
An efficient inverted index technique for XML documents

using RDBMS

Chiyoung Seoa,*, Sang-Won Leeb, Hyoung-Joo Kima

aSchool of Computer Science and Engineering, Seoul National University, Sinlim-Dong, Gwanak-Ku, Seoul 151-742, South Korea
bSchool of Information and Communication Engineering, SungKyunKwan University, Suwon, South Korea

Received 16 January 2002; revised 18 May 2002; accepted 1 June 2002

Abstract

The inverted index is widely used in the existing information retrieval field. In order to support containment queries for structured

documents such as XML, it needs to be extended. Previous work suggested an extension in storing the inverted index for XML documents

and processing containment queries, and compared two implementation options: using an RDBMS and using an Information Retrieval (IR)

engine. However, the previous work has two drawbacks in extending the inverted index. One is that the RDBMS implementation is generally

much worse in the performance than the IR engine implementation. The other is that when a containment query is processed in an RDBMS,

the number of join operations increases in proportion to the number of containment relationships in the query and a join operation always

occurs between large relations. In order to solve these problems, we propose in this paper a novel approach to extend the inverted index for

containment query processing, and show its effectiveness through experimental results. In particular, our performance study shows that (1)

our RDBMS approach almost always outperforms the previous RDBMS and IR approaches, (2) our RDBMS approach is not far behind our

IR approach with respect to performance, and (3) our approach is scalable to the number of containment relationships in queries. Therefore,

our results suggest that, without having to make any modifications on the RDBMS engine, a native implementation using an RDBMS can

support containment queries as efficiently as an IR implementation.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Inverted index; XML; Query processing

1. Introduction

1.1. Motivation

As XML has become an emerging standard for

information exchange on the World Wide Web [6], a

great number of companies and organizations have adopted

XML as their basic document format. For example, it is

already being used to describe all kinds of cars in motor

companies, or to make a library catalog in libraries, or to

display various goods on E-Commerce Web sites. As a

result, a large volume of XML documents may be generated

and a great deal of research needs to be done for extracting

information efficiently from XML documents.

Several query languages have been suggested as a tool for

extracting information from XML documents [7,8,14,35].

Although it is not obvious which query language will become

a standard, the important fact is that containment queries

become a crucial part of queries submitted over XML

information retrieval systems. We define containment

queries as a class of queries based on containment and

proximity relationships among elements, attributes, and their

contents as in Ref. [46]. At this point, a question arises: how

could we support containment queries efficiently? To solve

this problem, we consider the inverted index technique,

which is widely used in the existing Information Retrieval

(IR) field. We therefore extend the inverted index for XML

documents and consider two methods for storing the inverted

index and handling containment queries as a recent work

[46]: using an RDBMS or using an IR engine.

Zhang et al. [46] extended the inverted index for XML

documents and compared the implementation on the

RDBMS with the IR alternative. However, it has two

drawbacks with respect to extending the inverted index. One

is that the RDBMS implementation is much worse in terms

of performance than the IR implementation. The other is

0950-5849/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 1 57 -X

Information and Software Technology 45 (2003) 11–22

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ82-28801830; fax: þ82-28820269.

E-mail addresses: cyseo@oopsla.snu.ac.kr (C. Seo), wonlee@ece.skku.

ac.kr (S.W. Lee), hjk@oopsla.snu.ac.kr (H.J. Kim).

http://www.elsevier.com/locate/infsof


that when a containment query is processed in the RDBMS,

the number of join operations increases as the number of

containment relationships in the query increases and a join

operation always occurs between large relations.

In this paper, we extend the inverted index in a different

way to overcome these problems. In particular, our

performance study shows that (1) our RDBMS implemen-

tation almost always outperforms the RDBMS and IR

implementations in Ref. [46], and (2) our RDBMS

implementation is not far behind our IR implementation

with respect to performance.

1.2. Advantages of using an RDBMS

There are several advantages in using an RDBMS for

storing the inverted index and processing containment

queries. Firstly, if we store XML documents as well as the

inverted index in the RDBMS, we can build an integrated IR

system processing queries to XML documents. Secondly,

we can guarantee that the system is stable as more than 20

years have been spent in carrying out research on query

execution, query optimization, concurrency control, and

recovery technique. Thirdly, it is very easy to build XML

query processors handling containment queries on top of the

RDBMS. Lastly, most organizations already have an

RDBMS installed, so no additional costs are incurred.

1.3. Overview of this paper

This paper is organized as follows. Section 2 discusses

related works, and Section 3 describes containment queries.

Section 4 explains how to extend the inverted index for

handling containment queries, and Section 5 describes how

to process containment queries in the RDBMS. Section 6

explains experiments to show the effectiveness of our

approach, and finally, Section 7 presents the conclusion.

2. Related work

Several works have been done on handling containment

queries, including Refs. [17,46]. These works use the

RDBMS to store the inverted index and process contain-

ment queries. While Ref. [46] considers the RDBMS and IR

implementations and conducts an experiment on each

implementation, Ref. [17] only conducts an experiment on

the RDBMS implementation.

