
A Query Expansion Technique for the Functional Annotation in Biological

Databases

Sangwon Yoo, Kangpyo Lee, Hyoung-Joo Kim

School of Computer Science & Engineering

Seoul National University

Seoul, Korea

swyoo@idb.snu.ac.kr, kplee@idb.snu.ac.kr, hjk@snu.ac.kr

Abstract

A functional annotation in biological databases

describes the activities of the gene products. It plays a

key role in the analysis of gene products. The problem

is that different institutes use different annotation

vocabularies. We introduce a simple SQL expansion to

resolve this problem. Our approach enables a user to

make a query against different hierarchical annotation

vocabularies. Each annotation vocabulary has its own

structure and mapping between them. Our query

translation algorithm translates a user query into

general SQL using this information. We implemented

this mechanism and evaluated it on a real biological

database.

Keywords: DBMS, biological database, annotation,

gene ontology, query expansion

1. Introduction

1.1. Functional annotation

In the biology community, there is a huge amount of

data which come from genomics and proteomics study.

One of the major sequence databases, GenBank[4]

announced that the public collections of DNA and

RNA sequences reach 100Gigabases(letters) in 2005.

There are more than 165,000 organisms which are

completely or partially sequenced. There are 3 million

sequence submissions in a month. We can expect that

the increasing rate of biological data will be much

higher in the future.

There is useful information besides the sequences

themselves such as publication, lineage, function and

so on. Knowledge acquisition from these sequences is

more important than just accumulating them. Therefore,

databases keep metadata as well as sequences. When

a researcher submits a sequence or an experimental

result to the public databases, related information is

annotated to the gene products (gene, RNA, protein)

such as organism, function and experimental condition.

There have been vast efforts to make a good quality

of annotation in the biology community. For example,

UniProt[19] is a protein resource combining three

databases, Swiss-Prot, TrEMBL[6] and PIR[3]. They

are trying to provide sequences and functional

annotations which are manually inspected by the

experts of the domain. They trace the biomedical

publications manually to annotate the proper function

on the protein. There are many other similar databases

which focus on the certain organism or research field.

All this effort is intended to find the function of gene

products. If a protein‟s function is found to be a

“transcription regulator”, this kind of database will

record “transcription regulator” on the protein‟s

functional annotation entry. This information can help

a researcher study the protein of the same family. We

can say that a functional annotation is a functional

activity description of gene products.

1.2. The problem

Although many databases provide useful information in

the form of a functional annotation, we need to

consider several characteristics when making a query

against the functional annotations.

The first problem is that there are numerous

functional annotation schemes that describe a similar

function. Each database usually has its own

classification or controlled vocabulary [6, 13, 16]. The

second problem is that the functional annotation

scheme has hierarchy in itself[2, 3, 13].

The third problem is that they have mapping

information between them. Each annotation scheme has

mailto:swyoo@idb.snu.ac.kr
mailto:kplee@idb.snu.ac.kr
mailto:hjk@snu.ac.kr

Figure 1. A protein table with different functional annotation scheme

its own coverage and characteristic. Biological

database curators annotated existing entries using

mapping information in case of data integration[7, 8]. If

we want to get a desired query result against functional

annotations, we should consider the above problems.

Figure 1 shows an example of protein database

which contains different annotation vocabularies. The

first two rows are annotated with Gene Ontology[13]

terms and the next three rows are annotated with

InterPro[16] entry. Let us consider the question, “Find

proteins which are related to transcription activity and

its subfunction”. She only knows that GO:0003700

means transcription factor activity for this question.

There is actually hidden information. GO:0003705 is a

child term of GO:0003700 and IPR001356 is

equivalent to GO:0003700. If a user does not explicitly

express this relation, the DBMS will not return the

desired result. It will return the exact matching result,

GO:0003700, instead.

1.3. Our Approach

In this paper, we propose and evaluate a practical

approach to support different functional annotation

schemes. We designed and implemented a SQL query

expansion algorithm and annotation index. When a user

makes a query, we provide „EXPAND‟ clause to cover

the different annotation schemes. We also use an

annotation index for the fast search of related terms in

query expansion.

We assume that a user does not know the structure of

the annotation scheme and their mapping relations A

user makes a query which uses terms that are familiar to

her. Our system uses these terms as a basis for query

expansion. We provide the syntax that enables a user to

specify the target annotation system and the range of

search. When she issues a query to the DBMS using

this syntax, our query translator translates this query

into general SQL. The translated query includes the

information about the search terms of the other

annotation schemes.

