
A VERSION MANAGEMENT FRAMEWORK

FOR RDF TRIPLE STORES

DONG-HYUK IM

School of Computer Science and Engineering

Seoul National University

Seoul, 151-742, Korea

dhim@idb.snu.ac.kr

SANG-WON LEE

School of Information and Communication Engineering

Sungkyunkwan University

Suwon, 440-746, Korea

wonlee@ece.skku.ac.kr

HYOUNG-JOO KIM

School of Computer Science and Engineering

Seoul National University

Seoul, 151-742, Korea

hjk@snu.ac.kr

Received 19 March 2011

Revised 17 May 2011

Accepted 6 September 2011

RDF is widely used as an ontology language for representing the metadata in Semantic Web,

knowledge management system and E-commerce. Since ontologies model the knowledge in a

particular domain, they may change over time. Furthermore, ontologies are usually developed

and controlled in a distributed and collaborative way. Thus, it is very important to be able to

manage multiple versions for RDF data. Earlier studies on RDF versions have focused on

providing the accesses to different versions (i.e. snapshots) and computing the differences

between those two versions. However, the existing approaches suffer from the space overhead

for large scale data, since all snapshots should be redundantly kept in a repository. Moreover, it

is very time consuming to compute the delta between two specific versions, which is very

common in RDF applications. In this paper, we propose a framework for RDF version man-

agement in relational databases. It stores the original version and the deltas between two

consecutive versions, thereby reducing the space requirement considerably. The other benefit

of our approach is appropriate for change queries. On the flip side, in order to answer a query

on a specific logical version, version should be constructed on the fly by applying the deltas

between the original version and the logical version. This can slow down query performance. In

order to overcome this, we propose a compression technique for deltas, called Aggregated

Delta, to create a logical version directly rather than executing the sequence of deltas. An

International Journal of Software Engineering

and Knowledge Engineering

Vol. 22, No. 1 (2012) 85�106

#.c World Scientific Publishing Company

DOI: 10.1142/S0218194012500040

85

http://dx.doi.org/10.1142/S0218194012500040

experimental study with real life RDF data sets shows our framework maintains multiple

versions efficiently.

Keywords: RDF; ontology; versioning system; ontology evolution; relational database.

1. Introduction

The Semantic Web has been garnering much recent attention since it allows soft-

ware agents to automatically handle the web resources marked with semantic

information. Among several alternative data models for the Semantic Web, ontol-

ogies are regarded to be most promising, because they can represent the concepts in

a particular domain and support the various relationships between the concepts.

Many websites populate their data using ontology languages such as RDF (Resource

Description Framework) [1] and OWL (Web Ontology Language) [2] format. Since

the RDF ontology language has a simple data model with well-defined, formal

semantics and provable inference, we focus on RDF models and RDF syntax on

behalf of ontology language in this paper. However, these ontologies model the real

world ever-changing over time [3, 4]. Thus, we need to manage and control ontology

changes (i.e. RDF deltas). Often ontologies are developed and managed in a dis-

tributed environment, where several users can create and develop the concepts in a

collaborative and synchronized manner. In such cases, we need to support ontology

versions [5]. For example, the community of life science has widely used Gene

Ontology [6] and NCI Cancer Ontology [7]. Each of these provides a controlled

vocabulary and its numerous members can update and revise its vocabulary. In

order to answer which concept has changed or to trace the history of concept

changes, it is necessary to keep all the previous versions, as well as the most recent

version. And, in order to synchronize two or more versions correctly, it is also

necessary to keep track of the changes between versions.

Recent work on the ontology versioning system, including SemVersion [8] and

PromptDiff [9], has focused on how to support accesses to various versions or how to

compute the differences between versions. However, they do not consider the space

overhead in supporting versions. That is, if we redundantly store every version in a

separate storage space, the space requirement would be enormous, especially in a

large scale ontology system. Furthermore, this approach also has a limitation, in

that it should recalculate the changes between versions whenever the users’ query

changes. The computation of the differences is the most important function of a

versioning framework. Based on these changes, we can figure out what have changed

and how they have changed. That is, the tracking of the changes provides the

necessary basis for further analysis in versioning systems [10]. Hence, there is a

strong need for delta-based version framework for RDF data that is space-efficient

to retain the deltas.

RCS (Revision Control System) [11] which is popular in software development

and open source projects, stores revisions in the form of deltas. RCS stores only edit

commands (i.e. insertion or deletion of line). In RCS, only the most recent revision is

86 D.-H. Im, S.-W. Lee & H.-J. Kim

stored intact and all edit instructions, which describe how to go to the previous

versions, are stored. RCS maintains a complete history of changes and resolves

conflicts in communication by managing the revisions. In addition, several works

have been done on handling XML version management, including [12�14]. These

works focus on managing deltas in a XML repository and minimizing the number of

pages that must be accessed to reconstruct a specific version of XML data. However,

RDF version model, which is a set of RDF triples, cannot be effectively managed by

RCS or XML version management system. In fact, the line-edit script in RCS and

the tree structure of XML document are not adequate to support the management of

RDF-based information (i.e. RDF data, RDF deltas, RDF storage, and RDF query

processing). Thus, in RDF versioning systems, it is necessary to manage multiple

versions using deltas which consider the structure and the semantic in the RDF

model. In this paper, we propose a version management framework for RDF data.

The contribution of this paper is as follows.

(1) We identify the problems of the existing version management that store all

snapshots in a triple store. One of the problems is the storage overhead for all

versions and another problem is the computation time for the delta between two

versions.

(2) We propose a version framework for RDF data model based on relational

databases. This scheme stores the original RDF version data and the deltas

between the two consecutive versions. We store the deltas separately in a delete

table and an insert table, and construct a logical version on the fly using a SQL

statement that joins the version from the original version and the relevant delta

tables. With this scheme, we can store the versions with minimum storage space

and support the multiple logical versions with nominal overhead of logical

version construction.

