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Presented in this paper is the data model for ORION, a prototype database system that adds 
persistence and sharability to objects created and manipulated in object-oriented applications. The 
ORION data model consolidates and modifies a number of major concepts found in many object- 
oriented systems, such as objects, classes, class lattice, methods, and inheritance. These concepts are 
reviewed and three major enhancements to the conventional object-oriented data model, namely, 
schema evolution, composite objects, and versions, are elaborated upon. Schema evolution is the 
ability to dynamically make changes to the class definitions and the structure of the class lattice. 
Composite objects are recursive collections of exclusive components that are treated as units of 
storage, retrieval, and integrity enforcement. Versions are variations of the same object that are 
related by the history of their derivation. These enhancements are strongly motivated by the data 
management requirements of the ORION applications from the domains of artificial intelligence, 
computer-aided design and manufacturing, and office information systems with multimedia 
documents. 
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human information processing; H.2.1 [Database Management]: Logical Design---data models; H.4.1 
[Information Systems Applications]: Office Automation 
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1. INTRODUCTION 

In recent years, object-oriented programming has gained a tremendous popularity 
in the design and implementation of emerging data-intensive application systems. 
These include artificial intelligence (AI), computer-aided design and manufac- 
turing (CAD/CAM), and office information systems (01s) with multimedia 
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documents [2,8,15]. Object-oriented programming offers a number of important 
advantages for these applications over traditional control-oriented programming. 
One is the modeling of all conceptual entities with a single concept, namely, 
objects. An object represents anything from a simple number, say, the number 
25, to a complex entity, such as an automobile or an insurance agency. The state 
of an object is captured in the instance variables. The behavior of an object is 
captured in messages to which an object responds. The messages completely 
define the semantics of an object. 

Another advantage of object-oriented programming is the notion of a class 
hierarchy and inheritance of properties (instance variables and messages) along 
the class hierarchy. The class hierarchy captures the IS-A relationship between 
a class and its subclass (equivalently, a class and its superclass). All subclasses of 
a class inherit all properties defined for the class and can have additional 
properties local to them. The notion of property inheritance along the hierarchy 
facilitates top-down design of the database, as well as applications. 

We are presently prototyping an object-oriented database system, called 
ORION, to support the data management needs of object-oriented applications 
from the CAD/CAM, AI, and 01s domains. The intended applications for 
ORION impose two types of requirements: advanced functionality and high 
performance. The ORION architecture has been designed to satisfy these require- 
ments. ORION will provide a number of advanced features that conventional 
commercial database systems do not, including version control and change 
notification [7], storage and presentation of unstructured multimedia data [31], 
and dynamic changes to the database schema [4]. For high performance, ORION 
will support appropriate access paths and techniques for query processing, buffer 
management, and concurrency control. 

To derive an object-oriented application interface to ORION, our initial plan 
was simply to use a data model from some of the existing object-oriented systems 
[28] or object-oriented data models [ 1, 3, 241. However, two major problems 
rendered this approach impossible. One was that there is no consensus about the 
object-oriented model; different object-oriented systems support different notions 
of objects. We had to extract and consolidate a number of major concepts found 
in many object-oriented systems and use them as the basis for our data model. 

Another problem was that most existing object-oriented systems are program- 
ming language systems [6, 13, 20, 21, 22, 291. As such, their data models 
completely ignore many important database issues, such as deletions of persistent 
objects, dynamic changes to the database schema, and predicate-based query 
capabilities. They also lack concepts that are important to applications, such as 
composite objects and aggregate objects for defining and manipulating complex 
collections of related objects. Further, they do not include version control, which 
most application systems in the CAD/CAM and 01s domains require. We had 
to augment the basic set of object concepts with these additional concepts and 
capabilities. 

In Section 2, we provide a review of the fundamental object-oriented concepts, 
including approaches to the problem of conflict resolution, which arises when a 
class inherits properties from one or more superclasses, and our own approach 
to supporting predicate-based queries against the database. In Section 3 we 
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introduce a formal framework for understanding the taxonomy and semantics of 
schema change operations that we allow, including changes to the class definitions 
and the class lattice structure. In Section 4 we define the semantics of composite 
objects and show their integration into the object-oriented data model. Section 5 
shows the integration of our model of versions into the object-oriented data 
model. 

2. OBJECT-ORIENTED CONCEPTS 

Existing object-oriented systems exhibit significant differences in their support 
of the object-oriented paradigm; Stefik and Bobrow [28] provide an excellent 
account of different variations of the object concepts. In this section we review 
the basic object concepts, and, where appropriate, show how we have refined 
them to suit the requirements of our applications in a database environment. 

2.1 Basic Concepts 

In object-oriented systems, all conceptual entities are modeled as objects. An 
ordinary integer or string is as much an object as is a complex assembly of parts, 
such as an aircraft or a submarine. An object consists of some private memory 
that holds its state. The private memory is made up of the values for a collection 
of instance variables. The value of an instance variable is itself an object and 
therefore has its own private memory for its state (i.e., its instance variables). A 
primitive object, such as an integer or a string, has no instance variables. It only 
has a value, which itself is an object. More complex objects contain instance 
variables, which, in turn, contain other instance variables. Further, two objects 
may have instance variables that refer to a common object. For example, the 
value of the Manufacturer instance variable of a vehicle may be an object that 
represents a certain auto company, and that same auto company may also be the 
value of the Employer instance variable of a person. 

The behavior of an object is encapsulated in methods. Methods consist of code 
that manipulates or returns the state of an object. Methods are a part of the 
definition of the object. Methods, as well as instance variables, however, are not 
visible from outside of the object. Objects can communicate with one another 
through messages. Messages, together with any arguments that may be passed 
with the messages, constitute the public interface of an object. For each message 
understood by an object, there is a corresponding method that executes the 
message. An object reacts to a message by executing the corresponding method 
and returning an object in response. 

A program may create and reference a large number of objects. A database 
may contain an even larger collection of objects. If every object is to carry its 
own instance variable names and its own methods, the amount of information to 
be specified and stored can become unmanageably large. For this reason, as well 
as for conceptual simplicity, “similar” objects are grouped together into a class. 
All objects belonging to the same class are described by the same instance 
variables and the same methods. They all respond to the same messages. Objects 
that belong to a class are called instances of that class. A class describes the form 
(instance variables) of its instances and the operations (methods) applicable to 
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its instances. Thus, when a message is sent to an instance, the method that 
implements that message is found in the definition of the class. 

