
www.elsevier.com/locate/datak

Data & Knowledge Engineering 48 (2004) 129–152
The semantics of an extended referential integrity
for a multilevel secure relational data model

Sang-Won Lee a,*,1, Yong-Han Kim b, Hyoung-Joo Kim c

a School of Information and Communication Engineering, SungKyunKwan University,

Chunchun 300, Jangan-Gu, Suwon, 440-746 South Korea
b Oracle Korea, Seoul, South Korea

c Computer Science and Engineering, Seoul National University, Seoul, South Korea

Received 21 August 2002; received in revised form 22 January 2003; accepted 26 May 2003
Abstract

To prevent information leakage in multilevel secure data models, the concept of polyinstantiation was

inevitably introduced. Unfortunately, when it comes to references through foreign key in multilevel rela-

tional data models, the polyinstantiation causes referential ambiguities. To resolve this problem, this paper

proposes an extended referential integrity semantics for a multilevel relational data model, Multilevel
Secure Referential Integrity Semantics (MLS-RIS).

The MLS-RIS distinguishes foreign key into two types of references, i.e. value-based and entity-based

reference. For each type, it defines the referential integrity to be held between two multilevel relations, and

provides resolution rules for the referential ambiguities. In addition, the MLS-RIS specifies the semantics of

referential actions of the SQL update operations so as to preserve the referential integrity.
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1. Introduction

A database management system (DBMS) should have an access control mechanism ensuring
that only authorized users can access the shared data according to a specific policy. The function
of an access control mechanism can be abstracted as follows.
F ðS;O; T Þ ¼ yes or no
Each symbol of S, O, and T represents user, data, and access type (including read and write),
respectively. When user S requires access to data O in T mode, the function F decides whether or
not to allow the request.

There are two representative access control policies for database systems: (1) discretionary

access control (DAC) and (2) mandatory access control (MAC). DAC controls the access to data
on the basis of the modes of access privileges of users to data. It is called discretionary in the sense
that the owner of data has complete discretion regarding granting/revoking of access privilege to
his/her data. DAC was originally invented for System/RDBMS by Griffiths and Wade [13], and
later revised by Fagin [10]. Currently, almost all commercial relational DBMSs (RDBMSs)
support DAC.

Meanwhile, MAC controls the access to data on the basis of security labels assigned to users
and data. It is mandatory in that the access to data is rigidly allowed �only if� some condition
(depending on the access type) between the security label of the user (also called clearance) and
that of data (also called classification level) is satisfied. MAC was introduced to overcome the
limitations of DAC such as Trojan Horse [3,26], and during the past decade there have been
several efforts to build secure relational DBMSs, such as SeaView project [21], LDV model [31]
and Jajodia–Sandhu model [17,19]. Some commercial RDBMSs such as Oracle [23,24] are now
delivering products supporting MAC. Even though other major commercial DBMSs, such as
IBM DB2 and MS SQL Server, do not support MAC, we foresee that they will also incorporate
the functionality of MAC into their future releases, as the security requirements from mission
critical applications get stronger than ever.

With regard to MAC, it is noteworthy that recently many real-time database applications,
including military systems, have been paying much attention to the multilevel security paradigm
[8,12,30]. In these areas where security enforcement is crucial to the success of the enterprise, the
multilevel security paradigm is preferred in order to guarantee security within their rigid temporal
requirements. More recently, the MAC approach inspired the Hippocratic Databases [1] which
will rejuvenate the interest in database security and privacy.

Currently, other research efforts on database security include, to name a few, (1) extensions of
current DAC policy for RDBMSs in order to directly support a variety of application security
policies [4,5]; (2) developments of authorization models for object-oriented DBMSs using DAC
[25] and MAC [32] and for federated databases [34] and (3) works on role-based access control
(RBAC) model [27], emerging as a candidate for filling the gap between DAC and MAC. Refer to
[3,26] for details.

In the remainder of this paper, we will use the term multilevel security, instead of the term
MAC. MAC is called multilevel security in the sense that to each user and each data item, one of
the multiple security labels can be assigned.
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It should be noted that access control policies are not necessarily exclusive. Different policies
can be combined to provide a more suitable protection system. Each policy represents a policy
which allows a subset of all possible accesses. When the policies are combined, only the inter-
section of their accesses is allowed.
1.1. Our goals

For the last decade, there have been several efforts on the multilevel relational data model.
However, many of them focused on the semantics within a single relation; (1) definition of relation
scheme and relation instance, (2) integrity properties for a single relation, and (3) operational
semantics of insert, delete, and update. Little attention has been paid to the relationships between
two multilevel relations, such as referential integrity which is an essential semantic of the standard
relational data model. Only a few works touched upon the definition of referential integrity in
multilevel relational data models. However, these works do not address the issues considering the
referential ambiguity in the multilevel relational data model.

Based on this fact, we propose an extended referential integrity semantic for a multilevel re-
lational data model, called Multilevel Secure Referential Integrity Semantics (MLS-RIS). For
this, we extend the referential integrity semantics of the SQL standard [16].
1.2. Paper outline

The next section gives an overview of the basic concepts: multilevel relational data model for
single relation and the referential integrity in standard SQL. Section 3 defines the problem of
referential ambiguity, reviews the previous solutions, and gives the basic ideas of MLS-RIS.
Sections 4 and 5 gives the formal semantics of valued-based reference and entity-based reference,
respectively. After comparing MLS-RIS with the related works in Section 6, we conclude the
paper in Section 7.
2. Basic concepts

2.1. Multilevel secure data model

In the multilevel secure data model, each data object (called object) is assigned a security class,
and each user (called subject) is assigned a clearance for a security class. We will call the class of an
object or a subject A as its label and denote it as LðAÞ. The security classes in a multilevel secure
data model can be organized into a lattice. In this paper, for the sake of simplicity, we will assume
the linear sequence of security classes: UðunclassifiedÞ < CðconfidentialÞ < SðsecretÞ < TSðtop-
secretÞ, instead of a lattice structure. The notation LðBÞ < LðAÞ means that the security class of A
is higher than that of B, and LðBÞ6 LðAÞ that the security class of A is equal to or higher than that
of B.