(3) We also introduce an optimized storage scheme for deltas, called Aggregated

Delta. By compressing the delta between two specific versions, which has more

than one in-between delta, and storing it in advance (i.e. a form of materi-

alization), we can avoid the applications of the in-between deltas in sequence. In

particular, it can eliminate a considerable amount of duplicates that exist in the

in-between deltas.

(4) We compare our scheme to existing ones in terms of space, version construction

time and query processing time. Experimental results show that our scheme is

very promising for RDF version management.

The remainder of this paper is organized as follows. Section 2 discusses related work.

Section 3 describes basic concepts, such as the data model and prior work related to

version management. In Sec. 4, we propose a framework for RDF version man-

agement based on relational database. Section 5 presents the experimental results

comparing our scheme to other approaches in terms of space and time overhead.

Finally, Sec. 6 concludes this paper.

A Version Management Framework for RDF Triple Stores 87

2. Related Work

This section reviews the existing works on evolution and version functionality in

ontology. We also review the versioning schemes in other application areas, such as

software version management systems, object-oriented databases, XML versioning

and data warehouses.

2.1. Evolution and versioning in ontology

Ontology evolution and versioning. Some studies on ontology evolution [15, 16]

describe the process of modifying the ontology whilst maintaining the consistency of

the ontology. However, while ontology evolution focuses on the validity of the

newest version, ontology versioning focuses on the validity, interoperability and

management of all versions [3]. Much work has been done in the area of ontology

versioning. OntoView [17] allows ontology engineers to compare versions of ontol-

ogy and to specify how the ontology concepts in two versions are related. Sem-

Version [8] is an RDF-based ontology versioning system that supports query

answering across multiple versions and the differences between arbitrary versions.

PromptDiff [9] compares different versions of ontologies using heuristics, and pro-

vides the user with their deltas. However, all these versioning systems store all

snapshots in a repository so that the deltas between versions must be recomputed on

the fly whenever the change information is necessary. On the other hand, Tzitzikas

et al. [18] focused on the storage space in RDF repositories and proposed storage

index, called POI (Partial Order Index), which provides an efficient RDF version

insertion algorithm in main memory. Since this storage scheme is based on partial

orders of triple sets, it is the most efficient in storage space when the new version is a

subset or superset of the existing versions. However, the new version cannot be a

subset or superset when it has both the added and removed triples from the existing

versions. In addition, in order to construct a specific version, it needs to traverse all

the ancestor elements of the given element in the POI. Thus, it is not scalable as the

data size increases. In contrast, we focus on a scalable data management in a

relational database.

2.2. Versioning in other application areas

Software versioning. CVS (Concurrent Versioning System) [19] and SCCS

(Source Code Control System) [20] allow collaborative development of software.

First, the developers can download the source code from the repository and make a

version copy (check-out). Then, they revise the version and create a new one.

Finally, they upload their source code to the repository (check-in). These systems

allow two or more developers to work on the same source code concurrently.

However, in contrast to our work, they store a complete copy of all the files.

Object-oriented database. Schema evolution and versioning in object-oriented

database systems, which emerged in the mid 80s, influence issues in ontology

88 D.-H. Im, S.-W. Lee & H.-J. Kim

evolution and versioning. In particular, semantics of change operation and set of

invariants proposed in [21] can also be applied to the change operation in ontology

evolution. Furthermore, version management for dynamic schema changes in

OODB applications (i.e. CAD/CAM) had been studied [22]. However, there is

significant difference between our framework and OODB from the view point of the

target. While version management in OODB focuses on the schema change oper-

ation, our work considers the triple change at instance level, as well as the triple

change at schema level.

XML versioning. A variety of version management schemes has been developed

for XML documents. UBCC (Usefulness-based copy control) [13] clusters the

document objects separately in order to avoid accessing unrelated objects at version

reconstruction. Marian et al. [14] proposes completed deltas for XML and an effi-

cient storage policy for the deltas. The work in [12] introduces an adaptive XML

version management scheme taking into account both performance (access time)

and storage space requirements. However, since these schemes mainly deal with

methods for managing the XML tree model (e.g. DOM structure), they cannot be

directly applied to RDF data (RDF graph).

Data warehousing. In data warehousing applications, a set of materialized views

should be kept consistently with the ever-changing underlying base tables. When

any base table changes, we need to maintain the views consistent in an incremental

way, rather than to rebuild the relevant views from scratch. This technique is called

incremental view maintenance. In order to incrementally maintain the views, we

first capture the changes in base tables, and calculate how those changes can be

propagated to the relevant views. According to the point of propagation time, there

are two approaches for incremental view maintenance. The first method is eager

maintenance [23]: that is, incremental update is performed as soon as the change

occurs. The second method is lazy maintenance [24], where view maintenance is

deferred to a later time. Unlike our work, these approaches can be classified as

updating methods rather than managing multiple versions.

3. Basic Concept

In this section, we present the basic RDF data model and the change operations

generally used in RDF. Also, we describe the version model of RDF data assumed in

this paper.

3.1. RDF data model

An RDF is modeled as a DAG (Directed Acyclic Graph) where each node and each

arc represents a resource and a relationship, respectively. An RDF graph is a set of

triples that represent binary relationships between two resources. In turn, each

triple consists of three parts: subject, property and object [1]. Resource (i.e. subject)

A Version Management Framework for RDF Triple Stores 89

is usually named by URIs (Uniform Resource Identifier), the property is a type of

resource and the object is the value of the resource property type for the specific

subject. The value of object could be either URIs or character strings called literals.