In Ref. [46], it is shown that while RDBMSs are generally

poorly suited for containment queries, under certain

conditions they can outperform the IR engine. In addition,

Ref. [46] identifies two significant causes that differentiate

the performance of the RDBMS and IR implementations: the

join algorithms employed and the hardware cache utilization.

Therefore, Ref. [46] expects that by combining better join

algorithms with better cache utilization, an RDBMS will be

able to natively support containment queries efficiently.

However, in this paper, we will show that our RDBMS

approach is not far behind our IR approach with respect to

performance. In the remainder of this paper, we will refer to

the approach suggested by Zhang et al. [46] as 2-INDEX

approach, since Ref. [46] maintains two different inverted

indexes for XML documents.

On the other hand, Florescu et al. [17] extends the

inverted index in a different way to 2-INDEX approach and

stores it in an RDBMS. However, [17] they do not compare

the implementation on the RDBMS with the IR implemen-

tation with respect to performance.

Till recently, a number of indexing techniques for semi-

structured data and XML data have been suggested. A

simplified version of an IR-style text index is used in Lore

[29], which integrates text search with semi-structured

database, to search strings containing specific text words or

groups of text words [20,30]. Li and Moon [28] propose a

new system for indexing and storing XML data based on a

numbering scheme for elements. Unlike our work these

previous indexing schemes do not consider supporting

containment queries. There are other indexing techniques

for semi-structured data and XML data [4,11,16,26,33].

However, these indexing techniques also do not focus on

supporting containment queries.

Considerable works have been done on integrating text

searching with relational, object-relational, or object-

oriented database systems [5,13,44]. Commercial products

include the DB2 Text Extender [25], SQL Server Full-Text

Search Service [43], and Oracle InterMedia Text [34].

However, none of these previous works conducts the

performance comparison between the RDBMS approach

and the IR approach.

Since the emersion of SGML [19], there has been a lot of

research on integrating content and structure in text retrieval

[1,2,5,31,32,36]. Refs. [9,10,12] deal with containment

queries. The significant difference between our approach on

containment queries and the previous work is that we

mainly concentrate on the implementation of containment

algorithms in an RDBMS rather than the development of

containment algorithms.

There are a lot of other works using an RDBMS for

querying and storing XML documents [15,18,27,37,38,39,

40,42,45]. However, these works mainly deal with methods

for converting XML documents into relational tables, and

vice versa.

Besides, there are several commercial products for

storing and querying XML documents; for example,

XYZFind [24], Excelon [22], and Tamino [23]. These

products, however, which are database systems for XML

documents, do not use an RDBMS.

3. Containment queries

Containment queries are a class of queries based on

containment and proximity relationships among elements,

C. Seo et al. / Information and Software Technology 45 (2003) 11–2212



attributes, and their contents [46]. As these containment

queries are crucial parts of queries processed by XML IR

systems, we should consider finding an effective method

for processing containment queries when developing XML

IR systems. We will discuss this in further detail in

Section 4.

In this paper, we use path expressions, which are

similar to those of XQuery [7], in representing contain-

ment queries. XQuery is a query language proposed by

W3C and designed to be a small, easily implementable

language with which queries can be concisely expressed

and easily understood. XQuery adopts several features

which existing XML query languages and database query

languages have. From XPath [8] and XQL [35], XQuery

took a path expression syntax suitable for hierarchical

documents. From XML-QL [14], it took the notion of

binding variables and then using the bound variables to

create new structures. From SQL, it took the idea of a

series of clauses based on keywords that provide a pattern

for restructuring data (the SELECT-FROM-WHERE

pattern in SQL). Therefore, it is a new XML query

language providing various functions.

Figs. 1 and 2 show an example of XML data and a tree

representation of XML data, respectively. We classify

basic containment queries to XML documents into four

types as in Ref. [46] and use Fig. 1 to show examples of

each type.

† Indirect Containment Query. A query consisting of

indirect containment relationships (predecessor–des-

cendant relationships) among elements, attributes, and

their contents.

Example 1. /books//author//‘Abiteboul’. When an XML

document is represented by means of a tree such as in Fig. 2,

the leading “/” indicates that “books” must be a root element

and “//” represents a predecessor–descendant relationship.

Therefore, this query means retrieving XML documents in

which “books” root elements have “author” descendant

elements and in turn “author” elements have “Abiteboul”

descendant words.

† Direct Containment Query. A query consisting of direct

containment relationships (parent–child relationships)

among elements, attributes, and their contents.

Example 2. /books/book/summary/keyword/‘XML’.

“books” root elements must have “book” child elements

and in turn “book” elements must have “summary” child

elements. “summary” elements must have “keyword” child

elements, whose content contains “XML”. Therefore, this

query involves extracting all XML documents satisfying the

above conditions.

