which are based
on the signature method[8, 12], to reduce the search space
when the index is not used for the regular path expressions.
The signature of s-DOM gives a hint as to whether some
nodes exist in the sub-tree of a specific node. The s-NFA
is used for evaluating the regular path expressions using the
signature information. This method can be applied to semi-
structured indexes because they are also represented as a
graph. To evaluate the regular path expressions many of the

nodes in the indexes have to be visited because of blindness
of a sub-graph to a node in the index. The signature method
removes the blindness, and reduces the number of visiting
nodes of the data and index trees.

The size of each node of s-DOM becomes larger than
the size of the original because a signature is stored in each
node. However, as the size of a signature is several bytes,
the performance is not much affected. Because the opera-
tion of signatures is a bit-wise operation, there is little over-
head for computation of the signature.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work, while Section 3 defines the
data model and the query language used in this paper. Sec-
tion 4 presents the s-DOM for nodes that have signatures.
The query optimization technique using signatures is given
in Section 5 and the experimental results are discussed in
Section 6. Finally, conclusions are presented in Section 7.

2. Related Work

Semi-structured data[l, 5] is represented as a graph.
The query languages for semi-structured data are influenced
by those of object-oriented databases such as OQL[7],
XSQL[17]. Both OQL and XSQL use a path expression
which enhances the expressive power of the queries. How-
ever, these query languages are not adequate for the semi-
structured data due to a lack of schema information. Even
if schema information is provided, the structure can be
changed by its own data.

To solve this problem, regular path expressions are used
for semi-structured queries[2, 6, 9]. Indexes of semi-
structured data[16, 20, 22] are proposed to execute regu-
lar path expressions more rapidly. They combine the index
structure and automata of the XML data. The target ob-
jects can be retrieved by traversing the appropriate automata
graph for the regular path expression.

Theoretical foundations for query processing for semi-
structured data are studied in [3, 21]. [3] uses path con-
straints for optimization of regular path queries. [13] de-
fines a graph schema that has partial information about the
graph structure. It reduces the search space by query prun-
ing and query rewriting.

Each node of a tree is stored as an object in eXcelon[11]
and PDOM[15]. The original structure of XML docu-
ments cannot be changed by storing each node as an object.
Object-oriented databases or Lore[2] use this method.

3. Data Model and Query

The DOM][24] is a standard interface of XML data,
whose structure is a tree, which is the data model used in
this paper. Each node in DOM references its parent, child

23

<?xml version="1.0"7?>
<!DOCTYPE AddrList>
<AddrList>
<person name="Robert Johnson">
<company>
<address>Heidelberg</address>
<telephone>123-4567</telephone>
< /company>
<father>
<person>
<name>William Johnson</name>
</person>
</father>
</person>
<company>
<name>Samsung</name>
<address>Suwon</address>
<telephone>549-0987</telephone>
</company>
</AddrList>

Figure 1. Example of an XML Document

“Robert Johnson”

“Samsung” USuwan” "S49.0987

€9

“Huidelberg™ "123-4567"

"William Johnson”

Figure 2. DOM Graph

and sibling nodes, and the sibling nodes are an ordered list.
We assume that each node in DOM is stored as an object.
When each node is stored as an object in a database, mini-
mizing node visits is the main requirement to optimize the
queries.

Figure 1 is an example of an XML document, of which
DOM structure is represented as a tree like in Figure 2. Each
node is stored as an object and its OID is represented by " &’
as depicted in Figure 2. For example, the OID of the root
node is &1. There are element node, attribute node and text
node in DOM. The element node has a name. The text node
is a leaf node and has a value, and the attribute node has
a name and a value. For example, object &1 and &2 are
examples of element nodes, and object &4 is an attribute
node. The leaf node, such as objects &16 and &17, is a text
node. Simple definitions useful for describing the mecha-
nism described in this paper are:

father 00000011 | person 00100010
name 10001000 || company | 00001001
address | 01000001 || telephone | 00101000

(a) Hash value of string

&1 | 11101011 || &2 | 11101011 || &3 | 11101001
&4 | 00000000 || &5 | 01101001 || &6 | 10101010
&7 | 00000000 || &8 | 00000000 || &9 | 00000000
&10 | 00000000 || &11 | 00000000 || &12 | 10001000

(b) Signature of a node in s-DOM

Table 1. Hash values of the Name of each El-
ement and the Signatures of each Node

Definition 3.1 (label path) A label path of a DOM is a se-
quence of one or more dot-separated labels, 11 13...1,,, such
that we can traverse a path of n nodes (ni...n,), where
node n; has label l;, and the type of node is element or at-
tribute.