In Figure 2, there is a simple architecture of our

approach. In the bottom right, there are biological

databases which use different annotation schemes. They

are stored as relational tables.

Figure 2. Architecture of query expansion

In the bottom left, there are annotation index tables.

These tables have information about the structures of

annotation schemes used in biological databases. There

is also a mapping table which links annotation index

entries.

The query translator accepts the query from the user.

When it expands the user query, it utilizes the

information in the annotation index table. It sends the

translated SQL to the DBMS and delivers the result to

the user.

The contribution of this research is that we provide

a simple way to query the annotations in many

databases. It is a common environment to import many

public databases or integrate various resources. They

have diverse vocabularies and structures among them.

There are mapping relations among similar terms in

different systems. This makes it too complex for a

general user to query against these annotation systems.

Another contribution of this paper is that we utilize

the relational DBMS and SQL features. Relational

DBMS and SQL is a mature technology. They have

been used for more than 30 years in academia and

business. Many public biological databases are

provided as a form of relational database. When a

ID Protein Name Function Function name

Q9NY61 AATF_HUMAN GO:0003700 ①Transcription factor activity

P05549 AP2A_HUMAN GO:0003705 ②RNA polymerase transcription factor activity

Q92876 HXB13_HUMAN InterPro:IPR001356 ③Homeobox

O08686 BARX2_MOUSE InterPro:IPR000047 ④Helix-turn-helix motif

P19622 HME2_HUMAN InterPro:IPR000747 ⑤'Homeobox' engrailed-type protein

RDBMS

Annotation
Index
Table

Query Translator

User

Biological Databases

researcher in this domain have to make her own local

database, relational DBMS and SQL should be

preferable.

The remainder of this paper is organized as follows.

Section 2 introduces our annotation index and query

translation algorithm. Section 3 shows the experiment

data and its result. Section 4 describes the related work

which addresses the issue of annotation in

bioinformatics study and database research. Section 5

presents the conclusions and describes future work.

2. Query Expansion

2.1. Annotation Index

In Figure 1, there are relations between functional

annotations as follows:

Figure 3. Hierarchical structure in annotations

A node represents an annotation term and the edge

represents a relation between terms. Up-down edge

shows parent, child relation and a horizontal edge

shows the mapping relation between different

annotation schemes. We model the annotation

hierarchy as a DAG(Directed Acyclic Graph) structure.

When a user query arrives, we reference this DAG

structure to make an expanded search.

For example, a user submits a query as follows:

SELECT ID

FROM protein_table

WHERE Function = „GO:0003700‟

This query will return only „Q9NY61‟. If a user wants

to know which proteins are related to transcription

activity as well as wants to get information about the

related protein family, the user should find a way to

include this information in her query.

In this case, the hierarchical structures are obtained

from each annotation scheme. If a query can scan the

whole structure in Figure 3, the result will satisfy a

user‟s intention.

Gene Ontology[13], InterPro[16], SwissProt[6] and

EC numbers[2] are our target annotation systems. We

choose these systems because they are widely used in

the real databases. They have mapping information

between Gene Ontology and the other systems[17].

They have complex hierarchies[13, 16].

They provide the relations shown in Figure 1 as

follows:

<go:term rdf:about="GO:0003705">

<go:is_a rdf:resource="GO:003700" />

</go:term>

<interpro id="IPR000047" type="Domain">

<parent_list>

 <rel_ref ipr_ref="IPR001356" />

</parent_list>

 <child_list>

 <rel_ref ipr_ref="IPR000747" />

 </child_list>

</interpro>

Figure 4. Gene Ontology and InterPro relation

As you see in Figure 4, they have various types in

its syntax such as XML, RDF and flat file. Their

common information among them is the specification

of relation types between terms used in its annotation

system. We preprocessed the various formats of

annotation systems and make it into a DAG structure.

We build DAGs for GeneOntology and InterPro

entries. EC number has a tree structure, while

SwissProt does not have any explicit structure.

Therefore, we do not need to make DAGs for these two

systems.

The core of query expansion is traversing the relation

between terms. It means we need an efficient way of

traversing a DAG structure. We chose the simple

encoding, Dewey Order[1]. Dewey Order is one of the

simplest prefix based labeling schemes.