† Tight Containment Query. A query consisting of tight

containment relationships among elements, attributes,

and their contents.

Example 3. //given ¼ ‘Peter’. This query means retriev-

ing XML documents in which “given” elements contain

only “Peter” in their contents.

† k-Proximity Containment Query. A query based on the

proximity between two words in contents.

Fig. 1. An example of XML data.

Fig. 2. Tree representation of XML data.

C. Seo et al. / Information and Software Technology 45 (2003) 11–22 13



Example 4. ðk ¼ 3Þ : Distance (“Data”, “Web”) # 3.

This query means retrieving XML documents in which an

occurrence of “Data” is within distance k of “Web”

The hybrid forms of four basic containment queries can

be regarded as the core parts of queries over XML IR

systems. For example, “/books/book//family/‘Abiteboul’” is

a hybrid form of direct and indirect containment queries.

“/books/book//keyword ¼ ‘XML’” is a hybrid form of

direct, indirect and tight containment queries.

In this paper, we define the path length of a query as the

number of containment relationships in a query. For

example, the path length of Example 2 query is four, since

there are four containment relationships (“books” and

“book”, “book” and “summary”, “summary” and “key-

word”, and “keyword” and “XML”) in the query.

4. Extending the inverted index

In this section, we show how 2-INDEX approach extends

the inverted index for processing containment queries and

explain its problems. To solve problems caused by 2-

INDEX approach, we, then, suggest a newly extended

inverted index.

4.1. 2-INDEX approach and its problems

The inverted index, which is very popular in traditional

IR systems, is a technique based on words to make an index

for the text to enhance the speed of search activities [3]. The

classic inverted index form consists of a text word and its

occurrence which enumerates its positions within each

document.

2-INDEX approach [46] has two inverted indexes to

support containment queries: T-index for indexing text

words and E-index for indexing elements. Fig. 3 shows the

structure of the two indexes for the XML document in Fig. 1.

Each occurrence of a text word is indexed by its document

number, its position, and its nesting depth within the

document. This is denoted in Fig. 3 as (word,docno,word-

no,level). On the other hand, each occurrence of an element

is indexed by its document number, its beginning position,

its ending position, and its nesting depth within the

document. This is denoted in Fig. 3 as (element,docno,

begin,end,level). The positions (“begin”, “end”, and

“wordno”) in a document are generated by counting word

numbers.

The E-index and T-index are mapped into the following

two relations (note that primary keys are underlined):

Elements (element, docno, begin, end, level)

Texts (word, docno, wordno, level).

Each of the four containment relationships among

elements, attributes, and their contents satisfies the follow-

ing join conditions. First of all, we assume that the

occurrences of an element EL1, an element EL2, a text

word W3, and a text word W4 are encoded as (EL1,D1,-

S1,E1,L1), (EL2,D2,S2,E2,L2), (W3,D3,P3,L3), and

(W4,D4,P4,L4), respectively.

† Indirect Containment

(I) EL1 contains EL2 indirectly.

(1) D1 ¼ D2; (2) S1 , S2; and (3) E1 . E2

(II) EL1 contains W3 indirectly.

(1) D1 ¼ D3; (2) S1 , P3; and (3) E1 . P3

† Direct Containment

(I) EL1 contains EL2 directly.

(1) D1 ¼ D2; (2) S1 , S2; (3) E1 . E2; and (4) L1 ¼

L2 2 1

(II) EL1 contains W3 directly.

(1) D1 ¼ D3; (2) S1 , P3; (3) E1 . P3; and (4) L1 ¼

L3 2 1

† Tight Containment

(I) EL1 contains W3 tightly.

(1) D1 ¼ D3; (2) S1 ¼ P3 2 1; and (3) E1 ¼ P3 þ 1

† k-Proximity Containment

(I) An occurrence of W3 is within distance k of W4

(1) D3 ¼ D4; (2) P4 2 P3 $ 0; and (3) P4 2 P3 # k:

Since the general form of containment queries is the

mixture of four basic containment queries, containment

relationships between elements become the core parts of

containment queries. Therefore, it is a very critical issue

to find a solution that can process containment relation-

ships between elements effectively. However, 2-INDEX

approach incurs a serious problem with respect to

performance, since it requires one self-join operation on

an “Elements” relation for processing every containment

Fig. 3. E-index and T-index of an XML document in Fig. 1.

C. Seo et al. / Information and Software Technology 45 (2003) 11–2214



relationship between two elements. The problem is that

the number of join operations required is equal to the

path length of a query. Fig. 4 shows how many join

operations are required for processing “/books/book/

summary/keyword/‘XML’”. As we can see in Fig. 4, it

requires four join operations, since the path length of the

query is four.

Another serious problem in 2-INDEX approach is the

size of relational tables involved in a join operation. If

2-INDEX approach is used for voluminous XML docu-

ments, there is always a join operation between two large

relations whenever a join operation occurs, since

“Elements” and “Texts” relations become huge in general.