ORION supports two features to further reduce redundant storage and speci- 
fication of objects: shared-value and default-value instance variables. For such 
variables, a value must be specified. For a shared-u&e variable of a class, all 
instances of the class take on the specified value. This is similar to the class 
variable concept in Smalltalk [13]. For a default-u&e uariable, those instances 
of a class whose value for the instance variable is not specified take on the 
specified default value. It is certainly possible for the user to implement the 
concept of default values through the use of a special-purpose instance creation 
method for each class. However, for ORION applications that use default values 
extensively, the provision of the default value concept as a modeling feature 
makes the creation of classes considerably simpler. 

For example, we may define instance variables Medium and TakeoffDistance 
for the class Aircraft. The instance variable Medium may be shared valued and 
take on the same value for every aircraft. The instance variable TakeoffDistance, 
on the other hand, may have a default value of 300. In case a new aircraft is 
created and its takeoff distance is not specified, the value of that variable is 300. 

In ORION, as in most object-oriented systems, both classes and instances are 
viewed as objects. This is necessary mainly for uniformity in the handling of 
messages. Messages are sent to objects. In most cases messages are sent to 
instance objects. However, how can one, for example, create an instance object 
in the first place? Since the instance does not exist, it cannot be sent a message 
to create itself. This problem is solved by treating a class as a (class) object. To 
create an instance of a class, a message is sent to the corresponding class object. 
There are also many other situations in which it is necessary to send messages 
to class objects, including inquiry of the definition of a class, changing the 
definition of a class, and so on. 

Grouping objects into classes helps avoid the specification and storage of much 
redundant information. The concept of a class hierarchy extends this information 
hiding capability one step further. A class hierarchy is a hierarchy of classes in 
which an edge between a node and a child node represents the IS-A relationship; 
that is, the child node is a specialization of the parent node (and conversely, the 
parent node is a generalization of the child node [27]). For a parent-child pair of 
nodes on a class hierarchy the parent is called the superclass of the child, and 
the child is called the subclass of the parent. The instance variables and methods 
(collectively called properties) specified for a class are shared (inherited) by all 
its subclasses. Additional properties also may be specified for each of the sub- 
classes. A class needs to inherit properties only from its immediate superclass. 
Since the latter inherits properties from its own superclass, it follows by induction 
that a class inherits properties from every class in its superclass chain. 

Smalltalk [12] originally restricted a class to only a single superclass. In other 
words, the class hierarchy was limited to being a tree. Most other object-oriented 
systems, as well as the recent version of Smalltalk, have relaxed this restriction. 
In these systems (and in ORION) a class can have more than one superclass. 
Thus the class hierarchy is generalized to a lattice. (We borrow the term lattice 
from the literature on object-oriented systems to mean a directed acyclic graph 
structure.) 
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We emphasize, however, that ORION still requires instance objects to belong 
to only one class. Sometimes, it is useful to allow an instance object to belong to 
more than one class. That is, an instance object, such as “my-car,” may belong 
to two different classes, say, LandVehicle and PetroleumFueledMotorizedVehicle. 
We have concluded that the consequences of this generality are lower perform- 
ance and a large increase in system complexity. This results from the fact that 
the structure of an instance object is completely variable; since it can belong to 
any number of classes, its instance variables cannot be determined a priori, and 
the identifiers of all classes to which an instance belongs must be stored with 
each and every instance. Only by examining the content of an instance object 
and determining the classes to which it belongs will it be possible to determine 
its instance variables and methods. To model “my-car” in the above example, 
the ORION user must create a new class called Automobile with two superclasses 
LandVehicle and PetroleumFueledMotorizedVehicle. All instances of cars, in- 
cluding “my-car,” then belong to the Automobile class, rather than to two 
different classes. 

It is often desirable not to require the value of an instance variable to belong 
to a particular class, that is, not to bind the possible values of the instance 
variable to any single class. This means that two different instances of the same 
class may reference objects from two different classes, through the same instance 
variable. For example, the VehicleId of one aircraft may be an integer object, and 
that of another aircraft may be a string object. In other words, the class definition 
for Aircraft does not bind the possible values of VehicleId to either the integer 
class or the string class. 

However, for the purposes of integrity control, it is also desirable to bind the 
domain (called data type in conventional programming languages, such as Pascal 
and C) of an instance variable to a specific class (and therefore implicitly to all 
subclasses of the class). For example, the Manufacturer instance variable of the 
Aircraft class may be bound to the class Company. Thus a manufacturer is a 
company. Further, if the Company class has subclasses, the instance variable 
Manufacturer may also take on as its value an instance of any subclass of 
Company. Thus ORION supports both typing and no typing. 

2.2 Class Lattice and Conflict Resolution 

The class lattice simplifies data modeling and often requires fewer classes to be 
specified than are required with a class hierarchy. In a class lattice, however, a 
class has multiple superclasses and thus inherits properties from each of the 
superclasses. This feature is often referred to as multiple inheritance [21, 281. In 
a class lattice, two types of conflicts may arise in the names of instance variables 
and methods. One is the conflict between a class and its superclass (this type of 
problem also arises in a class hierarchy). Another is between the superclasses of 
a class; this is the consequence of multiple inheritance. In this section we discuss 
approaches to resolving these two types of inheritance conflicts. 

In all systems we are aware of, name conflicts between a class and its 
superclasses are resolved by giving precedence to the definition within the class 
over that in its superclasses. For example, if the class definition for a class 
Aircraft specifies an instance variable VehicleId, it is the definition used for every 
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Aircraft instance. This definition overrides any definition that may be inherited 
from any superclass. 

The approach used in many systems to resolve name conflicts among super- 
classes of a given class is as follows. If an instance variable or a method with the 
same name appears in more than one superclass of a class C, the one chosen by 
default is that of the first superclass in the list of (immediate) superclasses for 
C. For example, as shown in Figure 1, the class Submarine has to inherit an 
instance variable Size either from the superclass WaterVehicle (which defines 
Size) or from NuclearPoweredVehicle (which inherits Size from its superclass 
MotorizedVehicle). If, in the definition of the class Submarine, Nuclear- 
PoweredVehicle is specified as the first superclass, Size will be inherited from 
NuclearPoweredVehicle. 

Since this default conflict resolution scheme hinges on the permutation of the 
superclasses of a class, unlike most other systems, ORION allows the user to 
explicitly change this permutation at any time. Further, ORION provides two 
ways in which a user can override the default conflict resolution. 

(1) The user may explicitly inherit one instance variable or method from 
among several conflicting ones. For example, in Figure 1, the user who defines 
the class Submarine may choose to inherit the instance variable Size from 
WaterVehicle rather than from NuclearPoweredVehicle, even if Nuclear- 
PoweredVehicle is the first superclass in the list of superclasses of Submarine. 