The multiple paths node has many labels in the DAG

structure, whereas the node has only one label in the

tree. This encoding scheme calculates every parent-

child relation easily by simply comparing the prefix of

each label. When we want to make a query expansion,

we just reference the term label and traverse the

ancestor descendant relations.

Our DAG structure is stored as a relational table and

the parent-child relation is calculated using SQL

operation. Figure 5 shows a DAG structure graph and

its table representation. We made a table for an

annotation system. The first column lists the term id or

term name and the second column lists the label in the

DAG structure. As we can see from this table, the

parent-child relation is decided by the prefix comparing.

IPR

1

2

3

4

5

GO

Node GO:4 is a child of node GO:2, because node

Figure 5. DAG structure and table representation

GO:4 and node GO:2 have common prefix „03.01‟. We

can also decide the ancestor-descendant relation

through the same comparison. Each level encoding is

separated by the comma and the length of prefix shows

the distance between two nodes. GO:5, GO:6 and GO:7

have two labels while they are represented as a node in

the graph. Dewey Order is initially made for the

construction of a tree style classification. Therefore,

there is no node which has multiple paths from the root

to the terminal node. In the DAG, a node may have

multiple paths. It is possible that an annotation node

has two or more parents and occurs at many positions.

To save the information about all these paths, we made

labels for every path a node has. In Figure 5, GO:5,

GO:6 and GO:7 are nodes for multiple labeling.

When calculating a parent id or ancestor ids in

annotation index tables, we implemented a prefix

function. We specified the desired level, and then it

returned the prefix of a current label. For a child node

and descendant nodes, we utilized LIKE function in

SQL. In Figure 5, the fixed number of digits is assigned

in each level. Thus SQL like

 SELECT ID

 FROM index

 WHERE Label like „03.01.__‟

will return the child of GO:2. If we specified the

condition as „03.01.%‟, it would have retrieved all the

descendant nodes.

Annotation index tables support the query

expansion by efficient parent-child relation retrieval

2.2. SQL Expansion

When a user makes a query against functional

annotations, the main concern is what kind of keywords

she should include in the query. The proper term is

finding the appropriate results. However, the annotation

vocabularies are still large and complex to remember

all the keywords.

In case of SQL, this term will be described in the

WHERE clause. All the user can do is to add terms she

knows in the where clause. There is no convenient way

to support a parent-child relation or a mapping relation

in functional annotations.

We provide the additional clause „EXPAND‟ to

SQL syntax, which enables a user to expand a query to

the target annotation system. For example, there is a

query to the protein table which uses Gene Ontology,

InterPro and SwissProt annotation systems.

SELECT id

FROM protein_table

WHERE organism= „Human‟ and

function = „GO:0003700‟

EXPAND go>-3 ipr<+3 spkw=0

„go‟, „ipr‟, „spkw‟ mean target annotation systems and

„+‟, „-„ mean the direction toward descendants and

ancestors in the relation respectively. „<‟ and „>‟ mean

the range of search. „0‟ means a mapping to the

equivalent target annotation term, no expansion to the

parent-child relation.

In the above example, go>-3 will include three

levels of query terms. They are original query term

GO:0003700, its parent term and grand parent term. If

GO:0003700 is on the multiple paths, it will have

multiple parents and grand parents. ipr<+3 also include

three levels of query terms. In the first place, it will

search the mapping terms in InterPro entries which are

equivalent to GO:0003700. If there exist mapping

terms, it will search InterPro entries to add children and

grand children terms in the query. spkw=0 will just find

the mapping terms equivalent to the GO term in the

SwissProt keywords. A user can specify the annotation

system and the range of expansion through this

EXPAND clause.

In general, an expanded SQL query has the form as

follows.

SELECT select_list

FROM from_list

WHERE where_list

EXPAND expand_list

When translating an expanded SQL query into a

general SQL, we consider the case which has various

ID Label

GO:1 03

GO:2 03.01

GO:3 03.02

GO:4 03.01.01

GO:5 03.01.02

GO:5 03.02.01

GO:6 03.01.02.01

GO:6 03.02.01.01

GO:7 03.01.02.02

GO:7 03.02.01.02

GO:1

GO:2

GO:4 GO:5

GO:3

GO:7 GO:6

kinds of annotations in a table. So the core of query

translation algorithm is how to add the annotation

values in the where_list. In the above example, there is

no need to change select_list or from_list because every

annotation is stored in a table. The output SQL query

has the following form:

SELECT id

FROM protein table

WHERE organism=„Human‟ and

(function=„GO:0003700‟ or function=„GO:0003677‟

or function=„GO:0003676‟ or function= „GO:0030528‟

or function=„IPR001356‟ or function=„IPR000047‟ or

function=„IPR001827‟ or function=„IPR000747‟ or

function = „KW-0803‟)

In the WHERE clause, there are 3 more terms in

Gene Ontology, 4 more terms in InterPro and 1 more

term in SwissProt keyword than the original query. In

this way, the user‟s query is expanded to include the

related terms in other annotation systems.