In Section 6.1, Table 2 shows the size of these two relations

when the size of XML documents is 113MB.

4.2. Our approach

In this paper, we extend the inverted index in a different

way to solve the problems caused by 2-INDEX approach.

As in Fig. 5, there are four inverted indexes. We, then, map

four inverted indexes into the following four relations (note

that primary keys are underlined):

Path (path, pathID)

PathIndex (pathID, docID, begin, end)

Term (term, termID)

TermIndex (termID, docID, pathID, position).

The relation Path stores data about the paths of

elements. That is, it assigns each path to a path identifier

Fig. 4. An example of a containment query and its processing by four join operations.

Fig. 5. Four inverted indexes to an XML document in Fig. 1.

C. Seo et al. / Information and Software Technology 45 (2003) 11–22 15



and stores it as a tuple. When an XML document is

represented as a tree structure, as shown in Fig. 2, the path

of an element is the path on the tree from the root to the

node corresponding to the element. For example, the path

of “author” element is “/books/book/author” in Fig. 2. The

relation PathIndex records the occurrences of each path in

the relation Path. Each occurrence of a path is indexed by

its identifier, its document number, its beginning position,

and its ending position. The position in a document is

generated by counting word numbers as 2-INDEX

approach.

As we mentioned in Section 4.2, it is a very critical issue

to process the containment relationships between elements

efficiently. To deal with it, we use the path of an element

instead of the name of an element. 2-INDEX approach

requires one self-join operation on an “Elements” relation

for processing every containment relationship between two

elements. Therefore, in cases where a containment query

only consists of containment relationships between

elements, 2-INDEX approach requires as many join

operations as the number of containment relationships

between elements. However, our approach requires only one

join operation between the relation Path and the relation

PathIndex, regardless of the number of a containment

relationship between two elements. Fig. 6 shows how

containment queries only consisting of containment

relationships between elements can be processed by our

approach. If a containment query includes “//”, every

occurrence of “//” is replaced with “%/” by using LIKE

predicate in the WHERE clause.

On the other hand, the relation Term stores data about

text words. It assigns each text word to an identifier and

stores them as a tuple. The relation TermIndex records the

occurrences of each text word in the relation Term. Each

occurrence of a text word is indexed by its identifier, its

document number, its path identifier, and its position in a

document.

At this point, it should be noted that we put the path

identifier as a field of the TermIndex. By doing so, we can

avoid the 2-INDEX approach’s problem that the number of

join operations increases in proportion to the path length of

a containment query. For example, Fig. 7 shows how many

join operations are required to process a “/books/book/

summary/keyword/‘XML’” direct containment query. Our

approach only needs two join operations: one join between

the relation Term and the relation TermIndex, and one join

between the relation Path and the relation TermIndex, while

2-INDEX approach needs four join operations.

2-INDEX approach, as mentioned in Section 4.2, has a

drawback that join operations occur between large relations.

To solve this, we design four relations instead of two

relations in 2-INDEX approach. In Section 6.1, Table 2

shows that the PathIndex and TermIndex relations are

relatively smaller than the Elements and Texts relations,

respectively, since all of the attributes of the relations are

integer types. In Table 2, we can also find that the Path

relation is significantly smaller than other relations. The

reason is that the size of the Path relation is proportional not

to the size of XML documents, but to the size of their

Document Type Definition (DTD) documents, which is

usually quite smaller than the size of XML documents. One

of the main characteristics of XML documents is that a large

number of XML documents usually share the same DTD

document. In such a case, the size of the Path relation

becomes very small as in our case and we therefore can

avoid a join between large relations. In the worst case where

each XML document has a different DTD document, the

Path relation might become large. However, this worst case

is very uncommon and we therefore do not consider the case

in this paper.

5. Processing containment queries in the RDBMS

In this section, we compare our approach with 2-INDEX

approach in processing indirect containment queries and

direct containment queries in the RDBMS. Examples of

containment queries used in this section are from examples

in Section 3. The comparison of our approach and 2-INDEX

Fig. 6. The processing of containment relationships between elements in RDBMS.

Fig. 7. An example of a containment query and its processing by two join operations.

C. Seo et al. / Information and Software Technology 45 (2003) 11–2216



approach for tight containment queries and k-proximity

containment queries can be found in Appendix A.

Firstly, we show how to process an indirect containment

query. Figs. 8(a) and 9(a) show how to convert “/books//

author//‘Abiteboul’” into a SQL statement in 2-INDEX

approach and our approach, respectively. 2-INDEX method

requires two join operations: a self-join on the Elements

relation, and a join between the Elements relation and the

Texts relation. Our method requires also two join operations:

a join between the Path relation and the TermIndex relation,

and a join between the Term relation and the TermIndex

relation. Although both approaches require two join

operations, 2-INDEX approach causes the join operations

between larger relations. In addition, in 2-INDEX approach,

the number of join operations required is equal to the path

length of an indirect containment query, while our approach

requires only two join operations, regardless of the path

length.