Access control in multilevel secure data model is based on the Bell–LaPadula model [2], which
imposes two properties on all reads and writes of database objects by users
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1. The Simple Security Property. A user s is allowed to access an object o only if LðsÞ is higher than
or identical to LðoÞ, that is,
F ðs; o;RÞ ¼ yes and only if LðsÞPLðoÞ

2. The �-Property. A user s is allowed a write access to an object o only if LðsÞ is identical to or

lower than LðoÞ, that is,
F ðs; o;W Þ ¼ yes and only if LðsÞ6 LðoÞ
The goal of The Simple Security Property is to prevent a user with low clearance from accessing
higher data (that is, No Read-Up), while the goal of The �-Property, as shown in Fig. 1, is to
prevent a malicious user with a high clearance from passing classified data to a user cleared at a
lower level (that is, No Write-Down).

2.2. Multilevel relational data model

A multilevel relational data model is no more than an extended relational model to guarantee
the two properties of the Bell–LaPadula model. This section reviews the multilevel relation data
model we will assume in this paper: (1) the basic definitions of multilevel relations, (2) the concept
of polyinstantiation, which is inevitable in multilevel security, and (3) the four core integrity
properties. We assume the readers are familiar with the standard relational model.

2.2.1. Multilevel relations

Even though we assume that the readers are familiar with basic concepts of standard relational
model, we quickly review the basic definitions of relational model before moving on to multilevel
relation world. The main construct for representing data in the standard relational model is a
relation. A relation consists of a relation schema and a relation instance. The schema specifies
the relation�s name, the name of each attribute (or column), and the domain of each attribute. A
relation schema is denoted as RðA1; . . . ;AnÞ, where each Ai is an attribute. An instance of a relation
is a set of tuples, in which each tuple has the same number of attributes as the relation schema.
Each tuple has the form of ða1; a2; . . . ; anÞ. A relation instance can be thought of as a table. The
term relation instance is often abbreviated to just relation, where there is no confusion with the
schema of the relation.

In analogy to the definition of relation in standard relational model, a multilevel relation
consists of two parts: (1) the state-invariant relation scheme and (2) a collection of state-depen-
Fig. 1. Illegal information flow in multilevel secure data model.



Fig. 2. A multilevel relation SMD.

Fig. 3. A multilevel relation instance SMDC.
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dent relation instances. A multilevel relation schema is denoted as RðA1;C1; . . . ;An;Cn; TCÞ, where
each Ai is a data attribute, each Ci is a classification attribute for Ai, and TC is the tuple-class
attribute [9,17,28]. We assume the primary data attribute consists of only one data attribute and
denote it as PK. Its corresponding classification attribute is denoted as CPK .

For each access class c in the given classification level, a multilevel relation has a corresponding
relation instance, Rc. In other words, for a given multilevel relation schema, there exist as many
multilevel relation instances as access classes. For a same multilevel relation, users with different
access classes see a different collection of rows––that is, different multilevel relation instances
according to their access classes. In this respect, the readers can regard the concept of multilevel
relation instances as a special kind of views. Each multilevel relation instance Rc has a set of
distinct tuples of the following form.
2 T

can de

relatio
Rcða1; c1; . . . ; an; cn; tcÞ

Given a tuple t, t½Ai� and t½Ci� ði ¼ 1; . . . ; nÞ represents the data value of data attribute Ai,

classification level of Ci, respectively, and t½TC� represents tuple-class TC of tuple t. The tuple-class
t½TC� is equal to lubft½C1�; t½C2�; . . . ; t½Cn�g, where lub denotes the least upper bound.

Fig. 2 shows a multilevel relation SMD which will be used in the rest of this paper. SMD has
three data attributes, SHIP (spaceship name), MISSION (mission), and DEST (destination).
Besides data attributes, it has the tuple class attribute TC also. Fig. 2 does not explicitly model the
classification of each attribute. Instead, the security class of each attribute is shown right to its
data value. In fact, the table in Fig. 2 is the multilevel relation instance SMDTS . According to The
Simple Security Property of the Bell–LaPadula model, a multilevel relation should be differently
viewed to the different users depending on their clearances. For instance, a user with C clearance
will see the filtered relation instance SMDC as shown in Fig. 3, while a TS user will see the entire
relation of Fig. 2. 2 The relation instance SMDC is a set of tuples with the tuple-class less than or
identical to C.
he tables SMDTS and SMDC do not need to exist as a separate table in disk. Using the techniques such as [19], we

compose the contents of tables into several physical relations, and can dynamically generate a appropriate logical

n according to a user clearance.
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2.2.2. Polyinstantiation

Polyinstantiation refers to the simultaneous existence of multiple data with the same value, but
with different classification level. In general, polyinstantiation is assumed to be an inevitable part
of the multilevel security paradigm [20]. There are two types of polyinstantiation in a multilevel
relational data model; polyinstantiated tuple (or polyinstantiated entity) and polyinstantiated at-

tribute. The polyinstantiated attribute is used to model a same real-world entity, an attribute of
which has different values at different classification levels. For example, the first two tuples in Fig.
2 model polyinstantiated attributes of the data attribute MISSION of the same Pathfinder
entity; that is, while the mission of the ship Pathfinder is known as Nuclear Test by TS-
users, with users having lower clearance its mission is known just as Exploration.

The polyinstantiated tuple was introduced to model two or more different real-world entities
with the same primary key value. For instance, suppose that a user with low clearance asks to
insert a tuple with the same primary key as an existing tuple at a higher level. The DBMS should
not reject this insertion, because otherwise it would inform the low-level user of the existence of a
higher-level tuple with the same key value, thereby resulting in information leakage. The third
tuple with key value Pathfinder in Fig. 2, represents a different entity from the entity modeled
by the first two tuples with key value Pathfinder. This type of polyinstantiated tuples is called
as required polyinstantiation [18].