(2) The user may explicitly inherit one or more instance variable or method 
that have the same name and rename them within the new class definition. For 
example, the definer of the class Submarine may specify that the instance variable 
Size be inherited from WaterVehicle with the new name CrewSize, and also from 
NuclearPoweredVehicle with the name Size (ORION ensures that all names 
inherited or defined within a class are distinct). 

2.3 ORION Class Lattice and the Set Class 

We mentioned earlier that the capability of issuing predicate-based queries 
against a large database of persistent objects is an important requirement in a 
database environment. A few operational object-oriented database systems sup- 
port associative queries [3, 241. However, most existing object-oriented systems 
are programming language systems, and as such they do not support associative 
queries. In this section we provide our simple extension to the existing notion of 
a class lattice as a formal basis for allowing queries against unnamed instances 
of classes. 

As in any object-oriented system, ORION defines a class called OBJECT as 
the root of the class lattice. The class lattice includes not only all user-defined 
classes, but also all system-defined classes. Figure 2 shows all ORION-defined 
classes as subclasses of the OBJECT class. The class PType provides the basis 
for defining all classes that can be used as primitive domains of instance variables. 
The class Collection consists of objects that are collections of other objects. A 
subclass of Collection is the class Set, each of whose instances is a set (a collection 
of objects with no duplicates) [9, 131. Whereas the class Collection supplies 
messages for iterating over the elements in a collection object, the class Set 
supplies further messages for searching the elements of a set, adding an element 
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Fig. 1. Resolution of name conflicts among instance variables. 

Integer Float String Boolean Set 

Fig. 2. Primitive class hierarchy in ORION. 

to a set, etc. We may define subclasses of the Collection class later in order to 
add additional capabilities on lists of objects, such as doubly linked lists, stacks, 
and queues. Each class object belongs to a class, the system-defined class Class. 
All class objects are instances of this class. To create a new class, a message 
needs to be sent to the Class class. 

For each user-defined class and for the class PType and its subclasses, ORION 
implicitly defines a corresponding class, a Set-Of class, as a subclass (immediate 
or indirect) of the Set class. These Set-Of classes form a lattice parallel to the 
lattice of user-defined classes. For example, the class lattice of Figure 3a is 
implicitly expanded to the lattice of Figure 3b. 

One special instance of the Set-Of class of a user-defined class C is the set of 
all instances of the class C. Another special instance of the Set-Of class of a 
user-defined class C is the set of all instances of C or its subclasses. The notion 
of a set object is particularly important for a database of persistent objects, which 
outlive programs that created them. While a program is in execution, objects 
created by a program can be referenced through symbols that point to them. A 
program’s symbol table provides handles into objects. However, a newly started 
program has direct reference to instances of classes through its symbol table. 
Instead, the program can refer to the two special set objects in the Set-of class 
of a class C, thereby referring either to all instances of C, or to all instances of C 
and its subclasses. A simple naming convention may be used to refer to these 
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Fig. 3. Expansion of a class hierarchy (a) with set classes (b). (a) Primitive class hierarchy. (b) Class 
hierarchy expanded with set classes. 

objects, for example, the name C to refer to the set object that contains all 
instances of the class C, and the name C* to refer to the set object that contains 
all instances of C and its subclasses. Predicate-based queries are messages to 
these set objects and return subsets of these sets. 

For example, for the class MotorizedVehicle, the system defines a class 
SetofMotorizedVehicle, which has at least one instance, the set object containing 
all instances of the class MotorizedVehicle. This special set object provides a 
handle into the instances of the class MotorizedVehicle. Individual instances of 
MotorizedVehicle may be referenced as elements of this set. 

Another motivation for the automatic generation of the Set-Of classes corre- 
sponding to user-defined classes is that instance variables often require values 
that are sets of objects. Just as any other object, set objects must belong to some 
class. Without the notion of implicitly defined Set-Of classes to which such 
objects can belong, the user will either have to create a class explicitly to capture 
the structure and semantics of these objects or treat them as instances of the 
class OBJECT, thereby losing their semantics. 

3. SCHEMA EVOLUTION 

ORION applications require considerable flexibility in dynamically defining and 
modifying the database schema, that is, the class definitions and the inheritance 
structure of the class lattice [19, 311. Existing object-oriented systems support 
only a few types of changes to the schema, without requiring system shutdown. 
This is the consequence of the fact that existing object-oriented systems are 
programming language systems. We note that even existing conventional data- 
base systems allow only a few types of schema changes: For example, SQL/DS 
only allows the dynamic creation and deletion of relations (classes) and the 
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addition of new columns (instance variables) in a relation [ 141. This is because 
the applications they support (conventional record-oriented business applica- 
tions) do not require more than a few types of schema changes; also the data 
models they support are not as rich as object-oriented data models. 

In this section we first provide a taxonomy of schema change operations 
supported in ORION. We then present a framework for understanding and 
enforcing the semantics of each of the schema change operations. The framework 
consists of the set of properties, which we call invariants of the class lattice, and 
a set of rules for resolving ambiguities in enforcing the invariants. Finally, we 
describe the semantics of some of the schema change operations to illustrate the 
application of the schema evolution framework. We refer the reader to our earlier 
work [4] for more detailed discussions of the contents of this section. A graphics- 
based schema editor has been implemented to validate the semantics of schema 
evolution. A detailed presentation of the schema editor will be given in a 
forthcoming paper. 

3.1 Taxonomy of Schema Evolution 

Changes to the class lattice can be broadly categorized as (1) changes to the 
contents of a node, (2) changes to an edge, and (3) changes to a node. ORION 
allows all three types of changes. These changes can be classified further. In 
particular, changing the contents of a node implies adding or dropping instance 
variables or methods, or changing the properties of existing instance variables or 
methods. The schema change taxonomy is as follows: 

(1) Changes to the contents of a node (a class) 
(1.1) Changes to an instance variable 

(1.1.1) Add a new instance variable to a class 
(1.1.2) Drop an existing instance variable from a class 
(1.1.3) Change the Name of an instance variable of a class 
(1.1.4) Change the Domain of an instance variable of a class 
(1.15) Change the inheritance (Parent) of an instance variable (inherit 

another instance variable with the same name) 
(1.1.6) Change the Default value of an instance variable 
(1.1.7) Manipulate the Shared value of an instance variable 

(1.1.7.1) Add a Shared value 
(1.1.7.2) Change the Shared value 
(1.1.7.3) Drop the Shared value 

