
RP-Filter: A Path-Based Triple Filtering

Method for Efficient SPARQL Query Processing

Kisung Kim1, Bongki Moon2, and Hyoung-Joo Kim1

1 Seoul National University, Seoul, Korea
kskim@idb.snu.ac.kr, hjk@snu.ac.kr
2 University of Arizona, Tucson, U.S.A

bkmoon@cs.arizona.edu

Abstract. With the rapid increase of RDF data, the SPARQL query
processing has received much attention. Currently, most RDF databases
store RDF data in a relational table called triple table and carry out
several join operations on the triple tables for SPARQL query process-
ing. However, the execution plans with many joins might be inefficient
due to a large amount of intermediate data being passed between join
operations. In this paper, we propose a triple filtering method called
RP-Filter to reduce the amount of intermediate data. RP-Filter exploits
the path information in the query graphs and filters the triples which
would not be included in final results in advance of joins. We also sug-
gest an efficient relational operator RFLT which filters triples by means
of RP-Filter. Experimental results on synthetic and real-life RDF data
show that RP-Filter can reduce the intermediate results effectively and
accelerate the SPARQL query processing.

Keywords: RDF store, SPARQL query processing, triple filtering, in-
termediate results.

1 Introduction

RDF(Resource Description Framework)[1] is the standard data model recom-
mended by W3C for the sake of describing data in the semantic web. RDF data
is a set of triples(subject, predicate, object) which describe the relationship be-
tween two resources(subject and object). The RDF data forms a graph called
RDF graph which consists of the resources and their relationships. SPARQL[2] is
the standard query language for RDF data and expresses the user’s data needs
as graph patterns. The SPARQL query processing can be viewed as the sub-
graph pattern matching problem for the RDF graph[3]. RDF features flexibility
with little schema restriction and expressive power which can represent graph-
structured data. By virtue of these features, RDF is widely used in many areas.
For example, RDF has been used for the purpose of integrating heterogeneous
databases or publishing data on the web in many areas, e.g. life science[4,5],
open government[6], social networking[7] and multimedia[8].

With the fast growth of RDF data, there has been a lot of research on storing
and querying of RDF data[9,10,11,12]. Most state-of-the-art RDF engines employ

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 33–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 K. Kim, B. Moon, and H.-J. Kim

the relational model to store and manipulate RDF data. They store RDF data in
a relation with three columns(S,P,O) which is called a triple table and evalutate
SPARQL queries through a sequence of joins on the triple table. Let us consider
the following SPARQL query.

SELECT ?n1 ?n2 ?n3 ?n4

WHERE {?n1 <p1> ?n2.

?n2 <p2> ?n3.

?n3 <p3> ?n4.}
The above SPARQL query consists of three triple patterns, which form a graph
pattern. The evaluation of the SPARQL query is to find all subgraphs in the
RDF graph matching with the query graph pattern. Fig. 1(a) shows a possible
execution plan for the SPARQL query, which have three scan operators(one
for each triple pattern) and two join operators. Each operator in the execution
plans makes the partially matching fragments for the query graph pattern. For
example, Join1 in Fig. 1(a) produces all the matching fragments for the graph
pattern which consists of the second and the third triple pattern of the SPARQL
query.

This form of the execution plan is widely adopted by many RDF engines
but has a problem that it might generate many useless intermediate results. The
useless intermediate results are the results which are generated by some operators
but not included in the final results of the query. Assume that the numbers in
Table 1 are the result cardinalities for the subgraph patterns included in the
query graph pattern. Join1 in Fig. 1 (a) generates all the matching fragments
for the graph pattern in the third row of Table. 1 and the number of the result
rows is 500,000. However, the number of the final results(the first row in Table.
1) is only 1,000. Consequently, at least 499,000 rows of 500,000 rows become
the useless intermediate results. The cost which are consumed for generating
and processing them is wasted because the useless intermediate results do not
contribute to the query results. And in large-scale RDF dataset, the size of
the intermediate results intends to increase and the overhead for the useless
intermediare results becomes more serious.