If we have many tables that have different

annotation systems, it is also simple to translate the

original query. All we need to do is simply add the

extra terms with OR conditions in the WHERE clause.

Added terms will search each table according to which

table the original term belongs to.

Query translation algorithm works as follows.

Input: expanded SQL

Output: SQL

1. Scan expand_list

2. Retrieve and save the names and ranges of

annotation systems

3. Scan where_list

4. Retrieve and save the original query term with

its annotation system name

5. Search the value in 4 from the mapping table

6. A mapping table returns the value which

belongs to the annotation system in 2

7. Search the annotation index within the range

of 2 from the values returned in 6

8. Add retrieved results in 7 to the where_list

The EXPAND clause in steps 1~2 is described in the

previous example in detail. Step 3 through step 8 shows

how to use mapping table and annotation index during

the query expansion. In steps 3~4, we extract the

information a user specified as original annotation

values. These values are the starting points of query

expansion. To find the mapping terms to this value we

search the mapping table in step 5. Mapping table has

information between terms of different annotation

systems. In our case, this table has information about

the mapping relation between Gene Ontology and other

annotation systems. We could infer some indirect

relations such as SwissProt keyword has a mapping to

EC number or InterPro entry. However, only the binary

relation between Gene Ontology and other systems are

considered in this paper. It is not a matter of technical

problem but a semantic problem because such kinds of

inferred relations are not verified by the domain experts.

In step 6, a mapping table search returns the values

which are counterparts of the term the user gave. The

terms in different systems have m:n mappings each

other. There are terms which have no mapping relation

to other systems. Therefore, the number of mapping

terms varies from 0 to dozens.

In step 7, we already have many expanded terms for

each system from step 6. Using the information from

step 2, we can choose which annotation index table to

look up. We can get ancestor descendant terms in this

index using the range the user specified. If a user just

wants the mapping terms, we do not need to search the

annotation index.

In the final step, the expanded term list is added in

the WHERE clause of SQL. Although the user simply

puts down the name that she knows in the expanded

SQL, the result SQL includes many related terms. The

query processing and answering is the portion of the

DBMS.

3. Experiments

3.1. Data and Environment

In this study, we chose Gene Ontology[13],

InterPro[16], Swiss-Prot keyword[6] and EC number[2]

as the functional annotation schemes. These schemes

has been used in GOA project[7, 8] for large scale

assignment of Gene Ontology terms to the existing

database. UniProt[19] database initially had no

annotations described in Gene Ontology. Through the

GOA project, they have annotated their data with Gene

Ontology. They have made mapping relations and

updated them. Their latest statistics reports(2006/12)

that they have more than 11 million associations

comprised of Gene Ontology, InterPro, Swiss-Prot

keyword and EC number.

Gene Ontology has more than 17,000 terms and

InterPro has more than 13,000 entries. Gene Ontology

has a „is-a‟ relation between terms. InterPro has a

„parent-child‟ relation of protein families. EC number

has 3600 numbers and 4 levels of classification for enz

ymes. SwissProt keywords have more than 800 keywords. Each annotation scheme is getting larger and

Number of results

0

100
200

300
400

500
600

700

5 6 7 8 9 10

Level

R
e
s
u
lt
s

 *

Q0

Q1

Q2

Q3

Execution time

0

100

200

300

400

500

5 6 7 8 9 10

Level

m
s
e
c

*

Q1

Q2

Q3

Figure 6. Number of results in query expansion Figure 7. Execution time in query expansion

Number of added terms

0

20

40

60

80

100

120

5 6 7 8 9 10

Level

T
e
rm

s
 s

Q1

Q2

Q3

Figure 8. Number of added terms in query expansion

published periodically.

We used SwissProt Database[6] in UniProt[10] as a

query expansion test database. SwissProt is one of the

highest quality protein database that has been manually

annotated by the domain experts. It has many kinds of

annotations. We made a table that has 4 kinds of

functional annotations among them and it had 2.2

million annotatons.