Definition 3.2 (regular path expression) A regular path
expression is a path expression that has regular expressions
in the label path.

Queries in this paper are regular path expressions. They
allow wildcard operators such as *, + and ?. The scan op-
erator is provided for searching nodes matched to the given
regular path expression when processing the query. If each
node is stored as an object in unclustered fashion it is highly
likely that a page is read from disk to fetch a node. There-
fore, the number of fetching nodes must be diminished to
reduce the cost of evaluating the queries. The objective of
this paper is to reduce the search space of the DOM tree
by pruning the data graph to minimize disk operation when
evaluating regular path expressions.

XML queries can be executed by traversing each node of
the tree. Therefore, to optimize XML queries, minimizing
the number of visited nodes is the key issue. In this pa-
per the terms node and object are interchangeable because
a node is stored as an object in a database.

4. Storing XML Documents Based on the Sig-
nature Method

In this paper we assume that each node of DOM is stored
as an object, which is shown in [11, 14, 19, 23]. We addi-
tionally add a signature to each node in DOM, and call it
s-DOM. The label path contains the names of the element
or attribute nodes in the DOM tree. Therefore only element
and attribute nodes are involved in making the signature.

24

Let the hash value of the name of a node ¢ be H;, and the
signature be S;. The S; is the ORing of all the hash values
of its child nodes. That is, the hash value is propagated to
its parent node.

Then we can estimate the existence of a certain name [
in the sub-tree of the node ¢ by comparison of H; A S;. If
H, A S; = H, then there may be the name [in the sub-
tree. Otherwise, if H; A S; # Si, then we can assure of no
existence of the name [in the sub-tree. Table 1 (a) shows
hash values of the element and attribute names in Figure
2. Algorithm 1 explains how to calculate the signature of a
node, and the results are shown in Table 1 (b).

Algorithm 1 MakeSignature(node)

1. s« 0
2: if node is an Element or Attribute node then
3 for each ChildNode of node do
4 s + s V MakeSignature(ChildNode)
5: s « s V Hash(ChildNode.Name)
6
7
8

end for
- end if
. node.signature + s

Example 4.1 (Node Traversing) When we wish to know

whether there is a hode whose name is father in the sub-

tree of &2 in Figure 2, we perform a bit-wise AND opera-

tion between the hash value of father, He«gotpher» and the

signature of &2, Sa. Since Hefotpern A Sa = Hepotperr, it
is possible that a node whose name is father exists in the .
sub-tree of &2. On the contrary, since H«fatper” N S3 #

Htothern, we can make sure there does not exist such a

node in the sub-tree of &3. Therefore, we prune the sub-

tree of &3 when finding a node named father.

5. s-NFA(Signature-based NFA)

We propose a scan operator called s-NFA which attaches
the signature information to NFA and is used to prune s-
DOM as early as possible while traversing s-DOM to eval-
uate a regular path expression. We will explain how a regu-
lar path expression can be transformed to a NFA in Section
5.1. In Section 5.2 we explain how to make s-NFA, and we
describe the pruning mechanism in Section 5.3. To avoid
confusion of the node in DOM and NFA, we call the node
of DOM as an object, and the node of NFA as a state node.

5.1. Query Evaluation using NFA

A regular expression can be represented by an automata.
Automata can be deterministic or non-deterministic[18]. A
regular path expression is a regular expression as well. In
this paper we translate a regular path expression to an NFA.

M(a) Moy || M
10| 110
(a) L@ () L(r1)L(r2)

-.®< M(r)
N

(©) L(r1 +72)

RO a2 O

(d) L(r*)

Figure 3. NFA

Any complex NFA can be constructed by composition of
L(r1)L(r2), L(r; + 72) and L(r*) depicted as Figure 3[18].
L(r?) and L(r+) can be derived by removing certain edge
in L(r*).

Definition 5.1 (state set) The state set is a set of state
nodes of NFA, elements are the result of transition in NFA
by a certain label path.