Secondly, in processing a direct containment query,

Figs. 8(b) and 9(b) show how to convert “/books/book/

summary/keyword/‘XML’” into a SQL statement in both

approaches. 2-INDEX approach requires four join oper-

ations, since there are four direct containment relationships

(“books” and “book”, “book” and “summary”, “summary”

and “keyword”, and “keyword” and “XML”). However,

our approach requires only two join operations: a join

between the Path relation and the TermIndex relation, and

a join between the Term relation and the TermIndex

relation. As in the indirect containment query, our method

causes the join operations between smaller relations and

requires only two join operations, regardless of the path

length.

In cases of direct and indirect containment queries,

2-INDEX approach has no choice but to use nest-loop join,

since join conditions have non-equality join predicates.

However, our approach can use other join methods, such as

hash or sort-merge join, since all join conditions consist of

equality join predicates.

6. Experiments

In this section, we show that our RDBMS implemen-

tation for processing containment queries is not far behind

our IR implementation with respect to performance and

Fig. 8. Processing of indirect and direct containment queries in 2-INDEX approach.

Fig. 9. Processing of indirect and direct containment queries in our approach.

C. Seo et al. / Information and Software Technology 45 (2003) 11–22 17



almost always outperforms the RDBMS and IR implemen-

tations of 2-INDEX approach.

6.1. Experimental environment

We first explain four methods implemented for compar-

ing performances in this paper.

† 4-Relation method: the method which maps four inverted

indexes, as shown in Fig. 5, into four relations (Path,

PathIndex, Term, and TermIndex relations) and pro-

cesses containment queries in the RDBMS.

† 4-B þ Tree method: the method which stores the four

inverted indexes in the IR engine by using B þ -trees and

processes containment queries in the IR engine.

† 2-Relation method: the method which maps two inverted

indexes, as shown in Fig. 3, into two relations (Elements,

and Texts relations) and processes containment queries

in the RDBMS.

† 2-B þ tree method: the method which stores the two

inverted indexes in the IR engine by using B þ -trees and

processes containment queries in the IR engine (we used

Multi-Predicate Merge Join (MPMGJN) [46] for a join

operation).

We experimented with Oracle v8.1.7 for 4-Relation

method and 2-Relation method. Oracle was run on a

1400 MHZ PIV machine running Microsoft Window 2000

Professional. The main memory size was 768MB and the

size of a buffer cache in Oracle was 150MB. We used only

the primary keys as RDBMS indexes and JDBC 2.0 for

connecting an Oracle server.

On the other hand, 4-B þ Tree method and 2-B þ Tree

method were written in Java and used the BerkeleyDB

library [41] to store the inverted indexes. BerkeleyDB is a

toolkit that provides B þ -tree, Extended Linear Hashing,

Queue, and Fixed and Variable-length records as access

methods. We used its B þ -tree as the access method. The

IR engines of 4-B þ Tree method and 2-B þ Tree method

were run on an 1400 MHZ PIV machine running Microsoft

Window 2000 Professional. The main memory size was also

768MB.

We used four XML datasets in our experiments. The first

was a “Companies” dataset containing the information

about various companies in America, the second was a

“Cars” dataset containing the information about various

automobiles, the third was a dataset of Shakespeare plays,

and the fourth was a dataset of DBLP bibliography files.

Table 1 shows the sizes of four XML datasets, the Oracle

relational table sizes, and the sizes of the inverted indexes

stored in BerkeleyDB B þ -tree. Table 2 shows the size of

each relational table in 4-Relation method and 2-Relation

method.

6.2. Experimental results

We executed three containment queries for each XML

dataset. We chose the queries variously from one to five in

the path length of the queries. Also, we considered various

cases in the frequencies of elements and text words in XML

documents. Table 3 shows the raw execution time of the

twelve queries on the four implementations. Fig. 10 shows

the performance ratios of 2-Relation, 2-B þ Tree, and

4-B þ Tree to 4-Relation.

Fig. 10(a) shows that 4-Relation method always outper-

forms 2-Relation method not only in cases (Q2, Q3, Q7, Q8,

Q9) in which the path length of a query exceeds two, but

also in cases (Q1, Q4, Q5, Q6, Q10, Q11, Q12) in which the

path length does not exceed two. We identified two causes

of this significant difference in the performance between

4-Relation method and 2-Relation method: (1) 2-Relation

Table 3

The raw execution time (ms) of the 12 queries

XML dataset Query 4-Relation 4-B þ Tree 2-Relation 2-B þ Tree

Companies Q1 90 140 210 106

Q2 150 30 2533 982

Q3 250 290 3976 1072

Cars Q4 220 110 230 80

Q5 60 20 90 141

Q6 90 70 120 131

Shakespeare Q7 60 50 471 50

Q8 230 150 41,229 3461

Q9 60 61 14,240 980

DBLP Q10 40 40 4797 51

Q11 190 90 26,508 540

Q12 140 100 5037 153

Table 2

The size of relational tables

Size

4-Relation Term relation 25MB

TermIndex relation 110MB

Path relation 26KB

PathIndex relation 55MB

2-Relation Texts relation 138MB

Elements relation 77MB

Table 1

Four XML datasets used for experiments

Companies Cars Shakespeare DBLP

Size of XML documents (MB) 5 19 8 81

Table size in 4-Relation (MB) 190 190 190 190

Inverted index size in

4-B þ Tree (MB)