3.2. RDF change operation

We can model the changes in RDF data only with triple insertions and triple del-

etions, not triple updates [10]. A triple update could be modeled as a deletion of the

old triple, followed by an insertion of the new value of the triple (We only need to

consider insertion and deletion on a triple, and do not need to consider updates

explicitly.) In general, these operations are quite common in the RDF change

detection field [4, 8, 25].

Definition 1. An RDF version Vi consists of a set of RDF triples whose every triple

represents a statement of the form (subject, property, object), denoted by t 2 Vi.

Figure 1 illustrates three RDF versions and the corresponding set of triples of

each RDF version. We define the delta between two RDF versions as follows.

Definition 2. Given two RDF versions Vi and Viþ1, the delta between Vi and Viþ1,

�i;iþ1 is as follows. Let delete(t) denote a deleted triple t and insert(t) denote an

inserted triple t.

(1) �i;iþ1 ¼ ��
i;iþ1 [�þ

i;iþ1

(2) ��
i;iþ1 ¼ fdeleteðtÞ j t 2 Vi and t 62 Viþ1g

(3) �þ
i;iþ1 ¼ finsertðtÞ j t 2 Viþ1 and t 62 Vig

Example 1. The following delta examples are found in Fig. 1.

��
0;1 ¼ fdeleteðProfessor0 teacher of DatabaseÞg

�þ
0;1 ¼ finsertðProfessor0 teacher of Data MiningÞg

Fig. 1. A sequence of snapshots with RDF graphs and triples.

90 D.-H. Im, S.-W. Lee & H.-J. Kim

��
1;2 ¼ fdeleteðProfessor 0 teacher of Data MiningÞ;

deleteðProfessor 0 works for University 0Þg
�þ

1;2 ¼ finsertðProfessor 0 teacher of DatabaseÞ;
insertðProfessor 0 works for University1Þg

In RDF change operations, several works [4, 8] have been done on minimizing the

RDF deltas using the inference (i.e. computing the closure of RDF). In this paper,

we only consider the explicit differences between triples sets.

3.3. RDF version

An RDF versioning system should provide the mechanism to store various RDF

versions and to highlight the changes between them. In addition, it should allow the

user to access different versions of the RDF ontology easily [5]. Most existing version

control systems use the tree model.

Definition 3. A RDF version tree is modeled as a tree T ¼ ðV ;EÞ, where each

node in V represents a version and each edge in E is a set of RDF change operations

(deltas) from the source node to the destination node.

The \ancestor-descendant" relationship in a version tree represents a \derived-

from" relationship. In a tree version model, a version can be derived from only one

parent version, and a parent version cannot be further changed if at least one child

version is derived from it. Figure 2 shows an example of a version tree in RCS [11].

A trunk in Fig. 2 is the main body of the version tree and a branch is created to isolate

large changes onto a separate line of version tree. However, the main goal of the

ontology versioning system in a particular domain is to support the collaborative

creation of ontologies, and therefore, in most cases, there are few branches. For

example, in SemVersion for MarcOnt [8], any community member can suggest

changes and the ontology builder shouldmanage versions of suggestions and generate

snapshots of the main ontology with suggestions applied. In this paper, we assume a

similar approach. That is, although any user can change the ontology version, only

the ontology builder can manage the changes and release a new version.

In most existing RDF versioning systems, each version is assumed to have its

own separate storage. This All Snapshots approach enables us to access each version

Fig. 2. RCS version tree.

A Version Management Framework for RDF Triple Stores 91

quickly. However, it has a serious drawback that it requires an excessive storage

space, as the number of versions increases. Generally, two consecutive versions of a

document are not significantly different. This is also applicable to RDF version

management (the result reported in [10] shows that 97.3% of the entire data in each

version remains unchanged). Thus, with the All Snapshots approach, more than

90 percent of the entire storage is used to store redundant data. Obviously, the All

Snapshots approach is very inefficient in RDF versions. For example, consider the

three versions in Fig. 1. If we store each of three versions separately in independent

storage, triples (Professor0 name John) and (Professor0 age 36) are redundantly

stored in all snapshot of each version. Thus, this approach is inadequate for large

scale RDF data that change frequently. The history of changes provides the users

with the change information (i.e. version id, the modification time) and makes

them easier to trace the version. This lineage trace of versions is one of the most

common functionalities in RDF data processing. However, with the All Snapshots

approach, the tracking of history change is also very inefficient, because we should

calculate the change between versions whenever users ask the difference. Therefore,

we propose a delta-based version storage scheme on top of a relational database to

overcome two problems in the All Snapshots, space overhead and change detection.

Our approach stores only an original version and the sequence of deltas between

versions, instead of the snapshots of all versions.

4. Framework for RDF Version Management

In this section, we present our framework for managing the RDF version. We do not

propose a RDF versioning system, but rather the basis for storing RDF versions in

relational databases.

4.1. Delta-based version management

To solve the excessive storage space requirements in the All Snapshots approach, we

suggest delta-based version management as a possible alternative for storing the

versions. For example, traditional document version management schemes, such as

RCS, SCCS and XML version management system [13, 14], stores the most recent

version while other older versions are stored as deltas (i.e. reverse editing scripts). In

these schemes, the particular version should be constructed on the fly by applying

the reverse editing scripts. However, these techniques are not efficient in handling

RDF versions because they do not fully leverage the structure and the semantics

contained in RDF data. In XML version management system, edit-scripts deal with

changes of nodes and subtrees in XML tree model. On the other hand, RDF data

consists of a set of triples which are the smallest manageable entities in RDF

repository [10]. Thus, it is necessary to keep stored only the deltas which consider

the RDF data.