Every regular path expression can be represented as an
NFA, and is evaluated by moving the state nodes in NFA
while traversing objects in the DOM tree. When we traverse
the DOM tree from a given object to its sub-tree, a label
path is made. We can create a state set by the label path. If
the state set is empty, then query evaluation will be stopped
because state transition in NFA cannot have occurred. If a
final state node in the NFA is an element of the state set of
the object, by which the label path is made, it is accepted as
an element of the query result set.

Example 5.1 The NFA of regular path expression Ad-
drList. { (person.*) |company) .name is shown
in Figure 4. In this case, any label can be accepted by *, so
* is the same as {(any label) *. We can obtain a result set
R ={&4, &18, &7} ofthis query, which is processed in
~~Figure 2 using Figure 4.

5.2.s-NFA

State transition in the NFA is determined by the label of
the edge. When arriving at the final state by transition, the
object in DOM is accepted as an element of the result set.
However, we cannot determine which labels appear along
the path from the current state node to the final state node.
So we have to change state nodes at each step. We have to
arrive at the final state node in NFA to accept the objects

25

as a result. Therefore, all labels which come out from the
current state node to the final state node must appear when
evaluating the queries.

If the labels appearing to the final state node in NFA do
not exist in the sub-tree, the objects in the sub-tree cannot
be the result of the query, and subsequently, we do not need
to traverse that sub-tree. The following definitions are used
in making the signature in the NFA.

Definition 5.2 (NFA Path) The NFA path P, is a path from
a state node n to the final state in an NFA.

Definition 5.3 (Path Signature) The path signature PS,
of a state node n in NFA is defined as

PS, = {x| x is a value which is ORing hash values of all
the labels along a NFA path of state node n in NFA}

The path signature is a bit value which is merged by all
hash values of the labels of an NFA path. There are several
NFA paths in a state node n because there are several paths
from n to the final state node. Therefore, the path signature
PS, of anoden is a set.

The s-NFA proposed in this paper is an NFA of which
state nodes have signatures to speed the evaluation of
queries. The signatures of the s-NFA are generated by OR-
ing the hash values of all labels that have to be met when
moving from the current state to the final state in the NFA.
We can examine the existence of the labels that appear from
a certain state node n to the final state in the sub-tree of ob-
ject @ in s-DOM. Let the path signature of the state node n
be PS,, and the signature of the object ¢ be S;. Let one el-
ement of PS,, be S,,. If S, A S; = S,, then we may guess
that we can arrive the final state node when traversing the
sub-tree of object 2. If not, we-cannot arrive at the final state
node when traversing all objects in the sub-tree of object 7.
Therefore, we can prune the s-DOM graph by checking the
signature. _

Figure 3 describes how to build various types of NFA.
Therefore, if we can make path signatures of that NFA in
Figure 3 then path signatures of any complicated NFA can
be built. The rules for making path signatures are described
below.

Rule 5.1 (I.(a)) An NFA which has an atomic value as in
Figure 3 (a) has a start state s and a final state f. If the
hash value of label a is H,, the path signature of PSs, PS¢
of s and f state nodes, respectively, are

PS, {H,}
PSy {0}
Rule 5.2 (L(r; + r3)) The path signatures PS; and PSy

are shown in Figure 3 (c), in which two NFAs are concate-
nated by V.

PS, = PS,UPS,

AddrList

Figure 4. The NFA of AddrList. ((person. *)|company) .name

1| {11101010, 11001001} || 8 | {10001000}
2 [{10101010, 10001001} || 9 | {10001000}
3 | {10101010, 10001001} || 10 | {10001001}
4 {10101010} 11 | {10001000}
5 {10001000} 12 | {10001000}
6 ~{10001000} 13 | {10001000}
7 {10001000} 14 | {00000000}

Table 2. Path Signatures

PSy

{0}

Rule 5.3 (L(r*)) The value of the path signatures PS; and
PS¢ of Figure 3 (d), of which operator is *, are 0.

{0}

{0}

PS,
PS;

Rule 5.4 (L(r+)) L(r+) can be made by removing an edge
A from s to f in Figure 3 (d). Hence, the rules for making
path signatures are the same except for PSj.

PS,
PSy

PS,
{0}

The path signature of L(7?) is same as the Rule 5.3.