(a) (b)

Fig. 1. Execution Plan

RP-Filter: A Path-Based Triple Filtering Method 35

Table 1. Cardinalities of Intermediate Results

Graph Pattern Cardinality

1,000

1,000,000

500,000

Most RDF engines try to reduce these intermediate results by choosing an
execution plan with the optimal join order when compiling the query. For ex-
ample, Fig. 1(b) shows another execution plan whose results are the same with
the Fig. 1(a) but whose join order is different from that of the execution plan
inFig. 1(a). The query optimizer prefers the execution plan in Fig. 1(a) to the
execution plan in Fig. 1(b) because the latter would generate 500,000 more rows
than the former plan. However, as we can see in this example, the execution
plan with the optimal join order could not remove all the useless intermediate
results.

In this paper, we propose a novel triple filtering method called RP-Filter(RDF
Path Filter) to reduce the useless intermediate results effectively and efficiently
using graph-structural informaion of RDF data. RP-Filter provides the list of the
nodes in the RDF graph which are reached by paths with a specific path pattern.
For example, we can obtain the list of nodes which can be reached by paths which
are matching for a path pattern {(?n1, p1, ?n2), (?n2, p2, ?n3)} from RP-Filter.
This node list can be used as filter data to filter the result triples of Scan2 or
Scan3 in Fig. 1(a) and then we can prune the triples which would not be joined
in Join2 in advance. As a result, we can reduce the number of intermediate
results using the path pattern information. Through these node lists, we can
reduce the useless intermediate results effectively for complex SPARQL queries.

RP-Filter utilizes some properties of RDF engines, one of which is that they
store the triples in a sorted order and the scanned triples are also sorted. Many
RDF engines store their triples as sorted because it give many optimization
opportunities. The filtering process of RP-Filter is very efficient and incurs little
overhead to the normal query processing because it utilizes this ordering property
of scanned triples.

We propose the definition of RP-Filter and an relational operator called
RPFLT which filters the input triples using RP-Filter. We also propose a method
to generate an execution plan with the RPFLT operators using heuristic method.
We carried out with several queries on large real-life and benchmark RDF
datasets to evaluate RP-Filter. These results demonstrate that RP-Filter effec-
tively and efficiently reduces the useless intermediate results and consequently
accelerates the SPARQL query evaluation.

36 K. Kim, B. Moon, and H.-J. Kim

2 Related Work

Early RDF systems provide storage systems which use row-oriented RDBMSs
as their back-end storages :e.g like Jena[10] and Sesame[9] (currently, Jena and
Sesame provide also native storage systems which do not use RDBMSs). These
RDBMS-based RDF systems store RDF triples in a triple table and utilize the
query processing modules of RDBMSs when processing RDF queries. However,
RDBMSs are not optimized to store and query the graph-structured RDF data
and have several scalability problems.

SW-Store[11] uses a column-oriented store as its underlying store and propose
the vertical partitioning method. SW-Store partitions the triple table by the
predicate column and shows that the partitioning of the triple table have many
advantages, like reduced I/O costs and the compact storage size. In addition, the
triples are stored as sorted in a column-oriented store so that fast merge joins
can be used when processing a query.

Currently the fastest RDF engine according to the published numbers is RDF-
3X[12]. It stores triples in six clustered indexes redundantly as sorted by six
different orderings(SPO,SOP,PSO,POS,OSP,OPS). RDF-3X can read matching
triples for any type of triple patterns sorted by any ordering using the six in-
dexes. Also RDF-3X uses a block compression techniques which store only deltas
between triples rather than writing actual values. The compression technique re-
duces the size of storage and the number of disk I/O requests needed for reading
triples. RDF-3X generates an execution plan which consists of mainly scan oper-
ators and join operators for a SPARQL query. Each scan operator in an execution
plan scans one of the six indexes and the ordering of scanned triples depends on
which index is used. There are two types of join operators: merge join and hash
join. RDF-3X uses a merge join when the orderings of two input relations are
the same with join variable. Otherwise RDF-3X uses a hash join.

In order to reduce the useless intermediate results, the authors of RDF-3X pro-
pose an RDF-specific sideway information passing technique called U-SIP[13].
It builds a sort of filters while processing an operator of an execution plan and
passes the filters to other operators to avoid generating the useless intermediate
results. U-SIP exploits the pipelined data flow of an execution plan to pass the
filter information. However, it cannot transfer the filter information reversely to
the data flow of the execution plan. As a result, the cases where U-SIP can be
applied are limited by the pipeline-blocking operator like a hash join. Especially,
the execution plan for long path patterns would use many hash joins and U-SIP
could not be very effective in these cases.