In this paper, we use a triple store method for an original version and deltas. It

stores triples in a single table with three columns: the subject, the property and the

92 D.-H. Im, S.-W. Lee & H.-J. Kim

object [26, 27]. In general, we term this approach the triple store. Although there are

alternatives for storing RDF data in relational databases, such as vertical parti-

tioning [28] and property table [27], the goal of our work is to propose a framework

for RDF versions. Therefore, we assume the simple triple store scheme for RDF

version management. Of course, we believe that it is necessary to investigate other

storage schemes for managing RDF versions efficiently. Fortunately, since the unit

of change operation is a triple, this triple-based storage scheme offers the foundation

that makes it easy to construct a new version from a delta. This means that we

create a version using the relational-algebra operators such as union and set-

difference. Figure 3 shows the result of delta-based storage scheme that is applied to

the RDF versions in Fig. 1. We maintain the delta of each version separately in two

tables, a delete table and an insert table.

Definition 4. Given the original version Vi, let Viþ1 be the logical version and

�i;iþ1 be the set of change operations between Vi and Viþ1. Then Viþ1 is represented

as follows.

Viþ1 ¼ �i;iþ1ðViÞ
By Definition 4, we can easily construct the logical version V1 in Fig. 3. The

following SQL statement creates the logical version V1 from the relational database:

ðððselect � from V0Þ minus ðselect � from Delete V0 V1ÞÞ union all ðselect � from

Insert V0 V1ÞÞ
If there is a sequence of versions, we can obtain each logical version by executing its

Sequential Delta, defined as follows.

Definition 5. A sequence �i;iþ1;�iþ1;iþ2; . . . ;�j�1;j of change operations is

Sequential Delta if there is the original version Vi and the logical version Vj such

that �i;iþ1;�iþ1;iþ2; . . . ;�j�1;j is the set of change operations that transforms Vi to

Vj. Then we have:

Viþ1 ¼ �i;iþ1ðViÞ; Viþ2 ¼ �iþ1;iþ2ðViþ1Þ; . . . ; Vj ¼ �j�1;jðVj�1Þ:

4.2. Aggregated delta

In order to access a specific logical version, we must construct the logical version on

the fly by applying the deltas between the original version and the logical version.

Fig. 3. Delta-based RDF version storage.

A Version Management Framework for RDF Triple Stores 93

The problem with this Sequential Delta approach is that as the number of deltas

between the original version and the logical version increases, the version con-

struction time also increases, because we need to use the set operators such as union

and minus in SQL statements in proportion to the number of deltas. Moreover,

consider the versions in Fig. 4. If we make a logical version V2 by applying the deltas

�0;1, �1;2 to the original version V0, we insert the triple (Professor0 teacherOf Data

Mining) in V1 and delete it from V2. Likewise, we delete the triple (Professor0

teacherOf Database) from V1 and insert it in V2. These changes are unnecessary to

construct the logical version V2 from the original version V0. This unnecessary

change is one of the major factors that causes performance overhead and the space

requirement.

Based on this observation, we propose an optimized scheme, called Aggregated

Delta, which can create a logical version directly by storing all of the possible deltas

in advance, instead of executing all the in-between deltas in sequence.

While the Sequential Delta approach takes a kind of lazy maintenance in com-

puting the transitive closure of the \derived-from" relation on the fly, the Aggre-

gated Delta approach uses a form of eager maintenance. As some RDF management

systems such as Sesame [26, 29] pre-compute the complete closure of the RDF data

and then store them in the same repository, we compute and store the closure of all

the \derived-from" relations in advance when new RDF version is added. Moreover,

in the Aggregated Delta, we can reduce the number of triples using a compression

algorithm that removes the duplicates. This compression allows us to avoid acces-

sing unrelated triples at version reconstruction and to save storage space. The

Aggregated Delta can be formally defined as follows.

Definition 6. Given the Sequential Delta �i;iþ1;�iþ1;iþ2; . . . ;�j�1;j between Vi

and Vj, an Aggregated Delta is as follows. Let Ct be the set of change operations with

overlapped triples in both delta tables.

Xj�1

n¼i

�n;nþ1 ¼
Xj�1

n¼i

��
n;nþ1 [

Xj�1

n¼i

�þ
n;nþ1; ði < jÞ

�gði;jÞ ¼
Xj�1

n¼i

�n;nþ1 � Ct:

Consider the duplicate triples (Professor0 teacherOf Data Mining) and (Pro-

fessor0 teacherOf Database) between two aggregated delta tables, as shown in

Fig. 4. The duplicate triples in aggregated tables.

94 D.-H. Im, S.-W. Lee & H.-J. Kim

Fig. 4. Aggregated Delta can eliminate the duplicates using the compression

algorithm. The pseudocode of the compression algorithm is given in Fig. 5. First, it

sorts each aggregated table in lexicographic order. Next, it gets the pointers that

point initially to the first triple of the respective table. Then, it compares two triples

to which the pointers point. If two triples have the same value, each of the triples is

deleted from its table and the pointer in each table is set to the next triple. If a triple

in one aggregated table is less than a triple in the other aggregated table in lex-

icographic order, the pointer in the first table is set to the next triple. This process is

repeated until the pointer in either table reaches the end of the table just like the

merge-sort algorithm. The compression algorithm would be more effective when one

triple is repetitively inserted and deleted along the version path. We can observe the

frequent in-and-out of the same triple along the versions in many RDF data sets.

For example, FOAF (Friend of a Friend) project supports distributed descriptions

of people and their relationships. If we model people in FOAF, specific properties

such as name are invariant. Conversely, we can change interest or currentProject

frequently. Thus, the compression algorithm can be useful in the version manage-

ment system.

Example 2. We can obtain the result set of Aggregated Delta �gð0;2Þ in Fig. 1.

�gð0;2Þ ¼ fdelete ðProfessor 0 worksFor University 0Þ;
insert ðProfessor 0 worksFor University 1Þg

We can access the logical version Vj directly from the original version Vi using the

following Aggregated Delta.