Rule 5.5 (L(r)L(r3)) L(ry)L(r2) is the concatenation of
two NFAs. While we traverse from the start state node to
the final state node, the state node p in M(r3) should be vis-
ited. So a path signature PS; of a state node i in M (ry) has
to be changed by ORing PSy; that is, PS; = PS; Xy PSp.
It is the Cartesian product with the path signature of each
state node in M (ry) and PS,. We call it signature prop-
agation. The path signatures of M (ry) are not changed.
Therefore, the path signature PS; of each node i in M(r)
is

PS; = {(xVy)| PS, is the path signature of a state
node in M(r1), x is an element of PS;,
y is an element of PS, }

26

Example 5.2 (Path Signatures in NFA) After applying
the rules, we can obtain the path signature of each node in
5-NFA, and the results are shown in Table 2. For example,
PSio is { 10001001 } which is the ORing value between
hash values of company and name because the edge
company and name has to be visited in order to arrive at
the final state from state node 10.

Algorithm 2 next()

1: /* S is the state set of s-NFA */ s

2: node ¢ get next node by DFS from s-DOM

3: while node is not NULL do
ForwardLabel(S, node)
ForwardLambda(S, node) /* using Signature */
if there is a final state in S then

return node

end if
if S is empty then
10: node + get next node by DFS from s-DOM
11: endif
12: end while

R A U

Algorithm 3 ForwardLambda(S, node)

1: for each state node n which can go forward by Ain S

do ‘

2: for each signature s of the path signature of n do
3 if s A node.signature = s then
4 m < the state node moved from n by A
5 addmto S
6: break
7
8
9

end if
end for
: end for

5.3. Query Evaluation using s-NFA

This section describes query processing using s-NFA.
The path signature of s-NFA describes what labels have to
be visited in order to arrive at the final state from a specific
state node in s-NFA. Conversely, the signature of s-DOM
shows which labels exist in the sub-tree of a specific ob-
ject in 's-DOM. Before traversing the sub-tree of object o;
in s-DOM we change the state set SS of s-NFA by label !

page size 4K bytes
number of buffer 20
object cache size 500

Table 3. Parameters used in Simulation

of object 0;. When we traverse the s-NFA from one of the
state nodes n in SS we compare the signature S; of object
0; and one of the path signatures PS,, of the state set SS. If
Si A PS,, = PS,, then we can go forward from state node
n.

Algorithm 2 is a scan operator that returns a node which
is accepted by the regular path expression. The function
next calls Algorithm 3. In this function, the signatures
of s-DOM and path signature of s-NFA are compared to
determine whether or not the state of s-NFA can go forward.
The meaning of if in Algorithm 3 is whether the labels
which exist along the current state node to final state in s-
NFA exist in the sub-tree of a node in s-DOM. If not, the
sub-tree does not need to be visited the remaining sub-tree.

Example 5.3 (Query Evaluation) When we translate the

query of Example 5.1 to s-NFA, the s-NFA can be depicted

as similar to the Figure 4, of which each node has a path
signature as described in Example 5.2. When object &1 is
read, state set S = {2}. If we apply Algorithm 3 to progress
to states, the labels of which are A, then S = {3} because
the bit operation AND between Sy and 10001001 which is
one signature of the path signature PSy is 10001001. If we
apply this operation to object &2 then S will be {7, 13}.
In this situation, AND operation between one signature p of
PS7 and S5 can not be p itself. In spite of the query per-
son. *, the sub tree of &5 does not need to be visited. We
can obtain results by iterating this operation.

6. Experimental Results

The simulation program in this paper is coded in Java
and evaluates queries in main memory. We store each node
of s-DOM as an object and fetch by scan operator, of which
the parameter is a regular path expression. The scan opera-

tor requests an object from the object cache, which is built -

on a buffer manager. The object cache requests a page from
the buffer manager. The size of each object in the page is
not the same for either its length of element name. The
object cache and buffer manager use the LRU replacement
algorithm. We use two clustering methods, depth-first and
breadth-first. The methods are fully clustering algorithms,
but real objects may be scattered in the database. We count
the number of fetched objects in the object cache and the
number of page I/O in the buffer manager. Table 3 shows
all parameters used in this paper.