3 Preliminary

In this section, we describe RDF data model and SPARQL query model. We
do not cover the entire RDF and SPARQL specification. Rather we deal with a
core fragment of RDF and SPARQL. We do not consider blank nodes, literals
and data types in RDF. For SPARQL, we concentrate on the graph pattern

RP-Filter: A Path-Based Triple Filtering Method 37

(a) RDF Database Graph (b) SPARQL Query Graph

Fig. 2. RDF Database Graph and SPARQL Query Graph

matching of SPARQL, more specifically basic graph patterns[2] which consists
of only conjunctive triple patterns. We also do not consider a join with predicate
or a triple pattern having a variable predicate, as they are rarely used.

We assume the existence of two pairwise disjoint sets: a set U of URIs and
a set VAR of variables. A variable symbol starts with ? to distinguish with
URIs. A triple, t ∈ U × U × U is called an RDF triple, and a triple, tp ∈
(U∪VAR)× (U∪VAR) × (U∪VAR) is called a triple pattern.

An RDF databaseD is a finite set of triples, and a SPARQL queryQ is a finite
set of triple patterns. We define three subsets of U such that S = {s|s ∈ U ∧
∃t(s, p, o) ∈ D}, P = {p|p ∈ U∧∃t(s, p, o) ∈ D}, O = {o|o ∈ U∧∃t(s, p, o) ∈ D}.

We map RDF database D into a graph GD = (ND, ED, LD) which consists
of a node set ND, a edge set ED and a label set LD, where ND = S ∪O, ED =
{(s, p, o)|t(s, p, o) ∈ D} and LD = P . A SPARQL query Q is also mapped into a
graph GQ = (NQ, EQ, LQ), where NQ ⊆ S ∪O∪VAR, EQ = {(s, p, o)|t(s, p, o) ∈
Q} and LQ ⊆ P . Both GD and GQ are edge labeled directed graphs. Fig. 2(a)
shows an example RDF database graph and Fig. 2(b) shows an example SPARQL
query graph.

A path on a graph G = (N,E,L) is a sequence of connected edges in the
graph. If the terminal node of a path is n, the path is an incoming path of n.
For example, for the SPARQL query graph in Fig. 2(b), pa = 〈(?n1, p1, ?n2),
(?n2, p2, ?n3)〉 is an incoming path of ?n3.

We define a predicate path as a sequence of predicates. The predicate path
of a given path in G = (N,E,L) is a sequence of edge labels of the path. For
example, the predicate path of pa is 〈p1, p2〉.

We use the notations PPath(p) and |PPath(p)| to denote the predicate path
of a path p and its length, respectively. We also use InPPath(n) to denote a
set of all incoming predicate paths of n ∈ N . When the maximal path length l
is given, a variant of the notation, InPPath(n, l), is used to denote a subset of
InPPath(n) such that InPPath(n, l)={ppath|ppath ∈InPPath(n)∧|ppath| ≤ l}.

Example 1 (Incoming Predicate Path). For the SPARQL query graph in Fig.
2(b), the incoming path set of ?n4 with the maximum length 2 is InPPath(?n4, 2)
= {〈p3〉, 〈p1, p3〉 〈p2, p3〉}.

38 K. Kim, B. Moon, and H.-J. Kim

4 RP-Filter

In this section, we present the definition of RP-Filter and the physical storage
model of RP-Filter. To begin with, we discuss the requirement of RDF stores to
use RP-filter.

4.1 Requirements of RP-Filter

In order to apply the RP-Filter technique into an RDF engine, the RDF engine
should meet the following requirements.

1. URIs are mapped into integer IDs and the triples are stored using the IDs
in a triple table with three column, S,P and O.

2. The execution plan has one scan operator for each triple pattern in the
SPARQL query, which reads triples matching with the triple pattern from
disks.