(1.2) Changes to a method 
(1.2.1) Add a new method to a class 
(1.2.2) Drop an existing method from a class 
(1.2.3) Change the Name of a method of a class 
(1.2.4) Change the Code of a method in a class 
(1.2.5) Change the inheritance (Parent) of a method (inherit another 

method with the same name) 
(2) Changes to an edge 

(2.1) Make a class S a superclass of a class C 
(2.2) Remove a class S from the superclass list of a class C 
(2.3) Change the order of superclasses of a class C 
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(3) Changes to a node 
(3.1) Add a new class 
(3.2) Drop an existing class 
(3.3) Change the name of a class 

3.2 lnvariants of Schema Evolution 

In this section we summarize the properties of the class lattice that we can 
extract from our data model. We call these properties invariants of the class 
lattice. Any changes to the class definitions and to the structure of the class 
lattice must preserve these properties, 

3.2.1 Class Lattice Invariant. The class lattice is a rooted and connected 
directed acyclic graph with labeled edges. The directed acyclic graph (DAG) has 
exactly one root, the class OBJECT. The DAG is connected, that is, there are 
no isolated nodes. Edges are labeled such that all edges directed to any given 
node have distinct labels (the edges are used to aid conflict resolution, as we 
show in Section 3.3). 

3.2.2 Distinct Name Invariant. All instance variables and methods of a class, 
whether locally defined or inherited, must have distinct names. 

3.2.3 Distinct Identity Invariant. All instance variables and methods of a class 
have distinct origin. For example, referring back to Figure 1, the class Submarine 
can inherit the instance variable Weight from either the class WaterVehicle or 
the class NuclearPoweredVehicle. In both these superclasses, however, Weight 
has the same origin, namely, the instance variable Weight of the class Vehicle, 
where Weight was originally defined. Therefore, the class Submarine must have 
only one occurrence of the instance variable Weight. 

3.2.4 Full Inheritance Invariant. A class must inherit all instance variables 
and methods from each of its superclasses. There is no selective inheritance, 
unless the full inheritance invariant should lead to a violation of the distinct 
name and distinct identity invariants. 

3.2.5 Domain Compatibility Invariant. If an instance variable V, of a class C 
is inherited from an instance variable Vl of a superclass of C, then the domain 
of V, must either be the same as that of Vl, or a subclass of VI. For example, if 
the domain of instance variable Manufacturer in the Vehicle class is the Company 
class, then the Manufacturer of a MotorizedVehicle can be a Company or a 
subclass of Company, for example, a MotorizedVehicleCompany. 

3.3 Rules of Schema Evolution 

The invariants of the class lattice hold at every quiescent state of the schema, 
that is, before and after a schema change operation. They guide the definition of 
the semantics of every meaningful schema change operation by ensuring that the 
change does not leave the schema in an inconsistent state (one that violates an 
invariant). Occasionally, however, several meaningful ways of interpreting 
a schema change will result in a consistent schema. To select one that is seman- 
tically the most meaningful, we need rules that govern our schema change 
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semantics. The rules fall into three categories: default conflict resolution rules, 
property propagation rules, and DAG manipulation rules. 

3.3.1 Default Conflict Resolution Rules. The following three rules select a single 
inheritance option whenever there is a name or identity conflict. They ensure 
that the distinct name and distinct identity invariants are satisfied in a deter- 
ministic way. The user may override the default conflict resolution rules by 
explicit requests to resolve conflicts differently. 

Rule 1. If an instance variable is defined within a class C, and its name is the 
same as that of an instance variable of one of its superclasses, the newly defined 
instance variable is selected over the conflicting instance variable of the super- 
class. 

Rule 2. If two or more superclasses of a class C have instance variables with 
the same name, but distinct origin, the instance variable selected for inheritance 
is that from the first superclass (corresponding to the node with the lowest 
labeled edge coming into C) among conflicting superclasses. 

Rule 3. If two or more superclasses of a class C have instance variables with 
the same origin, the instance variable with the most specialized (restricted) 
domain is selected for inheritance. However, if the domains are the same, or if 
one domain is not a superclass of the other, the instance variable inherited is 
that of the first superclass among conflicting superclasses. 

For example, in Figure 1, if the domain of Manufacturer of Nuclear- 
PoweredVehicle is Company, and the domain of Manufacturer of WaterVehicle 
is WaterVehicleCompany, which is a subclass of Company, the instance variable 
inherited into the class Submarine is the Manufacturer instance variable from 
the class WaterVehicle. 

3.3.2 Property Propagation Rules. The properties of an instance variable, once 
defined or inherited into a class, can be modified in a number of ways. In 
particular, its name, domain, default value, or shared value may be changed. 
Also, an instance variable that is not presently a shared value can be made one, 
or vice versa. Further, the properties of a method belonging to a class may be 
modified by changing its name or code. The following rule provides guidelines 
for supporting all changes to the properties of instance variables and methods. 

Rule 4. When the properties of an instance variable or method in a class C are 
changed, the changes are propagated to all subclasses of C that had inherited 
them, unless these properties were previously redefined within the subclasses. 

For example, if the instance variable Weight of the class Vehicle has its default 
value changed to 2000, then the same must be done to Weight in all subclasses 
of Vehicle. However, if Weight had earlier been explicitly assigned a default value 
of 1000 in the class MotorizedVehicle (which is a subclass of Vehicle), then 
MotorizedVehicle will not accept the change. Consequently, the change will also 
not be propagated to the subclasses of MotorizedVehicle that had inherited 
Weight from MotorizedVehicle. 

Rule 4 requires that changes to names of instance variables and methods also 
be propagated. However, the propagation of name changes or of newly added 
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instance variables or methods of a class may introduce new conflicts in the 
subclasses. We take the position that name changes are made primarily to resolve 
conflicts and as such should not introduce new conflicts. By a similar reasoning, 
we take the view that new instance variables and methods that give rise to new 
conflicts should not be propagated. Hence we have the following rule, which 
modifies Rule 4. 

Rule 5. A name change or a newly added instance variable or method is 
propagated to only those subclasses that encounter no new name conflicts as a 
consequence of this schema modification. A subclass that does not inherit this 
modification does not propagate it to its own subclasses. For the purposes of 
propagation of changes to subclasses, Rule 5 overrides Rule 2. 

3.3.3 DAG Manipulation Rules. We need a set of rules that govern the addition 
and deletion of nodes and edges from the class lattice. The following rule ensures 
that drastic changes are avoided when a new edge is added to a class lattice. 