133 133 133 133

Table size in 2-Relation (MB) 215 215 215 215

Inverted index size in

2-B þ Tree (MB)

155 155 155 155

C. Seo et al. / Information and Software Technology 45 (2003) 11–2218



method requires join operations between large relational

tables, and (2) it requires as many join operations as the path

length of a query.

The characteristic of queries that 2-Relation method is

not much worse in terms of performance than 4-Relation

method is that the path length of a query does not

exceed two and at the same time, the number of tuples

participating in join operations is less than tens of

thousands. Q1, Q4, Q5, and Q6 belong to such a case.

On the other hand, in cases (Q2, Q3, Q7, Q8, Q9) in

which the path length of a query exceeds two or cases

(Q10, Q11, Q12) in which although the path length does

not exceed two, the number of tuples taking part in join

operations is greater than tens of thousands, the

performance of 2-Relation method lags far behind that

of 4-Relation method.

Fig. 10(b) shows that 4-Relation method outperforms

2-B þ Tree method in most of the queries. Especially, in

cases (Q2, Q3, Q8, Q9) in which the path length of a query

exceeds two, the performance ratios of 2-B þ Tree method

to 4-Relation method are large, while in other cases, the

ratios are within three.

As in Ref. [46], the performance of 2-B þ Tree method

is much better than that of 2-Relation method. Zhang et al.

[46] identified two causes for this significant gap of the

performance. One is that MPMGJN employed by the IR

engine outperforms the standard RDBMS join algorithms,

the other is that the RDBMS has much lower cache

utilizations than the IR engine. However, Fig. 10(c) shows

that the performance ratios between 4-B þ Tree method and

4-Relation method are within two, except for Q2 and Q5.

The reason is that our RDBMS implementation (4-Relation

method) eliminates the gap of the performance between the

RDBMS and the IR engine caused by join operations, since

the number of join operations does not increase in

proportion to the path length of a query and join operations

happen between smaller relational tables.

Fig. 11 shows that the execution time of 2-Relation

method increases exponentially, as the number of contain-

ment relationships in a query (the path length of a query)

Fig. 10. Performance ratios. (a) 2-Relation/4-Relation performance ratios (log scale). (b) 2-B þ Tree/4-Relation performance ratios. (c) 4-B þ Tree/4-Relation

performance ratios.

Fig. 11. Variations of the execution time on the path length of a query.

C. Seo et al. / Information and Software Technology 45 (2003) 11–22 19



increases, while there is almost no change in the execution

time of 4-Relation method. That is, it shows that 4-Relation

method is scalable to the path length of a query.

6.3. Analysis of real space restrictions

Fig. 12 shows that, as the size of XML documents

increases, the size of relational tables required for storing

the inverted indexes in 4-Relation method increases almost

linearly within two times to the size of original XML

documents. On the other hand, 4-Relation method requires

less storage approximately from 10 to 15% than 2-Relation

method.

The main reason why the size of relational tables is larger

than the size of XML documents is that we construct the

inverted indexes in the granularity of XML components

(elements, attributes, and text words) rather than documents.

Building the inverted indexes in such a fine granularity is

essential for supporting containment queries. However, we

are aware that such an increase in the size of the inverted

indexes might not be appropriate for some applications. We

therefore plan to research efficient database compression

techniques and approximate inverted index techniques as

our important future work [17].

7. Conclusion

From our experimental results, our IR approach

(4-B þ Tree method) using B þ -trees is almost always

the best choice and sometimes two or more times faster than

our RDBMS approach (4-Relation method). However, the

performance ratios between our RDBMS approach and our

IR approach are usually less than two, and further, we

showed that our RDBMS implementation significantly

outperforms the RDBMS implementation and the IR

implementation of 2-INDEX approach. Therefore, our

research result suggests that using an RDBMS is not far

behind using B þ -trees in the performance to store the

inverted indexes and process containment queries, and

moreover, our approach can be sufficiently used in

implementing XML IR systems based on an RDBMS.

In Section 1.2, we mentioned the advantages of using the

RDBMS. In the near future, various organizations and

companies will adopt XML as their document format and

the RDBMS will play a significant role in storing XML

documents and processing the queries. However, the

shortcoming of our suggested approach is that the size of

relational tables is larger than original XML documents.