3. The scan operators read triples as sorted by the S or the O column.

Several RDF engines including RDF-3X utilize storage and query processing
techniques which meet three conditions above for efficient query processing. Es-
pecially, the third condition is relatively strict. However, the condition is satis-
fied by several RDF store, e.g. RDF-3X and SW-store. This is because that the
sorted materialization of triples provides a lot of efficiency, like the fast retrieval
of matching triples and the usage of fast merge join. Therefore, RP-Filters can
be adopted by various RDF engines including RDF-3X and SW-store.

4.2 Definition of RP-Filter

The RP-Filter for an RDF database is a set of node lists. A node list for a
predicate path contains all the node IDs which have the predicate path as its
incoming predicate path.

Definition 1 (Node List of ppath N-List(ppath)). The node list for a pred-
icate path ppath is a sorted list of IDs of nodes n which satisfy that ppath ∈
InPPath(n). We denote the node list of a predicate path ppath as N-List(ppath).

By reading the node list for a predicate path, we can easily get all the node IDs
which are reached by the path pattern which is described by the predicate path.
Note that the node lists are sorted by the node IDs. The RP-Filter for an RDF
database is defined as follows.

Definition 2 (RP-Filter of RDF database D with the maximum length
MaxL). Given an RDF database D and the maximum length MaxL, the RP-
Filter of D is a set of all pairs 〈ppath, N-List(ppath)〉, for all ppaths which exist
in D and whose lengths are less than or equal to MaxL. RP-Filter(D,MaxL) =

{〈ppath,N-List(ppath)〉|ppath ∈ ⋃maxL
i=1 P i ∧ppath exists in D}.

RP-Filter: A Path-Based Triple Filtering Method 39

Fig. 3. RP-Filter (MaxL=3)

We say that a predicate path ppath exists in D if and only if there exists a
path whose predicate path is ppath in D. We introduce MaxL to limit the size
of RP-Filters. As MaxL increases, the number of predicate paths increases. As
a result, the applicable RP-Filters also increase and the quality of RP-Filter
improves but the size of RP-Filter also increases. In other words, there exists a
tradeoff between the quality of RP-Filter and the space overhead of RP-Filter.
We can control the tradeoff using the MaxL value.

Example 2 (RPFilter). Fig. 3 show RP-Filter(D,3) for the RDF database D in
Fig. 2(a). The figure shows predicate paths and their node lists. There are 11
node lists in RP-Filter(D,3). And we can see that each node list is sorted by the
node IDs.

4.3 Storage Model of RP-Filter

Each node list is stored in disk as sorted by node IDs so that the node list can be
read in the sorted order while processing triple filtering. We use the delta based
block compression technique used in RDF-3X [12] to alleviate the size overhead
of RP-Filter and the disk I/O overhead for reading the node lists. In this method,
the difference between two adjacent node IDs are stored. According to the size
of the delta, the size of bytes for the writing of the delta is determined. We can
use this compression method because the node IDs are sorted.

We organize the predicate paths in a trie(or prefix tree) called RP-Trie in
order to search the node lists for a predicate path efficiently. RP-Trie is a trie
built with all the predicate paths in RP-Filter. Each node in level l in RP-Trie
has a pointer to the node list for its associated length-l predicate path. Fig. 4
shows RP-Trie for RP-Filter(D, 3) in Fig. 3. We can find the location in disk
of the node list for a predicate path by traversing RP-Trie using the predicate
path. If there is no node for a predicate path whose length ≤ MaxL, we can
conclude that there exists no path which is matched to the predicate path in
RDF database.

RP-Trie has the worst case space complexity,O(
∑MaxL

i=1 |P |i) and can grow
exponentially to MaxL. But as we can see in section 6, for the real-life data sets
and small MaxL value, the size of RP-Trie is relatively of small size and the
RP-Trie can be resident in the main memory.

40 K. Kim, B. Moon, and H.-J. Kim

Fig. 4. RP-Trie for RP-Filter(D, 3)

The structure of RP-Filter resembles the inverted index structure which is
widely used in the information retrieval area. Each predicate path in RP-Filter
can be considered a lexicon of an inverted index, while the node list is pretty
much like a posting list. Just as a posting list of an inverted index keeps document
IDs in sorted order, the node list keeps the node IDs in the sorted order. Note
that the predicate paths are organized into RP-Trie to assist in locating the node
list for a predicate path and finding relevant node IDs quickly.