There is another type of polyinstantiated tuple, which is contrary to the required polyinstan-
tiation. Suppose that a user asks to insert a tuple with the same primary key as an existing tuple at
a lower level. In this case, the user already knows that there is a lower class tuple with the same
key value, and moreover there is no information leakage even if we allow the insertion. It is a valid
option to reject the insertion, but this is a denial-of-service [3]. We call this type of polyinstan-
tiated tuples optional polyinstantiation. In this paper, we assume both types of polyinstantiated
tuples.

In summary, polyinstantiated tuples were introduced to model the different real-world entities,
while polyinstantiated attributes were introduced to represent the different values of a data at-
tribute of the same entity at different classification levels. In a multilevel relational data models,
the concept of polyinstantiation is inevitably introduced to guarantee the �-property of the Bell–
LaPadula model. For more details about polyinstantiation, refer to [3,18,20].

2.2.3. Integrity properties

Many of the multilevel relational data models includes integrity properties that each multilevel
relation should satisfy [9,17,28]. These integrity properties are required from three characteristics
of the multilevel relational data model. First, since the multilevel relational data model itself is an
extension of the standard relational data model, the integrity properties required in relational data
model should also be satisfied in the multilevel relational data models. Second, because, for a
relation scheme, there are multiple relation instances according to the security level, several new
integrity properties about inter-instance relationships should be introduced. Finally, the concept
of polyinstantiation requires another type of integrity properties.

It is beyond the scope of our work to introduce a new set of integrity properties for a single
multilevel relation, so we assume in this paper the integrity properties of [28] which we think are
the simplest and the most advanced. In this section, we will briefly review the integrity properties
defined in [28].



Fig. 4. Violation of polyinstantiation integrity: an example.
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Integrity property 1 (Entity integrity). A relation instance Rc of a multilevel relation R satisfies
entity integrity if and only if the following requirements hold for all t 2 Rc.

3

1. t½PK� 6¼ null,
2. Ai 6¼ PK ! t½Ci�P t½CPK �.

The first requirement is exactly the same as the entity integrity of the standard relational model,
and the second one says that in any tuple of Rc the class of non-key attributes must dominate CPK .

Integrity property 2 (Inter-instance integrity). A multilevel relation R satisfies inter-instance in-
tegrity if and only if the following requirement holds

1. 8c0 6 c, Rc0 ¼ ft 2 Rc j t½TC�6 c0g.

Relation instance Rc0 ðc0 6 cÞ consists of tuples t from Rc, where t½TC� is lower than or equal to c0.
For instance, a user with TS level sees the relation instance of Fig. 2, while a C-level user sees the
relation instance of Fig. 3, which consists of tuples whose tuple-class are U or C.

Integrity property 3 (Polyinstantiation integrity). A multilevel relation R satisfies polyinstantiation
integrity if and only if the following functional dependency holds for all relation instance Rcs of R.

1. PK, CPK , Ci ! Ai for all i ¼ 1; . . . ; n.

We say Y is functionally dependent on X , written X ! Y , if and only if it is not possible to have
two tuples with the same values for X but different values for Y . The intuitive meaning of this
integrity property is that all the tuples modeling polyinstantiated attributes of the same real-world
entity should have the same data value of a data attribute Ai if their classification levels are
identical. Fig. 4 shows an example of violation of this polyinstantiation integrity. Two tuples in
Fig. 4 model the same entity Pathfinder, but they have different DEST values even though their
CDESTs are identical.

Integrity property 4 (PI-tuple-class integrity). A multilevel relation R satisfies tuple-class polyin-
stantiation integrity if and only if the following requirement holds for all relation instance Rcs of R.

1. PK, CPK , TC ! Ai for all Ai 62 PK.
3 In [28], they assume that, when the primary key consists of more than one attribute, the security class of all the

attributes are same. Since, in this paper, we assume a single-attributed primary key, we omit this condition.



Fig. 5. Violation of PI-tuple-class integrity: an example.
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This integrity property implies that, for a given classification level, there can be only one tuple
modeling a real-world entity. For instance, consider the relation instance in Fig. 5. This relation
instance violates PI-tuple-class integrity, since the last two tuples model the same Pathfinder,
but at the same time their tuple-classes are equal, that is, there exist two tuples modeling an entity
at the same classification level.

At this point, we should note that polyinstantiation integrity and PI-tuple-class integrity are
orthogonal to each other. The relation instance in Fig. 5 violating PI-tuple-class integrity satisfies
polyinstantiation integrity. In contrast, the relation instance in Fig. 4 violating polyinstantiation
integrity, satisfies the PI-tuple-class integrity.

2.3. Referential integrity in the standard relational data model

Referential integrity, in addition to entity integrity, is an essential component of the relational
data model. The relational database standards such as SQL2 [15] and SQL3 [16], specify the
referential integrity in detail, including its definition and the semantics of run-time referential
actions. For detailed explanations about the referential integrity in SQL3 and its support in
commercial DBMSs, see a recent excellent survey paper [33].

Simply stated, referential integrity says that a value that appears in one relation ðRCÞ for a given
set of attributes ðRC:FKÞ also should appear for primary key ðRP:PKÞ in another relation ðRPÞ. RP

and RC are called �parent relation� and �child relation�, respectively, and RC:FK and RP:PK are
called �foreign key� and �primary key�, respectively. A foreign key can have null value when there is
no matching value in the parent relation or when its value is unknown. For a tuple tRP

in a parent
relation RP, there may exist several tuples tRC

in child relation RC, which references tRP
. The tuple

tRP
is called parent tuple, and each tRC

child tuple.
Referential integrity 1 (referential integrity in SQL standard). For every tuple tRC

2 RC, where
tRC

½FK� 6¼ null, there should exist a tuple tRP
in RP, where tRP

½PK� is equal to tRC
½FK�.

The following syntax is used, as a part of child relation definition, to declare a foreign key in
SQL3 [16]. It should be noted that the syntax also provides the ways to declare the referential
actions of the foreign key with regarding to update and delete operations in the parent relation.