Vj ¼ �gði;jÞðViÞ
The properties of Aggregated Deltas are described.

— Suppose there are n distinct versions in a trunk. Then the number of the deltas is

n� 1 and Aggregated Delta increases the size of ðn� 2Þðn� 1Þ=2 deltas for

1: Input : insert_table Ti and delete_table Td in aggregated delta
2: Output : insert_table Ti and delete_table Td in compressed delta
3: Initialize: Sorting each table by subject, property, object
4: Set cursor1 to beginning of table Ti , Set cursor2 to beginning of table Td

5: DO {
6: if (cursor1.triple = cursor2.triple)
7: delete the triple in each table
8: cursor1++; cursor2++;
9: else if (cursor1.triple < cursor2.triple)
10: cursor1++;
11: else if (cursor1.triple > cursor2.triple)
12: cursor2++;
13: } While (cursor1 ≠ end of Ti and cursor2 ≠ end of Td)

Fig. 5. Compression algorithm.

A Version Management Framework for RDF Triple Stores 95

additional storage overhead. However, we can minimize the space requirement

with the compression algorithm. Obviously, this size is significantly smaller than

storing all versions.

— If there are no overlapping triples, the size of Aggregated Delta is always the

same as the sum of Sequential Delta (Worst case). However, if Ct exists in both

tables, the property described above is satisfied, because duplicates are

removed:

j�gði;jÞj �
Xj�1

n¼i

�n;nþ1

The principle behind the compression algorithm in the Aggregated Delta is

similar to aggregation scheme in XML version management [14] and refreshing

materialized view in data warehouses [24]. However, there are critical differences

between them. First, the aggregation scheme for XML deltas [14] aggregates the

consecutive deltas for a document in the period of time (i.e. weekly versions,

monthly versions). Thus, this approach requires less space than delta-based

approach (note that it reduces the number of the consecutive deltas). In contrast,

our proposed method aggregates all possible deltas between versions that have the

\derived-from" relationship and stores them (note that this scheme increases the

number of deltas and requires more space than delta-based version management).

Moreover, unlike [14] which is based on XML trees, we exploit the structural and

the semantic feature of the RDF (i.e. DAG model, triple-based diff algorithm, RDF

triple repository). Second, in the context of data warehouses, Zhou et al. propose a

compression scheme, called the condense operator [24], it also skips unnecessary

intermediate changes for lazy view maintenance. However, they applied this oper-

ator to the tuples with the same key value in a single table for stream deltas. In

contrast, our compression approach removes the triples whose subject, property and

object can match those in another delta table. That is, our compression scheme is

designed to reflect the semantics of the RDF change model (i.e. triple-based change

operation).

4.3. Version management policy

In version management, we need to store the derived-from relationships between

versions, as well as each version and the corresponding deltas. From these re-

lationships, we know which deltas should be applied to the original version when we

construct a logical version. We store the relationship in the version tree in separate

tables. The following shows the relational table structure for a version tree.

Version Tree ðVersionID; ParentID; Path; DeltaÞ
StoringInfo ðVersionID; isStoredÞ

Version tree in Definition 3 can be mapped into Version Tree table, which rep-

resents the derived-from relationship containing the transitive closure. StoringInfo

96 D.-H. Im, S.-W. Lee & H.-J. Kim

table represents the version we store as a snapshot. With regard to how to store

the original version, two approaches exist: the first version and the last version.

Version control systems generally store the last version [14, 20]. In this paper, we

also choose to store the last version as the original version. In this case, we should

use a backward delta, which enables us to go to the previous version. We can easily

compute a backward delta, applying the delta in reverse. The tree model for ver-

sions would increase the space requirement, because there can be many leaves in

the tree. However, since our version tree is mainly based on the trunk (with only a

few branches) as described in Sec. 3.3, the space overhead would not be so onerous.

When a new version is created, we maintain the versions using the following

steps (we assume that only the ontology builder releases the new version. Thus, a

new version is created only by a set of changes, rather than every data change):

(1) When a new version is inserted, we compute the deltas between its parent

version and the new version itself, then store the deltas D in two delta tables.

(2) Drop the previous original version (the new snapshot becomes the original

version).

(3) Merge the backward deltas D with all Aggregated Delta in previous version

respectively and create the delta table for new Aggregated Delta using our

compression.

(4) Update the value in the \isStored" column in StoringInfo table.

Example 3. Suppose we insert the new version Vnew in the version tree as shown in

Fig. 6. First, �new, the deltas between V3:0 and Vnew are merged into all deltas �a

and �a;c in V3:0 respectively. Note that we can access version V1:0 applying the delta

Fig. 6. The version tree and the corresponding relational schema.

A Version Management Framework for RDF Triple Stores 97

�new þ�a;c. Then, \isStored" of V3:0 is changed from true to false and \isStored" of

Vnew is true. If the approach to store the first version as an original version is taken,

it would be time consuming to compute the latest version from the first version,

especially when recent versions are accessed more frequently than old versions.

Thus, it is more efficient to store the last version and compute Aggregated Delta

incrementally.

5. Experimental Results

In this section, we compare the performance of the three methods in RDF version

management: the All Snapshots approach (used in SemVersion [8]), the Sequential

Delta (based on the change detection between consecutive versions [4]) and our

Aggregated Delta. The All Snapshots and the Sequential Delta approaches have

been very popular in version management area, and our work is mainly motivated

by their shortcomings. Thus, we include these techniques in our experiments. In

particular, these three approaches are evaluated in terms of storage overhead,

logical version construction time, computation time, compression ratio, and query

processing time.

5.1. Experimental setting and test data set

All experiments were performed on Intel Xeon CPU 3GHz PC with 16GB memory.