5 Query Evaluation Using RP-Filter

In this section, we introduce a filtering operator RPFLT and then we discuss the
query plan generation with the RPFLT operator.

5.1 RPFLT Operator

RP-Filter is used to filter the triples from scan operators in an execution plan. In
order to use RP-Filter, the query compiler adds an operator called RPFLT to an
execution plan. The RPFLT operator is a relational operator which gets triples
from its child scan operator and outputs only the triples passing RP-Filter. An
RPFLT operator is added to an execution plan as a parent operator of a scan
operator.

Predicate Path Set of RPFLT. An RPFLT operator has a set of predicate
paths called PPS (Predicate Path Set) assigned by the query compiler. To explain
which predicate paths can be included in the PPS of an RPFLT, we define a
property of a scan operator called sortkey as follows. The result triples of a scan
operator are ordered by the S or the O column (not by the predicate column
because we do not consider the predicate variable and the predicate join). We
call the column by which the result triples are sorted a sortkey column of the
scan operator. The sortkey column has a corresponding node in the mapped
query graph. We also use the term sortkey node to indicate the sortkey column’s

RP-Filter: A Path-Based Triple Filtering Method 41

(a) Execution Plan of RDF-3X (b) Execution Plan with RPFLT

Fig. 5. Application of RPFLT Operators

corresponding node in the query graph. Scani.sortkey is used to denote the
sortkey column or the sortkey node of Scani depending on context.

Fig. 5(a) shows an example execution plan of RDF-3X for the query graph in
Fig. 2(b). The last item in each scan operator is the type of index to be used.
For example, Scan1 scans the POS index and so the scanned triples are ordered
by (P,O,S). Since all the triples have the same predicate values ‘p2’, they are
actually sorted by the O column. In the same way, the results of Scan2 are
ordered by the S column. Therefore, the sortkey column of Scan1 is ‘O’ and the
sortkey column of Scan2 is ‘S’. And the sortkey nodes of Scan1 and Scan2 are
both node ?n3 in Fig. 2(a), i.e., Scan1.sortkey = Scan2.sortkey =?n3.

The PPS of the RPFLT for Scani should be a subset of InPPath(Scani.
sortkey, MaxL). For example, 〈p1, p2〉 can be included in the PPS of the RPFLT
for Scan1 because Scan1.sortkey =?n3 and 〈p1, p2〉 is in InPPath(?n3, 3). Fig.
5(b) shows an execution plan which uses two RPFLT operators. The last item
of an RPFLT operator lists the predicate paths in its PPS. The RPFLT op-
erators for Scan1 and Scan2 have the same PPS because the sortkey for the
two scan operators are same. The PPS is {〈p1, p2〉, 〈p1〉} but InPPath(?n3, 3)
is {〈p1, p2〉, 〈p1〉, 〈p2〉}. The reason why only two of three predicate paths are
included in the PPS is described in section 5.2. Scan3 operator does not have
an RPFLT operator because its sortkey node has no incoming predicate path.

Filtering Process of RPFLT. An RPFLT operator outputs the triples whose
values of the sortkey column are include in all N-Lists for the predicate paths in
its PPS. Fig. 6 illustrates the filtering process of Scan1 in Fig. 5(b). The filtering
process merges the input triples with all assigned N-Lists. In this example, Scan1

outputs four triples but three of them are filtered out by RPFLT1. RPFLT1

outputs only one triple whose object is ‘r3’ because ‘r3’is in both N-List(〈p1, p2〉)
and N-List(〈p1〉).

42 K. Kim, B. Moon, and H.-J. Kim

Fig. 6. Filtering in RPFLT Operator

The ?n3 node(Scan1.sortkey) in the query graph has the two predicate paths
in its InPPath. So the matching data nodes for ?n3 must have the two incoming
predicate paths, too. The intersection of the two N-Lists gives us the matching
data nodes which have both of the two incoming predicate paths. If the three
filtered triples were not filtered out, they would be carried over to the next
join operations - a MergeJoin and a HashJoin - and slow down the overall
query processing without contributing to the final query result. In this manner,
we attempt to filter triples out at the earliest possible stage, if they would not
be included in the final results. Note that the filtering process involves reading
the node lists and merging them with the input triples. We can filter the input
triples simply by merging the node lists and the input triples because they share
the same orderings. Also the N-Lists are usually of small length. Consequently,
the reading and merging of the N-Lists incur little overhead and the RPFLT
operator is very efficient and light operator.