FOREIGN KEY [(<referencing columns>)]
REFERENCES [PENDANT] <table name> [(<referenced columns>)]
[MATCH FULL | MATCH PARTIAL]

[ON UPDATE {CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION }]
[ON DELETE {CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION }]

<referencing columns> declares foreign key RC:FK of RC, and <table name> represents
parent relation RP. In SQL3, the optional <referenced columns> can designate the candidate



Table 1

The actions to guarantee referential integrity

RP RC

Insertion Deletion Updates Insertion Deletion Updates

CASCADE o ? ? - o -

RESTRICT o ? ? - o -

SET NULL o ? ? - o -

o¼ to always satisfy the referential integrity.

-¼ to check referential integrity at run-time.

?¼ to require referential actions at run-time.
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key of RP, but in this paper we assume the referenced columns to be the primary key of the parent
relation. The last two statements are used to define the referential actions of the foreign key; what
is the effect of the update or delete operation in RP on the matching tuples in RC? For instance,
when a tuple tRP

is deleted from RP, the CASCADE option specifies that a DBMS should also delete
all its child tuples tRC

from RC. In the case of SET NULL, a DBMS should also nullify the foreign
key value of all its child tuples in RC. The RESTRICT option declares that, when a tuple tRP

is
deleted from RP or its primary key value is changed, the deletion (or update) operation is not
allowed if there exists its child tuple(s) tRC

in RC. We do not consider the SET DEFAULT, NO

ACTION options and the PENDANT, MATCH keywords. See [16,33] for detailed explanations of
their semantics.

Table 1 shows the scope of the referential integrity semantics to be covered in this paper: that is,
the three options for the referential actions of foreign key, CASCADE, RESTRICT, SET NULL for
three operations, insert, delete, and update in RP and RC, respectively. In Table 1, the element with
o always satisfies the referential integrity; for example, insertion to the relation RP does not violate
referential integrity in any case. With the element with ), it should be checked whether the
corresponding foreign key satisfies the referential integrity. Finally, the element with ? requires
referential actions at run-time.
3. Referential ambiguity and its solutions

3.1. Referential ambiguity

Due to polyinstantiation, as described in the previous section, more than one tuple with the
same primary key value can simultaneously exist in a multilevel relation. When it comes to
referential integrity, this fact brings about the problem of referential ambiguity in a multi-
level relational data model [11]. In Fig. 6, for instance, what Pathfinder in RP does the tuple
(Kennedy,U,Pathfinder,S,S) in RC refer to? The first two Pathfinder tuples are
polyinstantiated to model a U -level Pathfinder. The last Pathfinder is a polyinstantiated
tuple that models another Pathfinder different from the U -level Pathfinder.

The foreign key value of the tuple (Kennedy,U,Pathfinder,S,S) in Fig. 6 is said to have
‘‘referential ambiguity’’, and the three Pathfinder tuple in RP is said to ‘‘cause’’ the ambiguity.
Until now, several approaches have been taken to address this problem of referential ambiguity,



Fig. 6. Referential ambiguity: an example. (a) RC, relation CS and (b) RP, relation SMD.

138 S.-W. Lee et al. / Data & Knowledge Engineering 48 (2004) 129–152
but we think they are incomplete and less systematic. In the rest of this section, we review those
approaches and give the basic idea of our solution.

3.2. Previous solutions

Researchers recognized the problem of referential ambiguity in multilevel relational data
models, and proposed some approaches to the problem [21,28,29]. These approaches can be
classified as follows.

• Avoidance of ambiguity
� MLR model [29]. Prevents the occurrence of referential ambiguity in a multilevel relational

data model.
� Sandhu–Jajodia model [28]. Prevents referential ambiguity during the database design phase.

• Resolution of ambiguity
� SeaView model [21]. Allows referential ambiguity, but provides a resolution policy to choose

one tuple.

However, these approaches have several disadvantages. First, the approach of ambiguity
avoidance seems to be too restrictive. Second, the approach taken in SeaView model is inflexible,
since users may require another resolution policy different from the specific one supported by the
model. Finally (and most importantly), all the previous approaches focused on the definition of
referential integrity and on the resolution of referential ambiguity, but no work has been done on
the dynamic referential actions as in the standard relational data model. For instance, they did not
consider the effect of deleting the tuple (Pathfinder,C,Exploration,C,Sun,C,C) from
the table in Fig. 6(b) on the tuple (Kennedy,U,Applo,U,U) in Fig. 6(a).

3.3. MLS-RIS approach

In this section, we propose a systematic approach, MLS-RIS, to the referential ambiguity
problem, which removes the limitations in the previous approaches. In particular, MLS-RIS
extends the semantics of referential actions in SQL standard, considering the referential ambi-
guity.
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For this purpose, MLS-RIS extends the syntax of foreign key declaration as follows.

FOREIGN KEY [(<referencing columns>)]
[VALUE(default)|ENTITY]

REFERENCES [PENDANT] <table name> [(<referenced columns>)]
[MATCH FULL | MATCH PARTIAL]

[ON UPDATE {CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION}]
[ON DELETE {CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION}]

The additional part is an option [VALUE|ENTITY] before keyword REFERENCES, which
allows users to choose the type of reference of the foreign key; that is, value-based reference or
entity-based reference (value-based reference is the default option). In the remainder of this
section, we will give an informal description of each reference type.

3.3.1. Value-based references
As described above, the source of referential ambiguity is tuples having the same key value,

which were introduced to model either polyinstantiated tuples or attributes.
With value-based references, if more than one tuple matching the foreign key value of a child

tuple exist in parent relation, the child tuple is bound semantically to the parent tuple with the
highest CPK . For instance, the tuple (Kennedy,U,Pathfinder,S,S) in Fig. 6(a) is bound to
parent tuple (Pathfinder,C,Exploration,C,Sun,C,C) in Fig. 6(b).

However, readers should note that a value-based reference chooses a tuple with highest CPK ,
rather than highest tuple class TC. In Fig. 6(b), the tuple class of the second Pathfinder tuple is
higher than that of the last Pathfinder tuple, but the last Pathfinder tuple is bound to the
child tuple (Kennedy,U,Pathfinder,S,S).