We implemented all the version schemes using Java with the RDF parser Rio,a and

used Oracle 11g Enterprise edition as the relational database to store versions. We

store each RDF data set in a corresponding triple table, and create a Bþ tree index

on each table with the three columns of triple as its key. For the experiment, we use

the dataset from Uniprot Taxonomy RDF.b Uniprot is the integrated database

that provides the life science community with the information about proteins. Every

two weeks a new version of the Uniprot data set is published; each version is

maintained by the ontology builder, as explained in Sec. 3.3. Thus, all versions

constitute a linear version model without branch. Table 1 summarizes the charac-

teristics of our real data set.

Table 1. Uniprot Taxonomy RDF.

Version U1 U2 U3 U4 U5 U6 U7 U8 U9

ID 13.6 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7

of

triples 2829630 2862424 2923007 2969302 2989544 3019495 3019511 3084444 3113008

Size

(MB) 196 198 203 206 207 209 209 214 216

aAvailable at http://www.openrdf.org.
bAvailable at http://dev.isb-sib.ch/projects/uniprot-rdf/.

98 D.-H. Im, S.-W. Lee & H.-J. Kim

5.2. Storage space overhead

Figure 7 shows the capacity of the storage space required in each RDF version

scheme. The storage space of each scheme includes the total size of disk space in all

the versions and, if any, all the deltas in the relational database. In Sequential Delta

and Aggregated Delta, we store version U9 (last version) as the original version.

With the All Snapshots approach, as shown in Fig. 7, the storage space increases

linearly as the number of versions increases, since this scheme stores all version

snapshots in a repository. In contrast, the Sequential Delta approach requires less

space than the All Snapshots, because it stored only an original version and the

deltas. However, the problem with this approach is that the construction time of

versions is much slower than the others. This will be discussed in the next section.

On the other hand, the Aggregated Delta requires more space than the Sequential

Delta. This is because the Aggregated Delta increases the size of ðn� 1Þðn� 2Þ=2
deltas for additional storage overhead. However, its total storage requirement is

still quite small (30%) compared to the All Snapshots. If the number of version

increases dramatically, it can be useful to store intermediate versions physically.

These intermediate versions enable us to restart to compute and store the additional

deltas. Obviously, keeping several intermediate versions physically are also smaller

than storing all versions physically. In addition, the Aggregated Delta has reduced

the size of aggregated deltas using compression technique. The effects of com-

pression technique will be analyzed in Sec. 5.4.

Fig. 7. Storage space for version management.

A Version Management Framework for RDF Triple Stores 99

5.3. Computation time and version construction time

In order to assess the overhead of the Aggregated Delta, we measured the time to

compute the deltas. Figure 8 shows the computation time for the Sequential Delta

and the Aggregated Delta, where the x-axis represents the version to be inserted.

Obviously, the Sequential Delta is quite faster than the Aggregated Delta and this

performance gap between the two methods is widening as the number of versions

increases. This is because the Sequential Delta computes the difference between the

current version and the new version. On the other hand, the Aggregated Delta needs

ðn� 1Þ deltas when the new version is inserted. However, we need not compute the

differences again between all versions. As explained in Sec. 4.3, the Aggregated

Delta is computed by adding the new delta to each previous delta and applying the

compression method to each aggregated delta. Thus, the performance ratios

between the Aggregated Delta and the Sequential Delta are usually less than two.

Next, Fig. 9 shows the construction time of versions in the Sequential Delta and

Aggregated Delta. The y-axis represents the construction time of versions in

seconds, and the x-axis denotes the specific versions to be constructed. In order to

generate versions which are not stored physically, we need to construct logical

versions on the fly from the original version (i.e. U9 in this example). As shown in

Fig. 9, while the construction time in the Sequential Delta is proportional to the

number of versions we need to trace backwards, the Aggregated Delta can compute

any specific version almost at a constant time. This is because the Aggregated Delta

creates any version just by applying only a corresponding aggregated delta to the

original version U9. Thus, under the Aggregate Delta, we can access any version in a

Fig. 8. Computation time for Aggregated Delta.

100 D.-H. Im, S.-W. Lee & H.-J. Kim

constant time by reducing the construction time that is unavoidable in the

Sequential Delta.

Since the relevant version need to be constructed on the fly for a given query and

this version construction occurs very frequently, the version construction per-

formance is very critical. In this respect, the benefits of our method to efficiently

construct version far outweigh its marginal overhead in computation time.

5.4. Compression performance

Figure 10 shows the effect of compression technique in the Aggregated Delta

approach, where the x-axis represents each pair of versions for Aggregated Delta

and the y-axis represents the number of triples in deltas. From Fig. 10, we know that

a number of triples being removed by our compression technique tends to increase as

the number of in-between deltas between two versions increases. Specifically, more

than half of all the triples are deleted due to the compression in the last Aggregated

Delta. We can infer that a considerable portion of triples changes frequently during

the RDF evolution. In fact, the Uniprot has been developed to provide the biologist

with a controlled vocabulary. For this reason, any scientific community member can

change and review a specific concept in Uniprot until consensus is reached. This

frequent change between version characteristic can be also found in many other

ontology domains that are developed to share concepts. Consequently, our com-

pression technique suggested in this paper would be generically applicable to any

RDF data version scheme.

Fig. 9. Version construction time.

A Version Management Framework for RDF Triple Stores 101

5.5. Query performance

Finally, we evaluate the query performance of various version storage schemes using

the queries in Table 2. The queries in RDF version management can be broadly

classified as two types: one type of query accesses a specific version and the other

type traces the changes between versions. The queries used in the experiment are

classified and described in Table 2. Q1 is a simple query to find the subclasses of a

specific class. Each of Q2, Q3 and Q4 involves a self-join operation (i.e. Subject-

Subject join, Subject-Object join, Object-Object join). Q2 is to find which other

properties are related for all subjects and calculate the frequency of these properties.