Therefore, we plan to research efficient database com-

pression techniques and approximate inverted index tech-

niques which significantly lessen the size of the inverted

indexes and show comparable performance. And as another

future work, we will conduct a performance comparison

between our approach and the indexing techniques to XML

documents internally offered by commercial DBMSs, such

as Oracle 9i [21], by using the extensible indexing

techniques provided by commercial DBMSs.

Acknowledgements

This work was supported by the Brain Korea 21 Project.

Appendix A. Processing tight and k-proximity

containment queries in our approach and 2-INDEX

approach

Figs. A1(a) and A2(a) show how to convert “//given ¼

‘Peter’” into a SQL statement in both approaches. 2-INDEX

approach requires one join operation, since there is one

Fig. 12. Relational table size on the size of XML documents.

Fig. A1. Processing of tight and k-proximity containment queries in 2-INDEX approach.

C. Seo et al. / Information and Software Technology 45 (2003) 11–2220



containment relationship between a “given” element and a

“Peter” text word. On the other hand, our approach requires

three join operations (a join between the Term relation and

the TermIndex relation, a join between the Path relation and

the PathIndex relation, and a join between the TermIndex

relation and the PathIndex relation).

Figs. A1(b) and A2(b) show how to convert

“Distance(“Data”,“Web”)#3” into a SQL statement in 2-

INDEX approach and our approach, respectively. As in the

case of a tight containment query, our approach requires

three join operations, while 2-INDEX approach requires one

join operation.

Although our approach requires more join operations in

both a tight containment query and a k-proximity contain-

ment query, in case of a hybrid form of basic containment

queries (for example, “/books/book/author/family ¼ ‘

Suciu’”), our approach requires three join operations,

regardless of the path length of the query, while 2-INDEX

approach requires four join operations between larger

relations.

References

[1] T. Arnold-Moore, M. Fuller, B. Lowe, J. Thom, R. Wilkinson, The elf

data model and sgql query languages for structured document

databases, Proceedings of the Australasian Database Conference

(1995).

[2] R. Baeza-Yates, G. Navarro, Integrating contents and structure in text

retrieval, SIGMOD Record 25 (1) (1996) 67–69.

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,

Addison-Wesley, Reading, MA, 1999.

[4] R. Bayer, XML database: modelling and multidimensional indexing,

DEXA (2001).

[5] G. Elizabeth Blake, M.P. Consens, P. Kilpelainen, P.-A. Larson, T.

Snider, F.Wm. Tompa, Text/relational database management systems:

harmonizing SQL and SGML, Proceedings of the International

Conference on Applications of Databases (1994).

[6] T. Bray, J. Paoli, C. Sperberg-McQueen, Extensible markup language

(XML) 1.0., Technical report, W3C Recommendation, 1998.

[7] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, M. Stefanescu,

XQuery: a query language for XML, Technical report, W3C Working

Draft, February 2001.

[8] J. Clark, S. DeRose, XML path language (XPath) Version 1.0.,

Technical report, W3C Recommendation, November 1999.

[9] C.L.A. Clarke, G.V. Cormack, F.J. Burkowski, Scheme-independent

retrieval from heterogeneous structured text, Fourth Annual Sym-

posium on Document Analysis and Information (1995).

[10] C.L.A. Clarke, G.V. Cormack, F.J. Burkoswki, An algebra for

structured text search and a framework for its implementation, The

Computer Journal 38 (1) (1995) 43–56.

[11] B.F. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, M. Shadmom,

A fast index for semistructured data, Proceedings of the Conference

on Very Large Data Bases (2001).

[12] T. Dao, R. Sacks-Davis, J.A. Thom, Indexing structured text for

queries on containment relationships, Proceedings of the Australasian

Database Conference (1996).

[13] S. Dessloch, N.M. Mattos, Integrating SQL databases with content-

specific search engines, Proceedings of the Conference on Very Large

Data Bases (1997).

[14] A. Deutsch, M. Fernandez, D. Florescu, A.Y. Levy, D. Suciu, XML-

QL: a query language for XML, Technical report, W3C, August 1998.

[15] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructured data with

STORED, Proceedings of the ACM SIGMOD International Con-

ference on the Management of Data (1999).

[16] T. Fiebig, G. Moerkotte, Evaluating queries on structure with

extended access support relations, International Workshop on the

Web and Databases (2000).

[17] D. Florescu, D. Kossman, I. Manolescu, Integrating keyword search

into XML query processing, Processing of the Ninth International

World Wide Web Conference (2000).

[18] D. Florescu, D. Kossmann, Storing and querying XML data using an

RDBMS, IEEE Data Engineering Bulletin 22 (3) (1999) 27–34.

[19] International Organization for Standardization, Information proces-

sing-text and office systems-standard generalized markup language

(SGML), iso/iec 8879, 1986.

[20] R. Goldman, J. Widom, DataGuides: enabling query formulation and

optimization in semistructured databases, Proceedings of the

Conference on Very Large Data Bases (1997).