Rule 6. (Edge Addition Rule). If a class A is made a superclass of a class B, 
then A becomes the last superclass of B. Thus any name conflicts that may be 
triggered by the addition of this superclass will not require any default resolution; 
that is, name conflicts can be ignored. If a newly inherited instance variable 
causes an identity conflict, Rule 3 must be applied to resolve the conflict. 

The deletion of an edge from node A to node B may cause node B to become 
isolated in the case in which class A is the only superclass of class B. The 
following rule is necessary to prevent such a violation of the class lattice invariant, 
which requires that the DAG be connected. 

Rule 7 (Edge Removal Rule). If class A is the only superclass of class B, and A 
is removed from the superclass list of B, then B is made an immediate subclass 
of each of A’s superclasses. The ordering of these new superclasses of B is the 
same as the ordering of superclasses of A (clearly, A and B will now have the 
same collection of superclasses). 

The addition of a new node should not violate the class lattice invariant. If the 
new node has no superclasses, it becomes an isolated node, violating the class 
lattice invariant. Hence we have the following rule. 

Rule 8 (Node Addition Rule). If no superclasses are specified for a newly added 
class, the root class OBJECT is the default superclass of the new class. 

The deletion of a node A is a three-step operation: first the deletion of all edges 
from A to its subclasses, then the deletion of all edges directed into A from its 
superclasses, and finally the deletion of node A itself. We need the following rule 
to ensure the preservation of the class lattice invariant when deleting a node. 

Rule 9 (Node Removal Rule). For the deletion of edges from A to its subclasses, 
Rule 7 is applied if any of the edges is the only edge to a subclass of A. Further, 
no system-defined classes can be deleted. 
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3.4 Semantics of Schema Evolution 

In this section we provide a description of the semantics of some of the schema 
change operations, to illustrate the application of the invariants of the class 
lattice and the schema change rules. We note that there is one very important 
aspect of schema evolution that the discussions of this section do not properly 
address. It concerns methods of a class containing references to inherited instance 
variables. For example, when an instance variable V is dropped from a class S, a 
method defined in a class C, a subclass of S, that references V will no longer be 
operable. It is possible to efficiently detect methods that may become inoperable 
as a result of schema change operations. However, we defer to a forthcoming 
paper detailed discussions of how we address this and other problems with 
methods in the context of schema evolution. 

(1) Define a new cluss C. The new class C may be created as a specialization 
of an existing class or classes. The latter classes can be specified as the super- 
classes of the new class. As discussed earlier, the instance variables specified for 
C will override any conflicting instance variables inherited from the superclasses 
(by rule 1). If there is a name conflict involving the instance variables that C 
inherits from its superclasses, default conflict resolution rules 2 and 3 are used, 
unless the user explicitly overrides the default rules. 

The class C may also be defined without any superclasses. In this case, C 
is made a subclass of Object (rule 8). The user may, at a later time, add super- 
classes for C, in which case Object will no longer be an immediate superclass 
of c. 

(2) Add a new instance variable to a class C. The new instance variable, in 
case of a conflict with an already inherited instance variable, will override the 
inherited variable (rule 1). In that case, the inherited instance variable must be 
dropped from C and replaced with the new instance variable, and existing 
instances of C will take on the value nil or user-specified default for the new 
instance variable. 

If C has subclasses, they will inherit the new instance variable of C. If there is 
a conflict with an instance variable that they have already defined or inherited, 
the new variable is ignored (rule 5). If there is no conflict, the subclasses inherit 
the new instance variable, together with a default value, if any. 

(3) Drop a class C. Whenever a class definition is dropped, all its instances 
are deleted automatically, since instances cannot exist outside of a class. However, 
subclasses of C, if any, are not dropped; subclasses of C will lose C as their 
superclass. However, if C was their only superclass, they will gain C’s superclasses 
as their immediate superclasses (rule 9). 

Further, when a class C is dropped, its subclasses will lose the instance variables 
(and methods) that they had previously inherited from C. If, in the process, a 
subclass of C loses an instance variable V that was selected over a conflicting 
instance variable in another superclass of that subclass, it will now inherit the 
alternate definition of V (to maintain the full inheritance invariant). Conse- 
quently, the instances of any such subclass will lose their present values for V 
and inherit the default value (or nil) under the new definition of V. 
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When an instance of the class C is dropped, all objects that reference it will 
now be referencing a nonexistent object. The user will need to modify those 
references when they are encountered. ORION will not automatically identify 
references to nonexistent objects because of the performance overhead. 

If the class C being dropped is presently the domain of an instance variable VI 
of some other class, VI’s domain becomes the first superclass of the class C. Of 
course, the user has the choice of specifying a new domain for VI. 

(4) Drop an instance variable V from a class C. The instance variable V is 
dropped from the definition (and from the instances) of the class C. To maintain 
the full inheritance invariant, C will inherit V from another superclass if there 
has been a name conflict involving V. All subclasses of C will also be affected if 
they have inherited V. If C or a subclass of C has methods that refer to V, such 
methods will now become invalid. The user can either delete these methods or 
redefine them to make all references consistent with the new definition of C and 
its subclasses. 

(5) Change the domain of an instance variable V of a class C. The domain of 
an instance variable is itself a class. The domain, class D, of an instance variable 
V of a class C may only be changed to a superclass of D. The values of existing 
instances of the class C are not affected in any way. If the domain of an instance 
variable V must be changed in any other way, V must be dropped, and a new 
instance variable must be added in its place. 

4. COMPOSITE OBJECTS 

Many applications require the ability to define and manipulate a set of objects 
as a single logical entity [3, 9, 15, 19, 23, 28, 311. For example, a vehicle is an 
object that contains a body object, which has a set of door objects, and each door 
has a position object and a color object. In other words, a body object exclusively 
belongs to (is a part of) a vehicle instance, and a set of doors, in turn, belongs to 
a body, and so on. In general, a complex object, such as a vehicle, forms a 
hierarchical structure of exclusive component objects. We define a composite 
object as an object with a hierarchy of exclusive component objects, and refer to 
the hierarchy of classes to which the objects belong as a composite object hierarchy. 

The object-oriented data model, in its conventional form, is sufficient to 
represent a collection of related objects. However, it does not capture the 
IS-PART-OF relationship between objects; one object simply references, 
but does not own, other objects. A composite object hierarchy captures the 
IS-PART-OF relationship between a parent class and its component classes, 
whereas a class hierarchy represents the IS-A relationship between a superclass 
and its subclasses. 