Q3 is to calculate the path expression that can be connected with a subject-object

join (i.e. transitive closure). Q4 is to find the siblings in the hierarchy. Each of Q5

and Q7 is to calculate the changes between two versions and analyze the difference.

Fig. 10. The effect of compression.

Table 2. Sample queries.

Type Query Characteristics Description

Single Version Q1 Simple List the subclasses of a specific class

Q2 Sub-Sub Join Find what other properties are defined for these

subjects and calculate the frequency

Q3 Sub-Obj Join List the properties that can be connected

Q4 Obj-Obj Join List the classes that have a common parent

Cross Version Q5 Change Analysis What is the most changed property? (hot property)

Q6 History Tracking specific changes during evolution (lineage)

Q7 Change Detection Display the differences between the first and the last

version

102 D.-H. Im, S.-W. Lee & H.-J. Kim

In particular, Q6 is known to be used in data warehousing as the lineage trace of a

data item [30]. It is possible to trace the data back to the source data from which it is

derived with this query, and thus to find how the data has evolved. Thus, Q5, Q6

and Q7 are commonly used in managing versions.

In Q1, Q2, Q3 and Q4, we use version U1 as the version that we would access,

because we store the last version, U9, as described in Sec. 4.3. That is, we consider

the worst case in these queries. Each query was represented as an SQL statement, as

exemplified for Table 3 using Q2, and was run in a commercial RDBMS. In both the

Sequential Delta approach and the Aggregated Delta approach, we use the WITH

clause when executing the self-join operation for efficiency. u1, u2; . . . ;u8 and u9 are

Table 3. SQL representation of Q2.

Approach SQL expression (Q2)

All Snapshot Select t.pred, count(*) from u1 s, u1 t where s.subj¼ t.subj and group by t.pred

Sequential Delta with subquery as ((((((((((((select * from u9)

minus (select * from delete u9 u8) union all (select * from insert u9 u8))

. . .
minus (select * from delete u2 u1) union all (select * from insert u2 u1))

select t.pred, count(*) from subquery s, subquery t where s.subj¼ t.subj group

by t.pred

Aggregated Delta with subquery as ((select * from u9)

minus (select * from delete u9 u1) union all (select * from insert u9 u1))

select t.pred, count(*) from subguery s, subquery t where s.subj¼ t.subj group

by t.pred

Fig. 11. Performance analysis for sample queries.

A Version Management Framework for RDF Triple Stores 103

the tables that store the corresponding versions. The delete u9 u8 table stores the

deleted triples between U9 and U8. Likewise, the insert u9 u8 table stores the

inserted triples between U9 and U8.

Figure 11 shows the response time of the queries in Table 2. The All Snapshot

approach is superior in queries Q1, Q2, Q3 and Q4, all of which require the com-

putation in a specific version, since the All Snapshots approach stores all versions.

Conversely, with the delta-based approaches, we first need to construct the version

U1 on the fly and then query against it. In Q5, Q6 and Q7, however, the All

Snapshots approach performs worst. While the All Snapshots approach imposes a

query after computing the differences, the delta-based approaches can query the

changes immediately from the delta tables that are already computed and materi-

alized. The Aggregated Delta approach outperforms the Sequential Delta approach

in all cases. The queries for changes are of greater importance in versioning systems,

because these provide change information. In general, users access a specific version

after determining what happened in each version.

Moreover, if we query the last version, the performance for queries Q1, Q2, Q3

and Q4 in the Aggregated Delta approach is the same as in the All Snapshots

approach.

6. Conclusion and Discussions

In this paper, we proposed a framework for version management on RDF triple

stores. It stores one snapshot of the latest version and the deltas between the ver-

sions. With this delta-based approach, we can considerably reduce the storage space

for versions than the All Snapshots approach. In addition, we proposed the

Aggregated Delta approach that can construct the versions by using a compression

algorithm. Since the proposed scheme can avoid unnecessary computation for

redundant data during version construction, the Aggregated Delta is superior to the

Sequential Delta approach in terms of version construction time. Although the

proposed method requires computing and storing the additional deltas, we proved

that the Aggregated Delta is a flexible method which can reduce the storage space

for version and create a version efficiently.

In addition, the Aggregated Delta can process various types of queries efficiently.

Although the All Snapshot shows the best performance with some queries, it per-

forms worst for Q5, Q6 and Q7. Note that these queries are widely used in managing

versions. On the other hand, the Aggregated Delta outperforms the Sequential

Delta in most cases. In particular, the Aggregated Delta shows an outstanding

performance for queries for Q5, Q6 and Q7. As a result, our approach can be

sufficiently used in implementing RDF versioning system based on relational

database system.

In future, the scheme will be extended to be able to handle the OWLmodel which

has a more powerful and more complicated structure and inference rules. And as we

mentioned in Sec. 5.2, it may be useful to store intermediate versions physically

104 D.-H. Im, S.-W. Lee & H.-J. Kim

when the number of versions is increased dramatically. Thus, we need to investigate

which version we should keep physically and how many intermediate versions we

need. In this paper, a simple triple store scheme for the RDF data was assumed.

However, there are a number of different physical organization techniques for RDF

data [26�28]. Alternative storage schemes for RDF data would be advantageous to

the performance of version control. Thus, we need to further investigate query

optimization techniques in constructing the versions, such as indexing technique.

Acknowledgment

This research was supported by MIKE, Korea under ITRC NIPA-2011-(C1090-

1121-0008) and the Brain Korea 21 Project.

References

1. G. Klyne and J. J. Carroll, Resource Description Framework (RDF): Concepts and
abstract syntax, W3C Recommendation, http://www.w3.org/TR/rdf-concepts.