Analysis of RPFLT. If we consider an node list as a table with the single
column ID, the output of RPFLT can be described formally as following.

RPFLT (Scani,PPS) =

⎛
⎝ ⋂

ppath∈PPS
N-List(ppath)

⎞
⎠�ID=Scani.sortkey Scani

(1)

We use Scani to denote the result relation of Scani, which have three columns
and the Scani.sortkey to denote the sortkey column of Scani. Note that we use
the relational algebra only to describe the output of RPFLT not to describe the
evaluation order of RPFLT.

The cost of RPFLT (Scani, PPS) is B×∑
ppath∈PPS ‖N-List(ppath)‖+C×(∑

ppath∈PPS |N-List(ppath)|+ |Scani|
)
, where B is the cost of disk block I/O,

C is the cpu cost for the merging, |N-List(ppath)| and ‖N-List(ppath)‖ are the
number of nodes in N-List(ppath) and the number of blocks of N-List(ppath),
respectively.

RP-Filter: A Path-Based Triple Filtering Method 43

5.2 Generating an Execution Plan with RPFLT Operators

We use the 2-phase query optimization method to make execution plans with
RPFLT operators. In the first phase, the query compiler generates an optimized
execution plan through its normal query optimization process. Then, in the
second phase, the query compiler adds RPFLT operators to the optimized exe-
cution plans. This 2-phase method uses heuristics that the optimized plan with
no RPFLT also tends to be optimal when augmented by the RPFLT operators.

In the second phase, the query compiler examine the incoming predicate paths
of the sortkey node of each scan operator in the execution plan. The query
compiler makes decisions about which predicate paths are included in the PPS
for the RPFLT operator. If the PPS is empty, no RPFLT operator is added to
the scan operator.

When deciding the PPS, the query compiler should be careful not to choose
redundant predicate paths. If a predicate path ppath1 is a suffix of another pred-
icate path ppath2, N-List(ppath1) ⊃N-List(ppath2). Therefore, it is of no use to
include both ppath1 and ppath2 in PPS. The query compiler should include only
ppath2 in PPS because N-List(ppath2) has less node IDs than N-List(ppath1)
and is more effective filter. For example, let us take a look at Fig. 5 again. There
exist three predicate paths in InPPath(?n3, 3) = {〈p1, p2〉, 〈p1〉, 〈p2〉}. However,
we do not include 〈p2〉 in the PPS of Scan1(or Scan2), because 〈p2〉 is a suffix
of 〈p1, p2〉.

For another case of redundant predicate paths, if the triple pattern of Scani

is 〈?s, pn, ?o〉, we need not to include 〈pn〉 in the PPS even though 〈pn〉 is in
InPPath. The reason is because N-List(〈pn〉) could not filter any triple from
Scani.

Note that the execution plan generated by this 2-phase method might not
optimal. It is because RPFLT operators can change the cardinalities of the in-
termediate results. The join order of the original execution plan might be not
optimal for the changed cardinalities of the intermediate results. To solve this
problem, we should be able to decide the optimal join order for the execution
plan with RPFLT. However, this requires a method to estimate the cardinalities
of the filtered triples. Also, the additional costs of RPFLT operators could make
the execution plan more expensive than the original execution plan. However,
we leave this issue as future work and here we use this heuristic method.

6 Experimental Results

We implemented RP-Filter on the open-source system RDF-3X(0.3.5 version).
The system was implemented with C++ and compiled by g++ with -O3 flag.
We conducted all the experiments on an IBM machine having 8 3.0GHz Intel
Xeon cores, 16GB memory and running 64bit 2.6.31-23 Linux Kernel. We used
two datasets: YAGO2[14] as a small real-life dataset and LUBM[15] as a large
synthetic dataset. We generated the LUBM dataset with 10,000 universities1.