We used MySQL5.0 DBMS and Java language for

the query translation. The experiment sever has 2.8GHz

dual CPU, 4G RAM and Linux OS.

3.2. Experimental Result and Discussion

We set up several queries against human-related

proteins. “Find human proteins which are doing

molecular functions described in a Gene Ontology

term.” The query can be expanded into 3 categories.

Q0: Original query

Q1: Given a term, expand the query using just

mapping

(EXPAND ipr=0 ec=0 spkw=0)

Q2: Given a term, expand the query using parent and

ancestor relationship.

(EXPAND go>-3 ipr>-3 ec>-3 spkw=0)

Q3: Given a term, expand the query using child and

descendant relations

(EXPAND go<+3 ipr<+3 ec<+3 spkw=0)

In Q1~Q3, a Gene Ontology term is given as an

original term. SwissProt keyword has a flat structure.

Therefore, we do not apply parent-child relations to

SwissProt keywords in Q2 and Q3. In Q1, we add

InterPro, EC and SwissProt terms which have a

mapping relation to the original term. In Q2, we add

GO, InterPro and EC terms which have a parent or a

grand parent relation to the original term. In Q3, we

add GO, InterPro and EC terms which have a child or a

descendant relation to the original term.

In Figure 6~Figure8, the level shows the level of the

original term in the Gene Ontology DAG structure. We

randomly select a term from the Gene Ontology in the

level 5~10 and tested query expansion 1000 times to

obtain an average.

In Figure 6, the graph shows the number of results

in the query expansion. This number means the count

of proteins as a query result. When we make a query

with the original term(Q0), the maximum number of

result is only 27 in level 5. When we apply query

expansions(Q1, Q2, Q3), the number of query result is

greatly increased especially in Q2 and Q3. If we do not

apply the query expansion, many useful results will be

missing.

Figure 7 shows the graph of the overhead for the

query translation and the query processing.

As a result, it shows that there is almost no cost for

query expansion. The scale of time is msec and the

result shows that the worst case(level 5) does not take a

second. We can conclude that the power of DBMS

treats query expansion very efficiently.

Figure 8 shows the number of added terms during

the query expansion. We can see that it affects the size

of result and the query execution time. If the annotation

graph has a tree-like structure the added terms will be

increasing mostly in Q3. Our test result shows that

there is not much difference between Q2 and Q3. We

found out that InterPro entries had many multiple paths

and it is not a tree-like structure. It explains why there

is little difference between Q2 and Q3.

In this experiment, our conclusion is that expanded

query using SQL shows little overhead but gives much

more answers. RDBMS has its own index on the

annotation column. It ensures that the query execution

time does not take long.

Each annotation system which is used in this

experiment has its own purpose. Gene Ontology is

made for the description of gene product‟s function,

process, and location. InterPro entry classification is

made for the protein family and domain information.

Enzyme number is used for the enzyme classification.

SwissProt keyword has its coverage in multiple areas. It

is hard to combine queries against these complex

systems without proper support. Our approach shows

that the simple extension of SQL can solve this kind of

problems efficiently.

4. Related Work

Database research community shows much interest in

the annotation management in DBMS[5, 12, 18]. They

are trying to manage annotations inside the DBMS.

They assume scientific domains, especially biology

data for annotation management because annotations

play a key role in knowledge sharing.

In their researches, [5] addressed the problem of

annotation propagation. There might be multiple

annotations for the same entity. Query result might miss

the needed annotations. They proposed a SQL

extension to handle this situation. In [12], they

introduced the annotation mechanism which could

annotate the value association in the record. They tried

to capture value association with annotation algebra.

[18] investigated the problem of annotation insertion

and deletion history. They provided the provenance

tracking method for the annotation.

Our research overlaps with [5, 12] in terms of the use

of RDBMS environment. However, the problem of

processing relations between annotations has not been

addressed. In this study, our theme focuses on the

management of structural annotation relations.

Tree node labeling and DAG node labeling is

extensively studied in the context of XML query

processing[9, 15]. They focused on how to decide

parent-child relation efficiently using the label of graph

nodes. In our annotation index, we are also interested in

deciding the parent-child or ancestor-descendant

relation in a short time. The different situation is that

we are not sensitive to the order between siblings or

global order in the document. Relabeling cost is not our

concern either because annotation vocabularies are not

updated as often as database itself. Therefore, we

judged that the dewey encoding method is suitable for

our application.