We choose this semantic because we think it is more natural for a foreign key value to refer to a
tuple modeling the highest level entity, rather than a tuple with highest tuple class.

Now let us consider the case that the tuple (Pathfinder,C, Exploration,C,Mars,

C,C) is deleted from the table in Fig. 6(b). What about the child tuple bound to this tuple?
Should the child tuple be also deleted from the parent table? Or should the child tuple be bound
to another parent tuple with matching value. The child tuple (Kennedy,U,Pathfinder,

S,S) is newly bound to the parent tuple (Pathfinder,U, Nuclear Test,S,Mars,

U,S).

3.3.2. Entity-based references
In contrast to value-based references where a parent tuple is dynamically bound to a child tuple

based on the change in parent relation, the entity-based reference statically determines a parent
entity to be bound to a child tuple, when the child tuple is created.

In order to encode the information of binding parent tuple, a foreign key declared as
ENTITY REFERENCE, in addition to its class attribute CFK , has �Referenced Attribute Classifi-
cation� RCFK .

Fig. 7 illustrates entity-based references. The tuple (Kennedy,U,Pathfinder,S,C,S)

statically refers to C-level tuple (Pathfinder,C,Exploration,C,Sun,C,C) of parent re-
lation, since the RCSHIP of the child tuple is C.



Fig. 7. Entity-based references: an example RC, relation CS.
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When a parent tuple is deleted, its child tuples, in contrast to value-based references, are
cascadedly deleted under entity-based references. For example, if we delete the parent tuple
(Pathfinder,C,Exploration,C,Sun,C,C) from the relation SMD, its child tuple
(Kennedy,U,Pathfinder,S,C,S) is also deleted from the relation CS.

With entity-based references, the referenced attribute classification statically determines the
parent entity. However, it should be noted that, among the tuples modeling polyinstantiated
attributes of an entity, the binding parent tuple is dynamically determined like value-based ref-
erences. For instance, if a new tuple (Pathfinder,C,Exploration,C,Moon,S,S) is in-
serted in relation SMD of Fig. 6 (in order to model the polyinstantiated attributes of the tuple
(Pathfinder,C,Exploration,C,Sun,C,C)), the child (Kennedy,U,Pathfinder,S,

C, S) refers semantically to the new tuple.

3.4. Comments

Now we are to argue that both value-based references and entity-based references can be
reasonable approaches to the referential ambiguity, in particular with regard to polyinstantiation.

Let us consider the case of polyinstantiated attributes. Usually, tuples for modeling polyin-
stantiated attributes of a real-world entity are intended to provide a plausible value with each
classification level, thus preventing a low-level user from knowing about the value at a higher
level. From this fact, it is reasonable for both value-based and entity-based references to be dy-
namically bound to the highest level tuples among those tuples for polyinstantiated attributes
tuples. Similarly, the deletion of a tuple for polyinstantiated attributes means that the plausible
value is not necessary any longer, so it is semantically correct for a child tuple to refer to the next
highest level tuple modeling the same entity.

Next, let us turn to polyinstantiated tuples, which are to model more than one real-world entity
with the same primary key value. We believe that in a given classification level, a name, by default,
is used to designate the highest entity among the ones that are visible to the level. This is the
underlying assumption why we adopt value-based references. Thus, if it is necessary to model
exceptional cases where foreign key values refer to other tuples rather than the default highest
level entity, database designers should declare the foreign key as ENTITY REFERENCE.

At this point, let us intuitively explain the differences of value-based and entity-based reference.
The polyinstantiated tuples represent several versions of the same primary key values. In other
words, they are different versions with the same name. Among these versions, value-based refer-
ence dynamically chooses the referenced version, while entity-based reference statically determines
the referenced version.

Since the reference type of child tuples is determined at the time of the foreign key declaration,
every tuple in a child relation follows the same policy regarding referential ambiguity; that is, the
granularity of foreign key reference types is relation, instead of tuple. An alternative to this ap-
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proach is to select either policy for each tuple when the tuple is created. However, one disad-
vantage of this alternative is that users should be conscious about the policy of every individual
tuple they manipulate. In this respect, the reference type declaration at the granularity of relation
taken by our MLS-RIS approach does not force users to be concerned about the reference type of
each child tuple, but it is flexible enough to handle real-world requirements about multilevel se-
curity.
4. Value-based MLS-RIS

In this and next section, we will give a formal semantic of MLS-RIS, including definitions of
referential integrity, resolution rules for referential ambiguity, and the semantics of extended
referential actions for the multilevel relational data model, in value-based references and entity-
based references, respectively.
4.1. Referential integrity in value-based reference

The following integrity property defines the referential integrity between two multilevel rela-
tions, RP and RC, in value-based references.

Referential integrity 2 (MLS-RIS referential integrity 1). For every tuple t 2 RC, where
t½FK� 6¼ null, there should exist a parent tuple q in RP.

1. t½FK� ¼ q½PK�
2. t½CFK �P q½CPK �

The first requirement is same as the standard relational data model. The second requirement
says, in agreement with the Bell–LaPadula model, that there exist at least one visible tuple at the
classification level t½CFK �.
4.2. Resolution rule for referential ambiguity in value-based reference

The following rule determines to which parent tuple the child tuple binds, when there exist more
than one key matching tuples in parent relation.

Referential ambiguity resolution rule 1 (value-based reference). For each tuple t 2 RC with ref-
erential ambiguity, its corresponding parent tuple qP is determined according to the following
rules.

1. For every tuples q 2 RP such that t½FK� ¼ q½PK� and t½CFK �P q½TC�, choose the one with the
highest q½CPK �.

2. If there exist more than one tuple satisfying the above rule, choose the one with highest q½TC�.

The first rule, intuitively, chooses the highest level entity among entities with matching key
values which are visible at the classification level t½CFK �. In other words, the first rule selects,



Fig. 8. The effects of a parent tuple deletion on referential relationships: (a) RC and (b) RP.
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among the tuples modeling polyinstantiated entities, the highest one. The second rule chooses, if
there exist more than one tuple modeling polyinstantiated attributes for an entity, the tuple with
highest tuple class as qP. The qP resolved by the above rules is unique since, according to the PI-
tuple-class integrity, there can be only one tuple modeling polyinstantiated attributes in a clas-
sification level.

