Two-Step Pruning : A Distributed Query
Optimization Algorithm

Hyeokman Kim'? Sukho Lee', Hyoung-Joo Kim!

' Dept. of Computer Engineering, Seoul National University
Shinrim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
* Korea Telecom Research Laboratories
17, Woomyon-Dong, Suhcho-Gu, Seoul, 137-792, Korea
E-mail: {hmkim, shlee}@snucom.snu.ac.kr, hjk@inm4u.snu.ac.kr

Abstract. The problem of finding an optimal global plan for a tree
query in a distributed database is studied under the objective of total
processing time minimization. A two-step pruning algorithm based on
dynamic programming is presented. This algorithm performs a pruning
step twice for each subquery by designing two separate equivalence crite-
ria applicable to each subquery. This lessens the search work done by the
optimizer considerably. Without losing optimality, the search space for

finding the optimum is reduced by aggregating partial plans that always
incur the same processing time into a single plan and eliminating partial
plans that can never be the optimum.

1 Introduction

The importance of query optimization in centralized and distributed database
systems 1s widely recognized. One of the key components in query optimization
1s the search strategy. The ability to efficiently find an optimal or best plan
among all possible alternatives is indeed essential to performance.

Dynamic programming which is probably the best known standard optimiza-
tion technique has been employed as a search strategy in query optimization
(3, 9, 10, 12, 15]. If dynamic programming is used to solve an optimization prob-
lem, the problem must satisfy the principle of optimality: in optimal sequence of
decisions, each subsequence must be optimal [6]. Thus, the cost function based
on dynamic programming is expressed as a recursive form. When building execu-
tion plans through dynamic programming, the optimizer systematically builds
all possible partial plans and compares them through their cost estimates. It
then prunes costly partial plans that are equivalent to a cheaper one. This prun-
ing reduces the optimization cost because partial plans that are not likely to be
optimal are pruned as soon as possible. The advantage of dynamic programming
stems from the fact that the chosen partial plan with its cost is saved, and reused
rather than recomputed when this plan is employed as a subplan of another plan.
This means that the saved partial plans are shared by many other subsequent
plans built from them.

The pruning 1s performed based on equivalence criteria, that is, the optimal
partial plan 1s chosen among all possible partial plans that are equivalent in some

184

sense. In a centralized environment, equivalent plans are those which capture the
same relations. However in a distributed environment, the execution site where
the result of a partial plan is materialized and the delivery site where the result
is transferred may have impact on the cost of future plans. Thus, the equivalence
criteria for distributed plans should consider these sites. In R* optimizer [10, 11]
and state transition algorithm [9], their equivalence criteria consider not both but
only one of them. Thus, they apply only a single pruning step to each subquery
or state.

We propose a query optimization algorithm in distributed database systems.
Our objective is to achieve search efficiency without relaxing optimality. We
employ dynamic programming as a search strategy. In our approach, both the
execution and delivery sites are adopted as equivalence criteria. We apply a
pruning step twice to each subquery by carefully designing two equivalence cri-
teria such that the optimal partial plan chosen through the first pruning step is
reused when building an optimal partial plan through the second step applied in
succession. This reduces the optimization time considerably because the partial

plans that are not likely to be optimal are pruned much earlier and there are
more chances to share the partial plans.

1.1 Related Work

There have been large volumes of work done regarding optimization for join op-
erations in distributed relational database and surveyed in a number of places,
including [5, 13, 16]. Two basic approaches exist to determine an optimal or best
join ordering in distributed database systems: join-based [9, 10, 11] and semijoin-
based [1, 2, 3, 15]. The main value of a semijoin is to reduce the size of the join
operands and then the communication cost. But, using semijoins might increase
the local processing cost, since one of the two joining relations must be accessed
twice. Furthermore, the join of two intermediate results produced by semijoins
cannot exploit the indexes that were available on the base relation. Most of the
semijoin approaches assume that communication cost largely dominates local
processing cost. This assumption is based on very slow communication networks
such as wide area networks with a bandwidth of a few kilobytes per second. How-
ever, recent advances on network communications have drastically increased the
bandwidth, and distributed database environments now exist where the commu-
nication network is much faster, making the cost of local processing no longer
negligible. Therefore, using semijoins may not be a good idea and more recent

techniques which consider local processing costs as well as communication costs
tend not to use semijoins.

R* optimizer is a representative join-based approach [10, 11]. Conceptually,
it can be viewed as an exhaustive search among all the enumerated alternative
plans. The optimizer reduces the number of alternatives and search work by
building partial plans of subquery and pruning them except the cheapest one
through dynamic programming. R* optimizer adopts a single equivalence criteria
which includes the relations captured by the subquery and the execution site. As

185

a consequence, the optimizer performs a single pruning step for each subquery.
We call the optimizer a one-step pruning (OSP) algorithm.