In the biology community, there is a great effort in

making annotation schemes and annotating data using

these schemes. Gene Ontology[13] consortium consists

of 14 public DB groups and provide controlled

vocabularies for functional annotations. The GOA

project[7, 8] is a large scale data annotation in

UniProt[19] with Gene Ontology, which includes

manual and electronic associations. They also provide

web based application program such as AmiGO[14]

and QuickGO[11]. They have a web interface for

ontology navigation and keyword searching. They do

not support any facilities for querying multiple

hierarchical structures at a time.

Their main contribution is making the data rather

than searching them. In that respect, our proposed

method is a good fit for efficient search of their data.

5. Conclusion and Future Work

We have described a query expansion technique for the

functional annotations in biological databases. We

showed that this technique helps users get more results

without much overhead of time. We investigated the

relation between different annotation schemes. From

this observation, we found the need to cross reference

differently annotated data. Our proposed method

supports this need by the query expansion against the

hierarchical structure of different annotation schemes.

We proposed a simple extension of SQL. SQL and

RDBMS have been friendly to the users. They are also

generally used for the biological data integration

environment. We can use the existing mature

technologies to its full extent.

There are relation types other than the parent-child

relation. This is a good point of extension to our

approach. Ranking of the results could be a good

question in the query expansion. It will help users

refine their query result.

6. Acknowledgements

This research was supported by the Ministry of

Information and Communication, Korea, under the

College Information Technology Research Center

Support Program, grant number IITA-2006-C1090-

0603-0031

7. References

[1] Dewey Decimal Classification "http: //www. oclc.

org/dewey/"

[2] A. Bairoch, "The ENZYME database in 2000",

Nucleic Acids Research, 2000, pp. 304-305.

[3] W. C. Barker et al., "The Protein Information

Resource (PIR)", Nucleic Acids Research, 2000, pp.

41-44.

[4] D. A. Benson et al., "GenBank", Nucleic Acids

Research, 2006, pp. D16-20.

[5] D. Bhagwat et al., "An annotation management

system for relational databases", VLDB, 2005, pp.

373-396.

[6] B. Boeckmann et al., "The SWISS-PROT protein

knowledgebase and its supplement TrEMBL in

2003", Nucleic Acids Research, 2003, pp. 365-370.

[7] E. Camon et al., "The Gene Ontology Annotation

(GOA) Project: Implementation of GO in SWISS-

PROT, TrEMBL, and InterPro", Genome Research,

2003, pp. 662-672.

[8] E. Camon et al., "The Gene Ontology Annotation

(GOA) Database: sharing knowledge in Uniprot

with Gene Ontology", Nucleic Acids Research,

2004, pp. D262-266.

[9] C. Edith et al., "Labeling dynamic XML trees",

Proceedings of the twenty-first ACM SIGMOD-

SIGACT-SIGART symposium on Principles of

database systems, 2002, pp. 271-281

[10] Gene Ontology Annotation(GOA) Database, "http:

//www.ebi.ac.uk/GOA/"

[11] QuickGO, "http://www.ebi.ac.uk/ego/"

[12] F. Geerts et al., "MONDRIAN: Annotating and

querying databases through colors and blocks",

ICDE, 2006, pp. 82

[13] C. Gene Ontology, "The Gene Ontology (GO)

project in 2006", Nucleic Acids Research, 2006, pp.

D322-326.

[14] AmiGO, "http://www.godatabase.org/cgi-bin/ami

go/go.cgi"

[15] T. Igor et al., "Storing and querying ordered XML

using a relational database system", SIGMOD,

2002, pp. 204-215

[16] N. J. Mulder et al., "InterPro, progress and status in

2005", Nucleic Acids Research, 2005, pp. D201-

205.

[17] Mappings of External Classification Systems to GO,

"http://www.geneontology.org/GO.indices.shtml"

[18] B. Peter et al., "Provenance management in curated

databases", SIGMOD, 2006, pp. 539-550

[19] C. H. Wu et al., "The Universal Protein Resource

(UniProt): an expanding universe of protein

information", Nucleic Acids Research, 2006, pp.

D187-191.

http://www.oclc.org/dewey/
http://www.oclc.org/dewey/
http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/ego/
http://www.geneontology.org/GO.indices.shtml