The above resolution rule assumes that users should take responsibility for establishing the
correct binding between a child tuple and a parent tuple; that is, users should understand the
effects of changes in a parent relation such as insertion, updates and deletion, on the referential
relationship of child tuples, and should take some actions, if necessary, to manage the referential
integrity, For instance, when the tuple (Pathfinder,C,Exploration,C,Sun,C,C) is de-
leted from parent relation RP in Fig. 6, the child tuple (Kennedy,U,Pathfinder,S,S) refers
to a new parent tuple (Pathfinder,U,Nuclear Test,S,Mars,U,S), as shown in Fig. 8.
Conversely, when the tuple (Pathfinder,C,Exploration,C,Sun,C,C) is inserted into RP
in Fig. 8, the tuple (Kennedy,Pathfinder) binds to this new tuple.
4.3. Referential actions of MLS-RIS in value-based references

In this section, based on the referential integrity 2 and resolution rule 1, we describe the
semantics of the various update operations in child relation and parent relation. The update
operations are based on the classification of Table 1 in Section 2.

4.3.1. Insertion (update) in child relation RC
As shown in Table 1, against every insert and update operations in RC, whether a corresponding

parent tuple exists in RP should be checked.
MLS-RIS rule 1 (insertion (update) of tuple t in child relation RC). For every tuple t being in-

serted (updated) in RC, where t½FK� 6¼ null, there should exist a parent tuple satisfying the ref-
erential integrity 2. If the matching tuple q does not exist, this operation fails.

If there exist more than one parent tuple satisfying the referential integrity 2, the ambiguity is
resolved according to the ambiguity resolution rule 1.

As noted in Table 1, the tuple deletion in RC, like in the standard relational data model, does
not violate referential integrity in any case, therefore requires no referential integrity check.
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4.3.2. Insertion in parent relation RP
In SQL standards, tuple insertion in RP has no effect on referential integrity. But, tuple insertion

in RP in value-based references may change the referential relationship of some child tuples, ac-
cording to the ambiguity resolution rule 1.

MLS-RIS rule 2 (insertion of tuple t in RP)

• 9t0 2 RP, t0½PK� ¼ t½PK� ) apply the resolution rule 1 to t�s all child tuples q 2 RC.
• In other case, no changes in the referential relationship between RP and RC.

4.3.3. Deletion in parent relation RP
In this section, we will describe the semantics of tuple deletion in value-based references for

each foreign key declaration option, CASCADE, RESTRICT, and SET NULL.

MLS-RIS rule 3 (deletion of tuple t in RP (CASCADE))

• 9t0 2 RP, ðt0½PK� ¼ t½PK�Þ ^ ðt0½CPK �6 t½CPK �Þ ^ ðt0½TC� < t½TC�Þ ) apply the resolution rule 1 to
t�s all child tuples q 2 RC.

• In other case (that is, t is the last tuple with the primary key value t½PK�), delete all the tuples
q 2 RC, q½FK� ¼ t½PK�.

For example, when the tuple (Pathfinder,C,Nuclear Test,C,Mars,C,C) is deleted
from RP in Fig. 8, its child tuple (Kennedy,U,Pathfinder,S,S) in RC, instead of being
cascadedly deleted, changes its parent tuple to (Pathfinder,U,Exploration,U,Mars,U,

U) as shown in Fig. 9.
Now consider another example of tuple deletion under value-based reference. When the tuple

(Apollo,U,Exploration,U,Moon,U,U) is deleted from RP in Fig. 9, its child tuple
(Kennedy,U,Apollo,U,U) is also deleted, since the parent relation does not have any
tuple with Apollo as its primary key. Note that when the child tuple (Kennedy,U,Apol-
lo,U,U) is deleted, another tuple (Kennedy,U,Pathfinder,S,S)modeling polyinstantiated
attributes of the entity Kennedy is also deleted from the child relation. So, the deletion of parent
tuple (Apollo,U,Exploration,U,Moon,U,U) from Fig. 9 results in the status of Fig. 10.
Fig. 9. Tuple deletion in RP changes in referential relationship: (a) RC and (b) RP.



Fig. 10. Cascaded tuple deletions: (a) RC and (b) RP.
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MLS-RIS rule 4 (deletion of tuple t in RP (RESTRICT))

• 9t0 2 RP, ðt0½PK� ¼ t½PK�Þ ^ ðt0½CPK �6 t½CPK �Þ ^ ðt0½TC� < t½TC�Þ ) apply the resolution rule 1 to
t�s all child tuples q 2 RC.

• In other case, reject the deletion.

MLS-RIS rule 5 (deletion of tuple t in RP (SET NULL))

• 9t0 2 RP, ðt0½PK� ¼ t½PK�Þ ^ ðt0½CPK �6 t½CPK �Þ ^ ðt0½TC� < t½TC�Þ ) apply the resolution rule 1 to
t�s all child tuples q 2 RC.

• In other case, set q½FK� to null for t�s all child tuple q 2 RC.

Please note that under the option of RESTRICT or SET NULL, the child tuple in RC (seman-
tically) changes its reference to the parent table; that is, from the deleted tuple tRP

to its poly-
instantiated tuple with lower class (if any).

4.3.4. Primary key update in parent relation RP
Previous works on multilevel relational data models did not deal with updates of the primary

key of a multilevel relation. In this section, we will assume that the primary key update of a tuple
is allowed only at the classification level where it was created, and this update will also change all
the primary key values of tuples modeling polyinstantiated attributes in order to satisfy the
polyinstantiation integrity of Section 2. And we denote the old and new value of the primary key
of tuple t as t½PKold� and t½PKnew�, respectively.

MLS-RIS rule 6 (primary key update of tuple t in RP (CASCADE))

• 9t0 2 RP , ðt0½PK� ¼ t½PKold�Þ ^ ðt0½CPK �6 t½CPK �Þ ^ ðt0½TC� < t½TC�Þ ) apply the resolution rule 1
to t�s all child tuples q 2 RC.