Composite objects add to the integrity features of an object-oriented data model 
through the notion of dependent objects. A dependent object is one whose 
existence depends on the existence of other objects and that is owned by exactly 
one object. For example, the body of a vehicle is owned by one specific vehicle 
and cannot exit without the vehicle that contains it. As such, a dependent object 
cannot be created if its owner does not already exist. This means that a composite 
object hierarchy must be instantiated in a top-down fashion; the root object of a 
composite object hierarchy must be created first, then the objects at the next 
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level, and so on. When a constituent object of a composite object is deleted, all 
its dependent objects must also be deleted. 

We note that an object may contain references to both dependent objects and 
independent objects, or to only dependent or independent objects. We use the 
term aggregate object to refer to such a general collection of objects. A composite 
object is a special case of an aggregate object. 

The definition of a set of objects as a composite object also offers an opportunity 
for performance improvement. ORION considers a composite object as a unit for 
clustering related objects on disk. This is because, if an application accesses the 
root object, it is often likely to access all (or most) dependent objects as well. 
Thus it is advantageous to store all constituents of a composite object as close to 
one another as possible on secondary storage. 

The notion of composite objects has been investigated by various researchers. 
It has been called a complex object in IBM’s experimental extension to SQL/DS 
[14] and a composite object in LOOPS [5]. Our contribution in this paper is in 
showing the integration of the data modeling concept of composite objects into 
an object-oriented data model. In particular, after a formal definition of composite 
objects, we specify our semantics of composite objects and relate them to object- 
oriented concepts. We then illustrate the composite object semantics in terms of 
schema definition, and creation and deletion of composite objects. We also 
indicate our approach to implementing composite objects, including enforcement 
of the semantics of composite objects, and physical clustering. 

4.1 Definitions 

A composite object can be defined in BNF as follows: 

(Composite Object) ::= (Composite Object Root) ((Linked Dependent )*), 
(Linked Dependent) ::= (Instance Variable) (Dependent Object), 
(Dependent Object) ::= (Leaf Object} 

( (Dependent Object Root) ((Linked Dependent)*) 
] ((Dependent Object)*]. 

In the above definition, the * is a metasymbol that denotes an indefinite number 
of occurrences. A composite object has a special instance object, called the root 
object. The root of the composite object is connected to multiple dependent 
objects, each through an instance variable in the root object. Each dependent 
object can be a simple object (with no dependent objects), or it can itself be the 
root of a hierarchical structure. A dependent object can also be a set of objects. 
In a composite object, the same instance object cannot be referenced more than 
once. Thus the definition of a composite object is a hierarchy of instance objects 
(and not a general digraph). However, all instance objects within a composite 
object can be referenced by instance objects that do not belong to the com- 
posite object, and these references can have the complete generality of a 
digraph, including digraphs with cycles. 

The instance objects that constitute a composite object belong to classes that 
are also organized in a hierarchy. This hierarchical collection of classes is called 
a composite object schema. A nonroot class on a composite object schema is called 
a component class. Each nonleaf class on a composite object schema has one or 
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more instance variables that serve as links, called composite links. We call 
instance variables that serve as composite links composite instance variables. 

In Figure 4, we illustrate a composite object schema for vehicles. The classes 
that are connected by bold lines form the composite object schema. The root cZa.ss 
is the class Vehicle. Through instance variables Body, Drivetrain, and Color, 
vehicle instances are linked to their dependent objects, which belong to classes 
AutoBody, AutoDrivetrain, and String. (An instance variable with a primitive 
domain, such as Integer or String, can always be considered a composite link. A 
value from a primitive domain can be freely copied; hence every reference to such 
an object can be exclusive. Thus two vehicles can have the color red because each 
vehicle refers to a separate string object “red.“) The Vehicle class has another 
instance variable called Manufacturer, but it is not a link to dependent objects. 
The instances of AutoBody and AutoDrivetrain, in turn, are connected to other 
dependent objects. A vehicle composite object then is an instance of the class 
Vehicle, together with an instance of each of the classes AutoBody, Auto- 
Drivetrain, and String (for Color). The brace in the figure indicates a set object. 
The instance variable Doors of the class AutoBody represents a set of Door 
instances, each of which has a Position and Color. 

4.2 Semantics of Composite Objects 
In this section we define the semantics of composite objects within an object- 
oriented framework. First, the semantics of a composite link are as follows: If 
there is a composite link from a class A to a class B through an instance variable 
V, of A, an instance of B can be referenced through V, by only one instance of 
A. There can be other instance objects that can also reference this instance of B, 
but any such reference cannot be through another composite link. In other words, 
if an instance object is referenced through a composite link, it must be the only 
composite link to the object. For example, an instance of the class Vehicle can 
have a composite link to an instance of the class AutoBody through the instance 
variable Body. No other instance of Vehicle can refer to this instance of AutoBody 
through the instance variable Body. Further, if an instance of some other class, 
say Inventory, has a reference to this instance of AutoBody, the reference must 
be through an instance variable that is not a composite link. 

The composite link property of an instance variable of a class is inherited by 
subclasses of that class. For example, if the class Automobile is a subclass of 
Vehicle, it inherits the instance variable Body from Vehicle. Further, because 
Body is a composite link in the Vehicle class, it will also be a composite link in 
the Automobile class. 

A composite instance variable may later be changed to a noncomposite instance 
variable, that is, it may lose the composite link property. If a class A has a 
composite link to a class B through an instance variable V and V becomes 
a noncomposite instance variable, then the class B may become the root class of 
a composite object schema through its composite links to other classes. 

However, we do not allow a noncomposite instance variable to acquire the 
composite link property later. An instance object may be referenced by any 
number of instances of a class through a noncomposite instance variable. How- 
ever, a dependent object of a composite object may be referenced by only one 
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Fig. 4. Vehicle composite hierarchy. 

instance of a class through a composite instance variable of the class. Therefore, 
to change a noncomposite instance variable to a composite instance variable 
makes it necessary to verify that existing instances are not referenced by more 
than one instance through the instance variable. This, in turn, makes it necessary 
to maintain a list of reference counts for each instance object, one reference 
count for each instance variable through which the instance object may be 
referenced. 

Next, composite objects can further enhance information hiding through the 
notion of value propagation [5]. Default values can be propagated from an instance 
object to all its dependent objects, thereby simplifying the definition of dependent 
objects. For example, the color of the body of a vehicle is, by default, the color of 
the vehicle. We note that value propagation refers to the sharing of the value of 
an instance variable between instance objects, whereas inheritance is the sharing 
of the name of an instance variable (and method) between classes. 