1 http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

44 K. Kim, B. Moon, and H.-J. Kim

Table 2. Statistics about Datasets

predicate triples RDF-3X size

YAGO2 94 195,048,649 7.6 GB

LUBM 18 1,334,681,192 70 GB

Table 2 shows statistics about the datasets. Note that YAGO2 has 94 predi-
cates but LUBM has only 18 predicates. That is because YAGO2 is a combina-
tion of heterogeneous datasets(Wordnet and Wikipedia), while LUBM is about
relatively homogeneous domain(university).

6.1 RP-Filter Size

For two datasets we built RP-Filters with MaxL=3. Table 3 shows the number
of N-Lists and the total size of RP-Filters. As we can see, the size of RP-Filters
for two datasets are much smaller than the input dataset sizes. The number
of N-Lists for YAGO2 is higher than that of LUBM, although the data size of
YAGO2 is smaller than the size of LUBM. This is because YAGO2 has more
predicates that LUBM, there exists more distinct predicate paths in YAGO2.

6.2 Query Execution Time

To evaluate the performance of RP-Filter, we compared the query execution time
of RDF-3X using RP-Filter with the original RDF-3X system. We measured
the executions in the wall-clock time. RDF-3X converts node IDs in the final
results into URIs to display the query results in the final stage of the query
evaluation. The converting process is very time-consuming when there are large
number of final results. Because the converting process is not relevant to the
performance evaluation of RP-Filter, we excluded it from the execution time.
We also counted the number of intermediate results for each evaluation. The
number of intermediate results is the summation of the number of results of
all the operators in the execution plan except the final operator. We exclude it
because the number of final results is not changed by the filtering.

YAGO2 Dataset. For YAGO2 dataset, we generated several random path
queries. We chose 15 predicates and made 3∼7-length path queries using the cho-
sen predicates. Each path queries has a single path and similar to the SPARQL
query in Section 1.

Table 3. RP-Filter Size(MaxL=3)

N-Lists total size avg. length

YAGO2 39,635 836MB 16,305

LUBM 122 1.3GB 2,571,504

RP-Filter: A Path-Based Triple Filtering Method 45

 0

 200

 400

 600

 800

 1000

 3 4 5 6 7

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

m
s)

Path Length

RP-Filter
RDF-3X

(a) Execution Time

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3 4 5 6 7

N
um

be
r

of
 In

te
rm

ed
ia

te
 R

es
ul

ts

Path Length

RP-Filter
RDF-3X

(b) Number of Intermediate Results

Fig. 7. Evaluation Results:YAGO

Fig. 7 shows the average execution time and the average number of the in-
termediate results. The average execution time of RP-Filter is lower than that
of RDF-3X. Also the number of the total intermediate results is lower than
that of RDF-3X. The growth rate of the execution time and the number of the
intermediate results for RP-Filter is slower than those of RDF-3X.

LUBM Dataset. For LUBM datasets, we used two queries from 14 queries of
the LUBM benchmark. We chose two of them because other queries have very
simple structure and short paths in them. The queries we chose are Q2 and
Q9. They have a 3-length path and complex structures. Q2 and Q9 are listed
in Appendix. In order to execute the queries, we had to change the query Q9
slightly. In fact, LUBM is a benchmark for the RDF engines with the reasoning
capability. However, currently RDF-3X does not support RDF reasoning. RDF-
3X gives no answer for the query Q9 because the query asks about the instances
of an inferred class. Therefore, we changed the class name so that no inference
is needed, while leaving the structure of the queries unchanged.

Table 4 shows the execution time and the number of intermediate results for
each query. For cold cache, the file system caches were dropped by /bin/sync and
echo 3 > /proc/sys/vm/drop caches commands. We evaluated the queries
with U-SIP technique in RDF-3X. The results show that U-SIP is not very
effective for the queries we used. The reason is that the execution plans involve
many hash joins so the effect of U-SIP is limited. For RP-Filter, Q2 and Q9
showed different results. Q2 was improved by a factor of about 3 but for Q9
RP-Filter had little effect. That is because in Q2 there exists very selective path
pattern but there is no such path pattern in Q9. And For Q2 the intermediate
results are significantly reduced but for Q9, the intermediate results are not re-
duced much. For Q9, we can also observe that the query time is slightly longer
when using RP-Filter. That is because the overhead for RP-Filter is more strong
than the benefits of reduced intermediate results.