• In other case, set q½FK� to t½PKnew� for t�s all child tuple q 2 RC.

MLS-RIS rule 7 (primary key update of tuple t in RP (RESTRICT))

• 9t0 2 RP, ðt0½PK� ¼ t½PKold�Þ ^ ðt0½CPK �6 t½CPK �Þ ^ ðt0½TC� < t½TC�Þ ) apply the resolution rule 1
to t�s all child tuples q 2 RC.

• In other case, reject the update.
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MLS-RIS rule 8 (primary key update of tuple t in RP (SET NULL))

• 9t0 2 RP, ðt0½PK� ¼ t½PKold�Þ ^ ðt0½CPK �6 t½CPK �Þ ^ ðt0½TC� < t½TC�Þ ) apply the resolution rule 1
to t�s all child tuples q 2 RC.

• In other case, set q½FK� to null for t�s all child tuple q 2 RC.
5. Entity-based MLS-RIS

Continuing the previous section, this section will give a formal semantic of entity-based MLS-
RIS, including the definition of referential integrity, a resolution rule for referential ambiguity,
and the semantics of extended referential actions.

As noted in Section 3, a child tuple in entity-based references is statically bound to its parent
tuple at the time of its creation, and the binding information is encoded in the referenced attribute
classification RCFK . All the following descriptions in this section are based on this simple concept.
The semantics of entity-based MLS-RIS is very similar to that of the standard SQL, except for the
effects of this concept.
5.1. Referential integrity in entity-based reference

The following integrity property defines the referential integrity between two multilevel rela-
tions, RP and RC, in entity-based references.

Referential integrity 3 (MLS-RIS referential integrity 2). For every tuple t 2 RC, where
t½FK� 6¼ null, there should exist a parent tuple q in RP.

1. t½FK� ¼ q½PK�,
2. t½CFK �P q½CPK �,
3. t½RCFK � ¼ q½CPK �.

The first two conditions are the same as in the referential integrity 2 for value-based reference.
The last condition requires that for a child tuple t, there must exist a parent tuple q with the
security class of its primary key same as the �referenced attribute class� of t.
5.2. Resolution rule for referential ambiguity in entity-based references

However, there may exist more than one parent tuple in RP satisfying the MLS-RIS referential
integrity rule 3. In this case, the following rule determines to which parent tuple the child tuple
should be bound.

Referential ambiguity resolution rule 2 (entity-based reference). For each tuple t 2 RC having
referential ambiguity in entity-base reference, its parent tuple is chosen as follows.

1. Among the tuples q 2 RP such that t½FK� ¼ q½PK�, t½CFK �P q½CPK � and t½RCFK � ¼ q½CPK �, choose
the one with the highest tuple classification.
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5.3. Referential actions of MLS-RIS in entity-based references

In this section, based on the referential integrity 3 and the ambiguity resolution rule 2, we
describe the semantics of update operations in child and parent relation. The update operations
are based on the classification of Table 1 in Section 2.

5.3.1. Updates in child relation RC
Like value-based reference, for every insertion and update operations in RC, whether a corre-

sponding parent tuple exists in RP should be checked.

MLS-RIS rule 9 (insertion (update) of tuple t in RC). For every tuple t being inserted (updated) in
RC, where t½FK� 6¼ null, there should exist a parent tuple satisfying the referential integrity 3. If the
matching tuple q does not exist, this operation fails.

If there exist more than one parent tuple satisfying referential integrity 3, the ambiguity is
resolved according to ambiguity resolution rule 2. Same as in value-based reference, the tuple
deletion in RC does not violate referential integrity in any case, therefore requiring no referential
integrity checking.

5.3.2. Insertion in parent relation RP
In the previous section, we showed that tuple insertion in RP under the semantics of value-based

reference, unlike the standard SQL, may change the referential relationship of some child tuples.
Similarly, under the semantics of entity-based reference, tuple insertion in RP may change the ref-
erential relationship of some child tuples, according to the referential ambiguity resolution rule 2.

MLS-RIS rule 10 (insertion of tuple t in RP)

• 9t0 2 RP, ðt0½PK� ¼ t½PK�Þ ^ ðt0½CPK � ¼ t½CPK �Þ ^ ðt0½TC�6 t½TC�Þ (that is, t0 is a lower level tuple
modeling the same entity with tuple t)) apply the resolution rule 2 to t�s all child tuples q 2 RC.

• In other case, no changes in the referential relationship between RP and RC.

Unlike value-based reference, even when a tuple (Pathfinder,C,Exploration,

C,Sun,C,C) is inserted in RP in Fig. 11, the tuple (Kennedy,U,Pathfinder,S,U,S) still
refers to the U -level Pathfinder.

5.3.3. Deletion in parent relation RP
In this section, we describe the semantics of tuple deletion in entity-based reference for each

foreign key declaration option, CASCADE, RESTRICT, and SET NULL.

MLS-RIS rule 11 (deletion of tuple t in RP (CASCADE)). All child tuples q satisfying the fol-
lowing conditions must be deleted from RC.

1. q½FK� ¼ t½PK�,
2. q½RCFK � ¼ t½CPK �.



Fig. 11. Tuple insertion in RP: changes in referential relationship. (a) RC and (b) RP.
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MLS-RIS rule 12 (deletion of tuple t in RP (RESTRICT)) When there exists any tuple q in RC

satisfying the following conditions, this operation fails.

1. q½FK� ¼ t½PK�,
2. q½RCFK � ¼ t½CPK �.

MLS-RIS rule 13 (deletion of tuple t in RP (SET NULL)). The foreign key of all the child tuples q
satisfying the following conditions must be set to null.

1. q½FK� ¼ t½PK�,
2. q½RCFK � ¼ t½CPK �.

5.3.4. Primary key updates in parent relation RP
As in the previous section, we denote the old and new values of the primary key of tuple t as

t½PKold� and t½PKnew�, respectively.