In OSP algorithm, a join between relations at different sites i1s accomplished
by transferring one relation to the site of the other or both of them to a third
site. In the last case, the subsequent join between the intermediate result of the
join executed at this third site and the relation stored here may then be executed
without transmissions. We denote 7; to be a subquery of a given query where
t represents the number of relations captured by the subquery. A subquery T;
1s represented as a set of captured relations. 7 is a subquery containing only
one relation. We denote y to be the resident site of a relation captured by Tj.
Let CostT J;(T;) be the minimum cost to execute the join between the results
of subquery T;_; and T) at site t, trans,¢(7;) be the cost for transferring the
result of 7; from site z to site ¢, and join{(T;_,,7)) be the join cost between

the results of 7;_, and 7; at site t. CostT' J;(T;) is computed according to the
following dynamic programming equation.

CostT Jy(T;) = min

Vpair s.t. T,=T,_1UT, and Vz€{resident sites of relations in T,}

{CostTJ (Ti—1) + trans(T;—1) + transy (1)) + join(T;—1,T1)} (1)

If CostT J;(T;) is computed for all possible execution site ¢t € {resident sites of
relations in 7; and a third site} and these computations are repeatedly applied
to each subquery 7; varying i from 2 to n, the cost of an optimal plan is finally
obtained. OSP algorithm uses the heuristic to restrict the search space, that is,
either operand of joins must be a base relation. This reduces the optimization
overhead. Though the heuristic takes advantages of indexes on base relations,
this algorithm does not exploit the huge portion of feasible plans. Thus, OSP
algorithm produces a best plan, not an optimal one.

In state transition algorithm [9], the relations and intermediate results are
modeled into a state represented as a s-component vector where s is the num-
ber of sites related. The state says where the relations and intermediate results
are, that 1s, the delivery sites. When a join is executed (one-step transition),
one state transits to another state. The state transitions are equivalent if the
resulting states have the same components, that is, the same delivery sites of all
subqueries. The algorithm constructs a state space which includes all possible
states and their transition relationships. It then chooses an optimal path (tra-
jectory) from the initial state to a final one. The state space X is divided into n
disjoint subsets, X (2)’s, such that X = X(0)U X(1)U---U X(n — 1) where 1 is
the number of joins performed. The initial state zo and the final state x; belong
to X(0) and X(n — 1) respectively.

When one state z € X(2— 1) transits to another state y € X (7) by executing
a single join, there are at most three alternative strategies which are a sequence
of a join operation and additional transmission operations. Let v be a strategy
for doing a one-step transition from state = to state y, I' be the set of all feasible

v and cost(z,y) be the minimum cost of doing the one-step transition from z to
y. Then, the minimum transition cost 1s

186

cost(z,y) = J}rlél}{the sum of the costs of operations in 7} (2)

The cost of state £ means the total join and transmission costs required to go
from the initial state to state z. The cost of state y which can be reached from
state # in a one-step transition is the sum of the cost of state z and the cost
of the transition. Let CostS;_(z) be the minimum cost to go from the initial
state to state z in X (2 — 1) and T~ (y) be the set of states that can reach y
in a one-step transition. C'ostS;(y) is then computed according to the following
dynamic programming equation.

CostSi(y) = ‘f::lel’}i'l}{y){CﬂStSi_l(I) + cost(z,y)} (3)

If cost(z,y) and CostS;(y) are computed for each state y in X (i) varying ¢ from
1 to n—1, the cost of an optimal plan, C'ostS,_1(zy), is eventually computed. As
opposed to OSP algorithm, the state transition algorithm performs two pruning
steps for each state. That is, each of Equations (2) and (3) prunes all feasible
transition strategies and trajectories except the optimal ones. However, Equation
(2) is not a dynamic programming equation. Thus, we call the state transition
algorithm a semi-two-step pruning (Semi-TSP) algorithm.