46 K. Kim, B. Moon, and H.-J. Kim

Table 4. Evaluation Results:LUMB (times in second)

Warm cache Cold cache Intermediate Results

q2 q9 q2 q9 q2 q9

RDF-3X 26.5 37.0 28.7 43.4 424,747,108 659,968,158

NO U-SIP 22.9 31.9 25.0 38.4 424,785,330 662,615,314

NO U-SIP
RP-Filter

7.4 32.7 9.6 40.2 308,143,082 620,276,418

RP-Filter 8.1 36.9 9.3 43.7 233,654,645 617,592,582

7 Conclusions and Future Work

In this paper, we propose a triple filtering method called RP-Filter. Based on
the information about incoming paths of the query graph, RP-Filter prunes the
scanned triples which would not be included in the final results. This triple
filtering helps to reduce the useless intermediate results and reducing the inter-
mediate results improves the query execution performance. Our experimental
results shows that RP-Filter is very effective to reduce the useless intermedi-
ate results. For future work, we plan to explore how to reduce the overhead of
RP-Filters and how to generate plans using RP-Filters based on the cost model.

Acknowledgements. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MEST) (No.
20110017480) and the Brain Korea 21 Project.

Appendix

LUBM Queries PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX lubm:<http://http://www.lehigh.edu#>
Q2
SELECT ?x ?y ?z WHERE {
?x rdf:type lubm:GraduateStudent.
?y rdf:type lubm:University.
?z rdf:type lubm:Department.
?x lubm:memberOf ?z.
?z lubm:subOrganizationOf ?y.
?x lubm:undergraduateDegreeFrom ?y.}
Q9
SELECT ?x ?y ?z WHERE {
?x rdf:type lubm:Student.
?y rdf:type lubm:Faculty.
?z rdf:type lubm:Course.
?x lubm:advisor ?y.
?x lubm:takesCourse ?z.
?y lubm:teacherOf ?z.}

RP-Filter: A Path-Based Triple Filtering Method 47

References

1. Klyne, G., Carroll, J.J.: Resource description framework (rdf): Concepts and ab-
stract syntax. Technical report, W3C Recommendation (2004)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical
report, W3C Recommendation (2008)

3. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM
Trans. Database Syst. 34(3) (2009)

4. Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: to-
wards a mashup to build bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5), 706–716 (2008)

5. Redaschi, N., Consortium, U.: UniProt in RDF: Tackling Data Integration and
Distributed Annotation with the Semantic Web. In: Nature Precedings (2009)

6. Sheridan, J.: Linking UK government data. In: WWW Workshop on Linked Data,
pp. 1–4 (2010)

7. Mika, P.: Social Networks and the Semantic Web. In: Proceedings of International
Conference on Web Intelligence (WI 2004), pp. 285–291 (2004)

8. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst,
M., Bizer, C., Lee, R.: Media Meets Semantic Web — How the BBC uses dbpedia
and Linked Data to make Connections. In: Aroyo, L., Traverso, P., Ciravegna, F.,
Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl,
E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 723–737. Springer, Heidelberg (2009)

9. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

10. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the
13th International World Wide Web Conference (WWW 2004), pp. 74–83 (2004)

11. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-Store: a vertically
partitioned DBMS for Semantic Web data management. The VLDB Journal 18(2),
385–406 (2009)

12. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. PVLDB 1(1),
647–659 (2008)

13. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD 2009), pp. 627–640 (2009)

14. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo,
G., Weikum, G.: Yago2: Exploring and querying world knowledge in time, space,
context, and many languages. In: Proceedings of the 20th International Conference
on World Wide Web (WWW 2011), pp. 229–232 (2011)

15. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),
158–182 (2005)

	RP-Filter: A Path-Based Triple Filtering Method for Efficient SPARQL Query Processing
	Introduction
	Related Work
	Preliminary
	RP-Filter
	Requirements of RP-Filter
	Definition of RP-Filter
	Storage Model of RP-Filter

	Query Evaluation Using RP-Filter
	RPFLT Operator
	Generating an Execution Plan with RPFLT Operators

	Experimental Results
	RP-Filter Size
	Query Execution Time

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