MLS-RIS rule 14 (primary key update of tuple t in RP (CASCADE)). The foreign key of all the
child tuples q satisfying the following conditions must be changed to t½PKnew�.

1. q½FK� ¼ t½PKold�,
2. q½RCFK � ¼ t½CPK �.

MLS-RIS rule 15 (primary key update of tuple t in RP (RESTRICT)). When there exists any tuple
q in RC, satisfying the following conditions, this operation fails.

1. t0½FK� ¼ t½PKold�,
2. t0½RCFK � ¼ t½RCPK �.

MLS-RIS rule 16 (primary key update of tuple t in RP (SET NULL)). The foreign key of all the
child tuples q satisfying the following conditions must be set to null.

1. t0½FK� ¼ t½PK�,
2. t0½RCFK � ¼ t½RCPK �.
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6. Related works

There have been a few works on referential integrity in multilevel relational data models, in-
cluding the SeaView model [9,21], Sandhu–Jajodia model [28] and the MLR model [29]. However,
these works were confined to the definition of the properties of referential integrity, without
paying any attention to the referential actions at run-time. In this section, we will summarize these
referential integrities and compare them with our MLS-RIS model.

The SeaView model originally proposed the following definition of referential integrity for
multilevel relations [9].

Referential integrity 4 (SeaView 1). Two relations, RP and RC, satisfy referential integrity if and
only if for each tuple t in RC where t½FK� 6¼ null, there exists tuple q in RP such that q½PK� ¼ t½FK�
and q½CPK � � t½CFK �.

Unfortunately, as pointed out in [11], this definition causes referential ambiguity. Thus, Lunt
et al. [21] changed the above referential integrity property to eliminate the possibility of referential
ambiguity, as follows.

Referential integrity 5 (SeaView 2). Two relations, RP and RC, satisfy referential integrity if and
only if for each tuple t in RC where t½FK� 6¼ null, there exists tuple q in RP such that q½PK� ¼ t½FK�
and q½CPK � ¼ t½CFK �.

Though this definition removes the problem of referential ambiguity, it incurs another problem;
that is, the modeling power of multilevel relations. For example, it is semantically correct for an S-
level child tuple to refer to a parent tuple with U -level primary key value, but the above definition
do not allow this kind reference.

Based on this recognition, Sandhu and Jajodia suggested another definition of referential in-
tegrity for a multilevel relational data model [28], which slightly changes the original referential
ambiguity of SeaView model, as follows.

Referential integrity 6 (Sandhu–Jajodia). Two relations, RP and RC, satisfy referential integrity if
and only if for each tuple t in RC where t½FK� 6¼ null, there exists tuple q in RP such that q½PK� ¼
t½FK�, q½CPK �6 t½CFK � and q½TC�6 t½CFK �.

This definition itself, however, does not overcome the limitation of the SeaView referential
integrity. For this definition of referential integrity to be valid, polyinstantiated tuples in multi-
level relations must not be allowed in the database design phase; when a multilevel relation is
created, the user should partition the domain of key attributes and assign each partition to a
specific security class. Therefore, the multilevel relational data model assumed in [28] does not
allow the relation such as RC in Fig. 6 where two or more tuples with different security classes have
the same key value. We think this is another type of restrictions on modeling power. Furthermore,
there still exists referential ambiguity due to polyinstantiated attributes [29].

Note that the definition of referential integrity 6 is same as that of our MLS-RIS. But, the
difference is in that we, instead of restricting the multilevel relation schema, provide the referential
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ambiguity resolution rules. Our approach can solve both referential ambiguity and modeling
power.

Recently, Sandhu et al. suggested the MLR data model [29] which overcomes the limitations of
the previous models. The MLR model is, as far as we know, the first work that comprehensively
approaches the issues of referential integrity in multilevel relational model, including operational
semantics of update operations. In this respect, this model is closest to our MLS-RIS. However,
our MLS-RIS model is different from the MLR model in the way to resolve referential ambiguity.
Specifically, our MLS-RIS model approaches this problem by introducing value-based and entity-
based reference, while the MLR model is based on the concept of data-based semantics and data-
borrow integrity.

In commercial side, Oracle is, as far as we know, the only product supporting multilevel re-
lational model [23,24]. But they do not consider the concept of polyinstantiation and thus do not
encounter the referential ambiguity issues. In this respect, they support very limited form of
multilevel relational model.

In summary, MLS-RIS, compared to the previous works on referential integrity in multi-
level relational models, has two unique characteristics. First, to address the problem of referen-
tial ambiguity, it proposes two kinds of reference types, value-based and entity-based
reference, and for each type of references, defines the referential integrity and introduces a res-
olution rule. Consequently, MLS-RIS allows users to flexibly take a policy about foreign key
declaration, without curtailing the modeling power of multilevel relations. Secondly, the MLS-
RIS originally specifies the semantics of referential actions of the SQL update operations, in-
cluding insert, delete, and update, so as to preserve the referential integrity for each type of
references.
7. Conclusion

We believe that it is not the right approach either to avoid referential ambiguity [21] or to
limit the modeling power of multilevel relational data models [28]. Moreover, in order to complete
the work on foreign key in multilevel relational data model, it is essential to define the semantics
of referential actions, as in the standard SQL. In this paper, considering these facts, we pro-
posed the MLS-RIS, an extended referential integrity semantic for a multilevel secure relational
data model. To deal with referential ambiguity resulting from polyinstantiation, MLS-RIS dis-
tinguishes two types of foreign key references, and for each type, defines referential integ-
rity and proposes a resolution rule. Based on this framework, MLS-RIS defines the semantics
of referential actions for various data manipulation operations, including insert, delete, and
update.

In the future, we will investigate the problem of defining the global semantics of referential
actions within MLS-RIS. In standard SQL, while the local behavior of a referential action, i.e. the
semantics confined to only the parent and child relation, is intuitive and easy to understand, it has
been an issue to determine the combined effects of a set of referential actions, i.e. their global
semantics [6,7,14,22]. Several characteristics of multilevel relational data models, including
polyinstantiation will complicate the situation.
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