Values can be propagated only if an object has an instance variable that has 
the same name as some instance variable of a higher level object. Propagation of 
a value to a lower level object takes place from the lowest level containing object 
that has an appropriate value. Further, if the default value of a higher level object 
is changed, the new value is propagated as the default value of the dependent 
objects. As an example, in Figure 4 the default color of the doors can be the same 
as that of the vehicle’s body or of the vehicle. If a vehicle’s body did not have an 
instance variable named Color, or (if it did have such an instance variable, but) 
if the instance variable had no value assigned to it, then every door can assume 
its default color from the vehicle (bypassing the vehicle’s body). 

Value propagation is not automatic; it must be specified in the definition of 
the composite object schema. For example, unless indicated in the definition, the 
body of a vehicle does not assume the color of the vehicle. Once value propagation 
is specified, it takes precedence over inheritance from superclasses. For example, 
let us assume in Figure 4 that the domain of the instance variable Body of the 
class Vehicle is the class AutoBody, and that AutoBody inherits the instance 
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variable Color from its superclass SolidMatter. This class hierarchy is shown in 
Figure 5. Let us also assume that the default value of Color in SolidMatter is 
“blue.” The color of a vehicle’s body will not be blue; instead, it will assume the 
color of its containing vehicle. 

4.3 Schema Definition, Creation, and Deletion of Composite Objects 

A composite object schema is created through composite instance variables. 
These instance variables have component classes as their domains. For example, 
the class Vehicle in Figure 4 has a composite link to the class AutoBody through 
the instance variable Body. The instance variable Body has as domain the class 
Autobody, and it has the composite link property. The Vehicle class has another 
instance variable Driver-train, whose domain is the class AutoDrivetrain, and 
which is also a composite link. The classes AutoBody and AutoDrivetrain 
similarly have composite instance variables. 

Although Autobody is the domain of the composite instance variable Body of 
the class Vehicle, it may be used as the domain of other instance variables, 
including other composite instance variables. In fact, if Vehicle has two subclasses 
Car and Truck, they both inherit the instance variable Body, along with its 
domain (AutoBody) and the composite link property. However, an instance of 
AutoBody can be referenced by only one instance object through a composite 
instance variable. A particular instance of AutoBody cannot simultaneously be a 
part of both a Car and a Truck. 

An instance object can be made a part of a composite object only at the time 
of creation of that instance object. The integrity requirement for composite 
objects is that any instance object within a composite object cannot be referenced 
through more than one composite link. This integrity requirement is easily 
enforced. The only way in which a nonnull value can be assigned to a composite 
instance variable is by simultaneously creating that value (a dependent instance 
object). Any attempt to assign a nonnull value to a composite instance variable 
separately is rejected, because in our implementation instance objects within a 
composite object do not carry the identifier of the composite object to which they 
belong. Thus, for example, if an existing Body instance were to be separately 
assigned to a Vehicle instance, it would be prohibitively expensive to determine 
whether that body is already a part of some other vehicle. If that body were 
indeed a part of another vehicle, it would then have two parents, violating the 
integrity constraint on vehicle composite objects. 

An instance object, once it is created as a dependent object, cannot have 
independent existence. Therefore, if any instance object within a composite 
object is deleted, it causes a recursive deletion of instances that depend on the 
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object. The parent of this instance object now has a dangling reference. On a 
subsequent attempt to access an object through such a dangling reference, the 
application may choose to replace it with a null value. 

A dependent object remains a dependent object throughout its existence, unless 
a composite link is redefined in the schema as a noncomposite link. The only 
way in which a composite link between instance objects can be severed is by 
either deleting the dependent object or making it a part of some other composite 
object through an ExchangePart message. 

4.4 Clustering of Composite Objects 

In ORION all instances of the same class are placed in the same storage segment. 
Thus a class is associated with a single segment, and all its instances reside in 
that segment. The user does not have to be aware of segments; ORION automat- 
ically allocates a separate segment for each class. For clustering composite objects, 
however, it is often advantageous to store instances of multiple classes in the 
same segment. User assistance is required to determine which classes should 
share the same segment. 

The user may issue a message, a Cluster message, as a hint for ORION to 
cluster instances of a class with instances of other classes. A Cluster message 
specifies a list of class names, ListofClassNames. Instances of classes listed in 
the ListofClassNames are to be placed in a single segment. The initial size of the 
segment and any later increments to that size may be specified optionally. The 
user may sometimes need to cluster a new class C with some existing classes that 
have already been allocated a segment. In such case the user needs to issue a 
Cluster message, in which the ListofClassNames is a pair, namely, the class C 
and any of the existing clases with which C should share a segment. C will then 
share the same segment with the existing classes. 

As we have seen already, a dependent object is linked to its parent when it is 
created; as such, a dependent object can be stored close to its parent. Ideally, the 
constituents of a composite object should be stored clustered at all times. In 
general, this requirement is not a difficult one. A composite object can be stored 
in a sequence of linked pages. If the composite object increases in size, a new 
page can be acquired and linked in the manner of a B-tree. If a composite object 
shrinks in size, pages may be released or compacted. The only difficulty seems 
to arise with the implementation of the ExchangePart message. When two 
dependent objects (two subtrees) are exchanged between two parent objects, they 
really should exchange storage positions as well. For implementation simplicity, 
however, ORION does not recluster objects in response to an ExchangePart 
message. 

5. VERSIONS 

There is a general consensus that version control is one of the most important 
functions in various data-intensive application domains, such as integrated 
CAD/CAM systems and OISs dealing with compound documents [3, 10, 11, 
16-18, 25, 26, 301. Users in such environments often need to generate and 
experiment with multiple versions of an object before selecting one that satisfies 
their requirements. 
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In this section, we show our approach to integrating version concepts into an 
object-oriented data model, including some of the salient implementation issues. 
A full description of our model of versions, along with a preliminary consideration 
of its implementation, is given in Chou [7]. The model is appropriate for a 
federated system of a central server and a number of autonomous workstations 
sharing objects through the server. 

5.1 Version Semantics 

In our current prototype we distinguish two types of versions on the basis of the 
types of operations that may be allowed on them. They are transient versions 
and working versions. 

A transient version has the following properties: 

(1) It can be updated by the user who created it. 
(2) It can be deleted by the user who created it. 
(3) A new transient version may be derived from an existing transient version. 

The existing transient version then is “promoted” to a working version. 

A working version has the following properties: 

(1) It is considered stable and cannot be updated. 
(2) It can be deleted by its owner. 
(3) A transient version can be derived from a working version. 
(4) A transient version can be “promoted” to a working version. Promotion may 

be explicit (user specified) or implicit (system determined). 