27

of Nodes { File Size
Shakespeare(Dg) 537,621 { 7.5 Mbytes
Bibliography(D p) 19,854 | 247 Kbytes
The Book of Mormon(D yy) 142,751 | 6.7 Mbytes

Table 4. Characteristics of the XML Files

Q1 | Dg | PLAY.*[2].PERSONA
Q2 | Ds | *TITLE
Q3 | Dp | bibliography.paper.*[1].pages
Q4 | Dg | *.author
Q5 | Das | tstmt.*[1].(title|ptitle)
| Q6 | Dps | *.chapter

Table 5. Queries Used in Simulation

This paper compares clustering mechanisms to deter-
mine which is better in traversing the nodes using signa-
tures. Comparing the number of nodes visited and the num-
ber of page I/O is the extreme case from the view point of
clustering. The number of nodes visited is the performance
criterion of a fully unclustered case, while the number of
page I/O is that of a fully clustered case. When each node
is stored as an object in a database, fetching each object re-
quires a disk operation in the unclustered case. However,
when the objects are clustered, fetching each object is not
a disk operation. Traversing the tree, several objects near a
specific object may be stored on the same page. The clus-
tering methods are BFS and DFS as used in this paper, and
the objects are completely clustered. However, after many
deletion and insertion operations, objects may be scattered
and the clustering status is between clustered and unclus-
tered. In this paper, we show which clustering method is
better when signature is used. The data used in this pa-
per are Shakespeare, The Book of Mormon, and the part
of Michael Lay’s bibliography, which are all translated into
XML. The statistics of the data are shown in Table 4.

Six queries were used in the experiment and are de-
scribed in Table 5. In these queries, *{2] means two paths
whose label is an arbitrary string. The first query for each
XML data retrieves the data that are located in a specific
path. The next query retrieves the data located at any depth
of the tree for each data file. Figure 5 shows the results of
performance tests. Figures 5 (a) and (b) measure the num-
ber of nodes fetched, and (c) and (d) measure the number of
page 1/O. Queries Q1, Q2 and Q6 fetch many more objects
than do queries Q3, Q4 and Q5. Therefore separate graphs
are used to distinguish the results. In these figures, zero size
of signature means that the signature method is not used.

For the number of retrieval of nodes in Figures S (a) and
(b) the signature-based query evaluation has better perfor-

Q1 o—
Qz +--
\ Qs £
500000 %,
2 400000 L bt]
2
g i
5 300000 ‘-..:
v \
b y
s Y
Z 200000
4 6 8 10
. Signature Size
(a) Number of Fetching Nodes (Q1,Q2,Q6)
16000 - . — . .
Y
14000 } °, S SRS U SRy SRR Sttt
Y QIBFS) O~
12000 K % Q2(BFS) —+-- 4
iy Q6(BFS) -
| gioes -
g "ri A Qs(OFS) *-]
@ 1
g ool |
s \
£ e000f K]
o [N U S St 3
.
- -+ + + —+
o s = et = S = St = R
4 3 8 10
Signature Size

(c) Number of Page /O (Q1,Q2,Q6)

20000

18000
18000
14000
3
Zz 12000
2
E 10000
2
B 8000 |
S
z
6000 - 1
4000 | J
2000 <
o L Y WO - SO 7 SO £ £
o 2 4 6 8 10
Signature Size
(b) Number of Fetching Nodes (Q3,Q4,Q5)
e
]
-4
a
k-
]
z
200K 1
100 % R * ¥ £3 * * 2
U[]_, e T = B S = [t = Lot o S = I = et
0 2 4 6 8 10

Signature Size

(d) Number of Page /O (Q3,Q4,Q5)

Figure 5. Performance Evaluation

mance in all cases. This is obtained by decreasing the search
space of trees by comparison of signatures between s-DOM
and s-NFA. If each node is stored as an object in an object-
oriented database, we can decrease the number of objects
fetched by the signature method. The larger the signature
size, the better the performance. However, when the sig-
nature size reaches four bytes, performance improvement
ceases. This varies with the number of element names in
the XML documents. If the number of element names in-
creases, we have to extend the size of the signature for better
performance.

Figures 5 (c) and (d) are the number of disk I/O when
XML data is stored as clustering by DFS and BFS. It shows
that disk I/O is reduced very significantly in this case. In
the general case, we can obtain better performance by BFS.
When the query evaluates, the query executor traverses the
tree depth-first. However, as s-NFA prunes the sub-tree by
the signature method, the possibility is increased of going to
a sibling node. In the case of DFS, two sibling nodes may

28

be stored in different pages. Therefore pruning may cause
a page fault and a new page is fetched from the database.
On the other hand, two sibling nodes may be stored in the
same page in BFS. Fetching the sibling node does not cause
a page fault in the case of BFS. This is the reason that BFS
outperforms DFS. In Figure 5 (d), Q3(DFS) and Q4(DFS)
show that the signature method causes more disk 1/O. The
reason is the overhead of the signature when the objects are
stored on disk. The node size of the bibliography is smaller
than the other documents when it is stored in the database.
In spite of the small size of the signature, there may be a
large overhead. However, after many delete and update op-
erations, the nodes cannot be fully clustered and the shape
of the graph will be changed as in Figure 5 (b).