Since semi-TSP algorithm does not employ dynamic programming in the first
pruning step, there is no way to reuse the computed results of the first pruning
step: ify € X(i)and ¢/ € X(i+1)U---UX(n—1) and the subqueries related with
the one-step transitions from z to y and from 2’ to ¥’ are the same, cost(z',y)
must be recomputed though it is equal to cost(z, y). For example, let’s consider
a chain query with relations A ,B,C,D located at sites 1,2,3,4 respectively. A
small portion of the state space for the query is given in Figure 1. There are
three strategies for one-step transition from state ro to z;, that is, A and B
may be joined at one of their resident sites and the result is then transferred to
site 3 or both of them may be transferred to site 3 and then joined. Since the
transition strategies from z, to x4 are equal to those from z¢ to 1, cost(zo, 1)
and cost(zs,z4) are the same. Semi-TSP algorithm has to do this redundant
computation. Furthermore, the extra work in constructing the state space 1s too
expensive, though the algorithm produces an optimal plan.

X,:(-;-;AB,C;D) X,:(-;-;ABC;D)

x.:(A;B;C:D]< \ >I,I(ABCD;-;-:'}

x,:(A;B;CD;-) X, (-:-7AB,CD;-)

X(0)={x,) X(1)={x,,x,) X(2)={x,,x,) X(3)={x,)

Fig. 1. State space

In a distributed database, both execution and delivery sites have influence
on the cost of plan. OSP and semi-TSP algorithms include either execution or

187

delivery site in their equivalence criteria. Our algorithm considers both sites in
its criteria. We design two equivalence criteria such that one include an execution
site and the other a delivery site, and the pruning steps based on these criteria
obey the principle of optimality. Thus, our algorithm applies the pruning step
twice to each subquery instead of a single step from the viewpoint of dynamic
programming. We call our algorithm a two-step pruning (TSP) algorithm. Com-
pared with OSP algorithm, TSP algorithm prunes much earlier the partial plans
that are not likely to be optimal. In contrast to semi-TSP algorithm, the costs
of partial plans chosen by the first pruning step as well as by the second step
are reused every time another partial plan is built from those plan. Our TSP
algorithm avoids the redundant computations done in semi-TSP algorithm.

This paper is organized as follows. In Section 2, the problem statement, the
global execution plan, and the notion and assumption required are given. In
Section 3, we first describe the cost model to compute the cost of execution
plan according to the two pruning steps. Then, we show that this cost model
obeys the principle of optimality. Based on these, we propose TSP algorithm and

compute the complexity of the algorithm. Finally, in Section 4, we draw some
conclusions and suggest future research directions.

2 Preliminaries

2.1 Problem Statement

Our goal 1s to find optimal join and transmission order of a given query under
the objective of minimizing total processing time which includes local processing
and communication costs. We are given a query 1 referencing n distinct base
relations R;s distributed among s sites and an initial distribution representing
the resident sites of n relations in database. We call the query graph of T' the
graph with n nodes, where each join clause in 7 is indicated as a link between
corresponding nodes. Each node has a label which specifies the resident site of
the corresponding relation. An example query graph is represented in Figure 2.
In this paper, we focus on tree query whose query graph is tree. The site where
a user gives a query and returns its result is called the query site.

Fig. 2. Query graph

188

2.2 Global Execution Tree

Distributed query optimizer can be defined as an algorithm to choose an opti-
mal global processing strategy for a given query. The design of such optimizers
may be divided into three components: execution space which is the set of the
execution plans searched by the optimizer, cost model which predicts the cost
of an execution plan, and search strategy to obtain the minimum cost plan. In
this subsection, we describe the execution space. The others are described in the
following section. Query executions are represented as execution plans which
transform a nonprocedural query into a sequence of operations. An execution
plan can be syntactically represented as a join processing tree [7] or a dataflow
graph [2]. We extend these representations into a global execution tree (GET)to
express execution plans processed in distributed database environment.

GET is a labelled tree where the indegree of each nodes must not exceed two.
It represents the flow of data from leaves to root. The leaf nodes are base relations
and each non-leaf node is an intermediate result from joining or transmission:
a node with indegree 2 (join node) is an intermediate result from joining its
children and a node with indegree 1 (iransmission node) is an intermediate result
from the transmission of its child. Each non-leaf node is stored in a temporary
file. In GET, the leaf, join and transmission nodes are graphically represented
by circle, closed square and open square respectively.

Each node has a site label which represents different meaning according to
the kinds of nodes. The site label for a leaf node represents the resident site of
its corresponding relation. The site label for a transmission node represents the
delivery site to which its child is transferred. If the site labels for a transmission
node and its child are the same, no transmission occurs. The site label for a
join node represents a join execution site. Relations or intermediate results to
be joined must be at the same site. Thus, the site labels for a join node and its
children must be the same. We say that GET 1s complete if it captures all the
relations of the given query and the site label of the root is equal to the query
site. Otherwise, it is said to be partial.