2. D. L. McGuinness and F. V. Harmelen, OWL Web Ontology Language overview, W3C
proposed recommendation, 2003.

3. G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis and G. Antoniou, Ontology
change: Classification and survey, The Knowledge Engineering Review 23(2) (2008)
117�152.

4. D. Zeginiz, Y. Tzitikas and V. Christophides, On the foundations of computing deltas
between RDF models, in Proc. 6th International Semantic Web Conference, 2007.

5. N. F. Noy and M. A. Musen, Ontology versioning in an ontology management frame-
work, IEEE Intelligent Systems 19(4) (2004) 6�13.

6. M. Ashburner et al., Gene ontology: Tool for the unification of biology, Nature Genetics
25 (2000) 25�29.

7. J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler and B. Parsia, The National
Institute’s thesaurus and ontology, Journal of Web Semantics 1 (2003) 75�80.

8. M. Volkel and T. Groza, SemVersion: An RDF-based ontology versioning system, in
Proc. 5th IADIS International Conference on WWW/Internet, 2006.

9. N. F. Noy and M. A. Musen, PromptDiff: A fixed-point algorithm for comparing
ontology versions, in Proc. 18th International Conference on Artificial Intelligence,
2002.

10. D. Ognyanov and A. Kiryakov, Tracking changes in RDF(S) repositories, in Proc. 13th
International Conference on Knowledge Engineering and Knowledge Management, 2002.

11. W. F. Tichy, RCS ��� a system for version control, Software: Practice & Experience
15(7) (1985) 637�654.

12. B. Benatallah, M. Mahdavi, P. Nguyen, Q. Z. Sheng, L. Port and B. McIver,
An adaptive document version management scheme, in Proc. of 15th International
Conference on Advanced Information Systems Engineering, 2003.

13. S. Chien, V. J. Tsotras and C. Zaniolo, Version management of XML documents, in
Proc. of 3rd International Workshop WebDB, 2000.

14. A. Marian, S. Abiteboul, G. Cobena and L. Mignet, Change-centric management of
versions in an XML warehouse, in Proc. 27th International Conference on Very Large
Data Bases, 2001.

A Version Management Framework for RDF Triple Stores 105

15. N. F. Noy, S. Kunnatur, M. Klein and M. A. Musen, Tracking changes during ontology
evolution, in Proc. 3rd International Semantic Web Conference, 2004.

16. P. Plessers, O. Troyer and S. Castelyan, Understanding ontology evolution: A change
detection approach, Journal of Web Semantics 5(1) (2007) 39�49.

17. M. Klein, A. Kiryakov, D. Ognyanov and D. Fensel, Ontology versioning and change
detection on the web, in Proc. of 13th International Conference on Knowledge Engin-
eering and Knowledge Management, 2002.

18. Y. Tzitzikas, Y. Theoharis and D. Andreou, On storage policies for Semantic web
repositories that support version, in Proc. of 5th European Semantic Web Conference,
2008.

19. Concurrent Versions System, Free Software Foundation, http://nongnu.org/cvs/, 2006.
20. M. J. Rochkind, The source code control system, IEEE Trans. Software Engineering

1(4) (1975) 364�370.
21. J. Banerjee, W. Kim, H. J. Kim and H. F. Korth, Semantics and implementation of

schema evolution in object-oriented database, in Proc. of ACM SIGMOD Conference,
1987.

22. W. Kim and H. T. Chou, Versions of schema for object-oriented databases, in Proc. 14th
International Conference on Very Large Data Bases, 1988.

23. Y. Zhuge, H. Garcia-Molina, J. Hammer and J. Widom, View maintenance in a ware-
housing environment, in Proc. of ACM SIGMOD Conference, 1995.

24. J. Zhou, P. Larson and H. G. Elmongui, Lazy maintenance of materialized views,
in Proc. 33rd International Conference on Very Large Data Bases, 2007.

25. T. Berners-Lee and D. Connolly, Delta: An ontology for the distribution of differences
between RDF graphs, http://www.w3.org/DesignIssues/Diff, 2004.

26. J. Broekstra, A. Kampman and F. V. Harmelen, Sesame: A generic architecture for
storing and querying RDF and RDF schema, in Proc. 1st International Semantic Web
Conference, 2002.

27. K. Wilkinson et al., Efficient RDF storage and retrieval in Jena2, in Proc. 1st Workshop
on Semantic Web and Databases, 2003.

28. D. J. Abadi, A. Marcus, S. R. Madden and K. Hollenbach, Scalable semantic web data
management using vertical partitioning, in Proc. 33rd International Conference on Very
Large Data Bases, 2007.

29. J. Broekstra and A. Kampman, Inferencing and truth maintenance in RDF schema, in
Proc. Workshop on Practical and Scalable Semantic System, 2003.

30. Y. Cui, J. Widom and J. Wiener, Tracing the lineage of view data in a warehousing
environment, ACM Trans. Database Systems 25(2) (2000) 179�227.

106 D.-H. Im, S.-W. Lee & H.-J. Kim

	A VERSION MANAGEMENT FRAMEWORK FOR RDF TRIPLE STORES
	1. Introduction
	2. Related Work
	2.1. Evolution and versioning in ontology
	2.2. Versioning in other application areas

	3. Basic Concept
	3.1. RDF data model
	3.2. RDF change operation
	3.3. RDF version

	4. Framework for RDF Version Management
	4.1. Delta-based version management
	4.2. Aggregated delta
	4.3. Version management policy

	5. Experimental Results
	5.1. Experimental setting and test data set
	5.2. Storage space overhead
	5.3. Computation time and version construction time
	5.4. Compression performance
	5.5. Query performance

	6. Conclusion and Discussions
	Acknowledgment
	References