We impose the update restriction on the working version because it is consid- 
ered stable, and thus transient versions can be derived from it. If a working 
version is to be directly updated after one or more transient versions have been 
derived from it, we need a set of careful update algorithms (for insert, delete, 
update) that will ensure that the derived versions will not see the updates in the 
working version. 

5.2 Version Name Binding 

There are two ways to bind an object with another versioned object: static and 
dynamic. In static binding, the reference to an object includes the full name of 
the object, the object identifier, and the version number. In dynamic binding 
[3,11, 181, the reference needs to specify only the object identifier and may leave 
the version number unspecified. The system selects the default version number. 
Clearly, dynamic binding is useful, since transient or working versions that are 
referenced may be deleted and new versions created. 

We need to examine the issue of selecting default versions for dynamic binding. 
In other proposals, the default selected is often the “most recent” version. This 
simple defaulting scheme is not appropriate in our model. One difficulty is that 
in our model version history is represented in a hierarchy, the version-derivation 
hierarchy. In particular, we allow more than one transient version to be derived 
from a working version. In a linear-derivation scheme, where only one ver- 
sion may be derived from any version [lo], the most recent version has the 
implicit meaning that it is the “most correct” or “most complete.” However, 
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a version-derivation hierarchy, in which any number of new versions may be 
derived from any node on the hierarchy any time, potentially has any number of 
“most recent” versions in this sense. Therefore, we need to allow the user to 
specify a particular version on the version-derivation hierarchy as the default 
version. In the absence of a user-specified default, the system selects the version 
with the “most recent” timestamp as the default. 

5.3 Implementation 

Because of the performance overhead in supporting versions, we require the 
application to indicate whether a class is versionable. When an instance of a 
versionable class is created, a generic object for that instance is created, along 
with the first version of that instance. A generic object is essentially a data 
structure for the version-derivation hierarchy of an instance of a versionable 
class. It is deleted when the version-derivation hierarchy for its instance contains 
no versioned object. A generic object consists of the following system-defined 
instance variables: 

(1) an object identifier, 
(2) a default version number, 
(3) a next-version number, 
(4) a version count, and 
(5) a set of version descriptors, one for each existing version on the version- 

derivation hierarchy of the object. 

The default version number determines which existing version on the version- 
derivation hierarchy should be chosen when a partially specified reference is 
dynamically bound. The next-version number is the version number to be 
assigned to the next version of the object that will be created. It is incremented 
after being assigned to the new version. 

A version descriptor contains control information for each version on a version- 
derivation hierarchy. It includes 

(1) the version number of the version, 
(2) the version number of the parent version, 
(3) the identifier of the versioned object, and 
(4) the schema version number associated with the version 

The version of schema used for version Vi of an object may be different from 
that used for version Vj derived from Vi. For example, after a transient version 
is derived, the user may modify the schema for the transient version. Then the 
original version and the transient version will use different schemas. This is the 
reason for including the schema version number for each versioned object. We 
note, however, that a version of schema for an object X is in general shared by 
multiple versions of X. For example, if a transient version is derived from a 
working version, both versions may use the same version of schema. A detailed 
discussion of our proposal for supporting versions of schemas will be given in a 
forthcoming paper. 

A generic object is also an object and as such has an object identifier. Each 
version of an instance object of a versionable class contains three system-defined 
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instance variables. One is the identifier of the generic object. The others are the 
version number of the version and the version status (transient or working). The 
generic object identifier is required, so that, given a version of an instance object, 
any other versions of the instance object may be efficiently found. The version 
number is needed simply to distinguish a version of an instance object from other 
versions of the instance object. The version status is necessary so that the system 
may easily reject an update on working versions. 

A versioned object is created initially by the create command, which creates 
the generic-object data structure for the object. The derive command is used to 
derive a new transient version and allocate a new version number for it. If the 
parent was a transient version, it is automatically promoted to a working version. 
The replace operation causes the contents of a transient version to be replaced 
by a work-space copy the user specifies. A transient version is explicitly promoted 
to a working version, making the version nonupdatable, through the promote 
command. The user may delete a version or an entire version-derivation hierarchy 
using the delete command. If the delete is against a generic object, all versions of 
the instance for which the generic object was created are deleted. If a working 
version is deleted from which other versions have been derived, the version is 
deleted, but the fact that the version existed is not deleted from the generic 
object. The user uses the set-default command to specify the default version on 
a version-derivation hierarchy of an object. A specific version number or the 
keyword “most-recent” may be specified as the default. 

6. CONCLUDING REMARKS 

In this paper we first provided a brief review of the basic object-oriented concepts 
that we extracted from existing object-oriented systems to form the basis of an 
object-oriented data model. Then we elaborated on three major enhancements to 
the conventional object-oriented data model. First was schema evolution, or the 
capability of making a wide variety of changes to the database schema, including 
class definitions and the structure of the class lattice, without requiring a database 
reorganization or system shutdown. We provided a taxonomy for schema changes 
that an object-oriented database system should allow and introduced a framework 
for understanding the semantics of the schema changes. Second was the concept 
of composite objects. A composite object is a collection of objects that recursively 
captures the IS-PART-OF relationship between pairs of objects. Composite 
objects should be used for enforcing this IS-PART-OF relationship and, as units 
of storage clustering and retrieval for improving system performance. We elabo- 
rated on the semantics of composite objects and showed their integration into an 
object-oriented data model in terms of schema definition and creation and 
clustering of composite objects. Third was version control. We discussed the 
semantics of versions and showed how they are integrated into the object-oriented 
data model. 

The basic object-oriented concepts and the three enhancements we discussed 
in this paper, as well as a number of other important features, are presently being 
incorporated into ORION. ORION is a prototype object-oriented database system 
under implementation in the Database Program at MCC as a research vehicle 
for developing a database technology for object-oriented applications from the 
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CAD/CAM, AI, and. 01s domains. The system is intended to directly support 
some of the applications under development in the AI/KBS (knowledge base 
system) Program at MCC and to receive feedback about the performance and 
functionality of the system from them. Because the AI/KBS applications are 
being implemented in Common LISP, in order to be closely coupled with them, 
we are implementing ORION in Common LISP to execute on the Symbolics 
LISP machines. The application interface to ORION then is an object-oriented 
extension to LISP, much as Flavors [29] and ObjectLISP [22] are, and includes 
message passing protocol, class lattice, and property inheritance along the class 
lattice. We are integrating ORION message-passing protocol with LISP function 
calls so that, to the extent possible, ORION applications can view both ORION 
objects and LISP structures without having to move from one programming 
environment to another. 
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