GET can be distinguished into deep or bushy trees [7]. If all join nodes of
a GET have as a child at least one leaf node or transmission node which also
has a leaf node as a child, the tree is called deep. Otherwise, it is called bushy.
Figure 3 gives examples of deep and bushy GETs generated from the query in
Figure 2. In Figure 3, the number annotated on each node is the site label. If the
execution space does not include all feasible plans for a query, the optimizer may
produce a suboptimal plan not an optimal one. For example, OSP algorithm in
general produces a suboptimal plan because it has a restricted execution space
that includes only deep trees. We do not restrict the execution space of our
optimizer. Our optimizer searches execution plans which may be deep or bushy
trees.

Execution plans represented by GET specify the order of joins and transmis-
sions to be executed. The order is determined by traversing GET in a postorder
sequence. Based on the costs of the individual join and transmission specified
in GET, we can estimate the cost of the corresponding execution. This cost is

defined as the cost of GET.

189

A-B-C-D-E-F '

(a) bushy GET (b) deep GET

Fig. 3. Global Execution Tree

GET can be expressed as a sequence of operators. Let a, b be subplans of
GET and JN.(a,b) be a join operation between the results of the subplans a
and b at site z, T'R;¢(a) be an operation to transfer the result of the subplan a
from site z to site {. The join node with site label z is transformed to J N (—, —)
operator and its children to operands. Also, the transmission node whose site
label is t and has a child with site label z is to T'R;{(—) operator and its child
to operand. For example, the operator expression for the GET in Figure 3.a is

IN1(A,TR2,1(JN2(T R3 2(J N3s(JN3(T Rz 3(C), E), JNs(B, TR, 3(D)))), F))).

2.3 Notions and Assumptions

Let an i-relation query (1 < 1 < n) be a subquery of a given query T such that
the query graph of an i-relation query is a connected subgraph with i nodes
constructed from that of a given query. Thus, the given query 7 becomes an
n-relation query. An i-relation query is represented as a node set T;; where 1 is
the number of nodes in 7;; and j is a number for distinguishing feasible i-relation
queries from one another. By the definition of an i-relation query, 7;; can not
be null. The number of i-relation queries in T is represented as m;. Thus, the
total number of subqueries is) m;. For a query with n relations, there are n
l-relation queries, T}; (1 < j < n), each of which contains only one relation
(m; = n). The n-relation query, 7}, is the input query itself (m, = 1). In
addition, we use RS(7;;) to denote the set of resident sites of relations captured
by Ti;. The cardinality of a resident site set, |RS(7;;)|, depends on the initial
distribution. For example, |RS(Ty,)| = s.

190

An i-relation query may be divided into a pair of subqueries. Let the query
graph of an i-relation query be split into two connected subgraphs with r and
i — r nodes respectively (1 < r < 1). By the definition of an i-relation query,
these subgraphs become the query graphs of r-relation and (i-r)-relation queries.
Dividing a query into a pair of subqueries implies that a node set 7;; 1s par-
titioned into two node sets T,, and T;_,, such that T}; = T, U T;_,, when
¢ > 2. In a tree, the removal of an edge yields two subtrees. Thus, the result
of an i-relation query is materialized by joining the results of its r-relation and
(i-r)-relation queries. There are : — 1 ways of dividing an i1-relation query into a
pair of r-relation and (i-r)-relation subqueries because there are i-1 edges in the
corresponding query graph. If r or ¢ — r is always restricted to be 1, the plan
produced 1s a deep GET.

We denote trans;¢(7;;) to be the cost for transferring the result of 7;; from
site z to site t. We assume that the communication cost is trans,(7;;) = c1 +
¢y * size(T;;), where c; is the start-up cost of initiating transmission, ¢z 1s a
proportionality constant, and size(7;;) is the size of the result of T;; expressed
in bytes [16]. If z = ¢, trans;(T;;) = 0. Also, we denote joing(T;p,Ti-rq) to be
the join cost between the results of 7,., and T;_, , at site z.

It is assumed that there is no fast access path such as index for all non-leaf

nodes and some leaf nodes in GET. This 1s justified by the observations that in
distributed query processing,

— The join node i1s an intermediate result of a join. The intermediate result 1s
not supported by fast access paths unless some are created dynamaically.

— A fast access path is not valid outside the site where it was established.
When a relation or intermediate result is sent from one site to another,
its fast access path will not be sent. Thus, the transmission node 1s not
supported by fast access paths. -

— The operations like selection and projection are executed before joins. Thus,

the leaf nodes which are qualified by these operations are also intermediate
results.

Besides these, we assume that the usual statistical information for cost estima-
tion is available, even though we have not explicitly expressed it in formalism.
When multiple copies of a relation exist, we assume one copy has been prese-
lected.