7. Conclusion

XML is represented as a tree. When each node is stored
as an object in a database, we have to reduce the number

of nodes fetched from the database when the queries are
evaluated. In this paper we explained the signature method
for storing XML documents and evaluating regular-path ex-
pressions. We can reduce the search space of the graph and
disk access by s-DOM and s-NFA. This technique is very
useful when an index cannot be used in query processing.
The index of semi-structured data is another item of semi-
structured data. Therefore, if this technique can be used in
a semi-structured index the search space of the index can be
reduced.

Clustering is a very important factor for getting better
performance. If we cluster the nodes by BFS we can attain
better performance than by DFS. That is, clustering between
sibling nodes outperforms clustering between parent-child
nodes when we use graph traversing based on signature.
The reason is that when the graph is pruned in the middle of
the graph and a sibling node is traversed, the node may be
in the same page when we use BFS.

Acknowledgments

The authors wish to thank Dong-Joo Park for his advice
to improve this paper.

References

[1] S. Abiteboul. Querying Semistructured Data. International
Conference on Database Theory, Jan. 1997.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel Query Language for Semistructured
Data. International Journal on Digital Library, 1(1),4 1997.
S. Abiteboul and V. Vianu. Regular Path Queries with Con-
straints. ACM Symposium on Principles of Database Sys-
tems, 1997.

E. Bertino and W. Kim. Indexing Techniques for Queries on
Nested Objects. IEEE Transactions on Knowledge and Data
Engineering, 1(2), 1989.

P. Buneman. Semistructured Data. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
May 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A
Query Language and Optimization Techniques for Unstruc-
tured Data. SIGMOD, 1996.

R. Cattell and D. K. Barry, editors. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann Publisher, Inc.,
1997.

W. W. Chang and H. J. Schek. A Signature Access Method
for the Starburst Database System. VLDB, 1989,

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From Structured Documents to Novel Query Facilities. SIG-
MOD, 1994.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. XML-QL: A Query Language for XML.
http://www.w3.0rg/TR/NOTE-xml-gl, Aug. 1998.

[2]

(3

4]

[5]

[6]

7

—

(8]

[9

—

[10]

29

(11]

(12]

[13]

(14]

[15]

[16]

[17]
(18]

(191

[20]

[21]

[22]

(23]

[24]

eXcelon. An XML Data Server For
Building Enterprise Web Applications.
http:/fwww.odi.com/products/white_papers.html, 1999.

C. Faloutsos. Signature files: Design and Performance Com-
parison of Some Signature Extraction Methods. SIGMOD,
1985.

M. Fernandez and D. Suciu. Optimizing Regular Path Ex-
pression Using Graph Schemas. /CDE, 1998.

D. Florescu and D. Kossmann. Storing and Querying XML
Data using an RDBMS. Data Engineering Bulletin, 22(3),
Sept. 1999.

GMD-IPSL. GMD-ISPI
http://xml.darmstadt. gmd.de/xql, 2000.
R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
VLDB, 1997.

M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented
Databases. SIGMOD, 1992.

P. Linz. An Introduction to Formal Languages and Au-
tomata. Houghton Mifflin Company, 1990.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data. SIGMOD Record, 26(3), 9 1997.

J. McHugh and J. Widom. Query Optimization for XML.
VLDB, 1999.

A. O. Mendelzon and P. T. Wood. Finding Regular Sim-
ple Paths in Graph Databases. SIAM Journal of Computing,
24(6), 1995.

T. Milo and D. Suciu. Index Structures for Path Expressions.
ICDT, 1999.

T. Shimura, M. Yoshikawa, and S. Uemura. Storage
and Retrieval of XML Documents Using Object-Relational
Databases. DEXA, 1999. :
W3C. Document Object
http:/fwww.w3.0rg/DOM/, 2 2000.

XQL Engine.

Model (DOM).

http://www.w3.org/TRNOTE-xml-ql
http://www
http://xml.darmstadt.gmd.de/xql
http://www