[21] http://otn.oracle.com/docs/products/oracle9i, 2001.

[22] http://www.exceloncorp.com, 2001.

[23] http://www.softwareag.com/tamino, 2001.

[24] http://www.xyzfind.com, 2001.

[25] IBM, DB2 text extender, http://www-4.ibm.com/software/data/db2/

extenders/text.htm.

[26] D.D. Kha, M. Yoshikawa, S. Uemura, An XML indexing structure

with relative region coordinate, IEEE International Conference on

Data Engineering (2001).

[27] M. Klettke, H. Meyer, XML and object-relational database systems—

enhancing structural mappings based on statistics, International

Workshop on the Web and Databases (2000).

[28] Q. Li, B. Moon, Indexing and querying XML data for regular path

expressions, Proceedings of the Conference on Very Large Data Bases

(2001).

Fig. A2. Processing of tight and k-proximity containment queries in our approach.

C. Seo et al. / Information and Software Technology 45 (2003) 11–22 21

http://otn.oracle.com/docs/products/oracle9i
http://www.exceloncorp.com
http://www.softwareag.com/tamino
http://www.xyzfind.com
http://www-4.ibm.com/software/data/db2/extenders/text.htm
http://www-4.ibm.com/software/data/db2/extenders/text.htm


[29] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: a

database management system for semistructured data, SIGMOD

Record 26 (3) (1997) 54–66.

[30] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, A. Rajaraman, Indexing

semistructured data, Technical report, Stanford University, February

1998.

[31] H. Meuss, Indexed tree matching with complete answer represen-

tations, PODDP’98 (1998).

[32] H. Meuss, C. Strohmaier, Improving index structures for structured

document retrieval, IRSG’99 (1999).

[33] T. Milo, D. Suciu, Index structures for path expressions, Proceedings

of the International Conference on Database Theory (1999).

[34] Oracle, Oracle8i intermedia text reference, release 8.1.5., http://

oradoc.photo.net/ora81/DOC/inter.815/a67843/toc.htm.

[35] J. Robie, J. Lapp, D. Schach, XML Query Language (XQL),

September 1998, http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[36] R. Sacks-Davis, T. Arnold-Moore, J. Zobel, Database systems for

structured documents, Proceedings of the International Symposium on

Advanced Database Technologies and Their Integration (ADTI’94)

(1994).

[37] J. Schanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. DeWitt, J.F.

Naughton, Relational databases for querying XML documents:

limitations and opportunities, Proceedings of the Conference on

Very Large Data Bases (1999).

[38] J. Schanmugasundaram, E. Schekita, R. Barr, M.J. Carey, B.G.

Lindsay, H. Pirahesh, B. Reinwald, Efficiently publishing relational

data as XML documents, Proceedings of the Conference on Very

Large Data Bases (2000).

[39] A. Schmidt, M.L. Kersten, M. Windhouwer, F. Waas, Efficient

relational storage and retrieval of XML documents, International

Workshop on the Web and Databases (2000).

[40] T. Shimura, M. Yoshikawa, S. Uemura, Storage and retrieval of XML

documents using object-relational database, DEXA (1999).

[41] Sleepycat Software, The Berkeley database, http://www.sleepycat.

com.

[42] B. Surjanto, N. Ritter, H. Loeser, XML content management based on

object-relational database technology, Proceedings of the Inter-

national Conference on Web Information Systems Engineering

(2000).

[43] R. Whalen, Implementing the full-text search service in sql server,

http://msdn.microsoft.com/library/periodic/period00/ewn0092.htm.

[44] T.W. Yan, J. Annevelink, Integrating a structured-text retrieval

system with an object-oriented database system, Proceedings of the

Conference on Very Large Data Bases (1994).

[45] M. Yoshikawa, T. Amagasa, XRel: a path-based approach to

storage and retrieval of XML documents using relational

database, ACM Transactions on Internet Technology 1 (1)

(2001) 110–141.

[46] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman, On

supporting containment queries in relational database management

systems, Proceedings of the ACM SIGMOD International Con-

ference on the Management of Data (2001).

C. Seo et al. / Information and Software Technology 45 (2003) 11–2222

http://oradoc.photo.net/ora81/DOC/inter.815/a67843/toc.htm
http://oradoc.photo.net/ora81/DOC/inter.815/a67843/toc.htm
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.sleepycat.com
http://www.sleepycat.com
http://msdn.microsoft.com/library/periodic/period00/ewn0092.htm

	An efficient inverted index technique for XML documents using RDBMS
	Introduction
	Motivation
	Advantages of using an RDBMS
	Overview of this paper

	Related work
	Containment queries
	Extending the inverted index
	2-INDEX approach and its problems
	Our approach

	Processing containment queries in the RDBMS
	Experiments
	Experimental environment
	Experimental results
	Analysis of real space restrictions

	Conclusion
	Acknowledgements
	Processing tight and k-proximity containment queries in our approach and 2-INDEX approach
	References