We make a uniformity assumption on a distributed environment, as in [1,
2, 3,9, 10, 15]. That is, all sites have the same processing capabilities and the
communication speeds between any two sites are the same. The assumption is
then written formally as follows.

— ifzy,22 & RS(:I-‘;})! jﬂiﬂm(Trp: ﬂ-—r,q) = joing, (Trp:ﬂ-—r,q)-
— if 2y € RS(T;;) and z2 & RS(T3;), joing, (Typ, Ti-rq) < joing,(Trp, Ti—r q)-
— if 21 # t; and zy # 1o, transy, 1,(Ti;) = transg, 1,(Ti;).

If an execution site x is not a site in the resident site set of T;;, RS(Tj;), the re-
sults of subqueries 7}, and T;_, , to be joined may be results materialized at the

191

execution site z or transferred from other sites. In both cases, the intermediate
result of join or transmission 1s stored in a temporary file and there 1s no index
support for the file since we do not create index dynamically. However, 1if either
or both of the subqueries to be joined is a 1-relation query, there may be index.
Thus, the cost of join executed at the resident site of the relation captured in
the 1-relation query may be lower than the join cost executed at the other site.

3 Two-Step Pruning Algorithm

3.1 Equivalence Criteria

The principle of optimality states that an optimal execution plan (optimal GET)
for a query i1s composed of the optimal plan for its subqueries as subplans.
Therefore, in order to produce an optimal plan for a given query through dynamic
programming, the optimal plan for its subqueries must be produced in advance.
That is, an optimal plan for an i1-relation query is built from the optimal plans
for its subqueries from 1-relation to (i-1)-relation queries.

~ If the results of r-relation and (i-r)-relation subqueries to be joined are not at
the same site, one of them may be transferred to the site of the other or both of
them transferred to a third site where a subsequent join between the i-relation
query and another (k-1)-relation query will be executed. The third site can be
any resident site of the relations captured in the (k-1)-relation query, since the
(k-1)-relation query may materialize its result at this site. Furthermore, the result
of the i1-relation query materialized at the site where the results of its subqueries
are located may be transferred to any resident site of the relations captured in
the (k-i)-relation query because of the same reason. Thus, the site at which an
i-relation query materializes its result, an ezecution sile of an t-relation query,
and the site to which an i-relation query delivers its result, a delivery site of
an i1-relation query, can be any resident site of the relations captured in a given
query.

When building execution plans through dynamic programming, the optimizer
systematically builds and compares equivalent partial plans through their cost
estimates. Our optimizer builds the optimal plan of an i-relation query through
two separate steps, one for join plan and the other for transmission plan. Let a
join plan of an i-relation query be a plan which materializes the result of the
query at a certain site, and a transmission plan of an i-relation query be a plan
which transfers the result of the query to a certain site. Qur optimizer uses the
following equivalence criteria for pruning.

— Join plans are equivalent if they capture the same relations and have the
same execution site.

— Transmission plans are equivalent if they capture the same relations and
have the same delivery site.

For each i-relation query, the optimizer produces the optimal join and transmis-
sion plans by applying the pruning step twice based on the two criteria respec-
tively. Thus, our optimizer has two chances to discard costly equivalent plans.

192

3.2 Principle of Optimality

To help us characterize the principle, we denote a%(7},) to be the u-th trans-
mission plan of T;, at delivery site z among all equivalent transmission plans.
The join and transmission plans of T;; are produced by the following functions.

The function buildJ P.(a%(T;p),a%(Ti-r,q)) combines the plans a3 (7;,) and
ay(7Zi-r q) into the plan in which the results of 7,, and T;_, , at site x are joined
at this site, that is, buildJ P(a%(Trp), a4t (Ti=rq)) = JNz(aZ(Trp), az(Ti-rq))-
By executing this plan, the result of T;; is materialized at site . The delivery
site of subqueries 7;, and T;_, ,, site z, becomes the execution site of 7;;. We
denote bY (7;;) to be the plan produced by the function. It means the w-th join
plan of T;; at execution site z among all equivalent join plans.

The function buildT P,(b7 (7;;)) extends the plan b¥ (7;;) into another plan
in which the result of 7;; materialized at site z is transferred to site ¢, namely,
buildT Py (bY (T55)) = T Rpe(by (155)). The site ¢ is the delivery site of 7;;. If sites
z and t are equal, no transmission occurs. By executing this plan, we can get
the result of 7;; at site t. The delivery site of the query T;;, site {, may become
the execution site of another query which employs T;; as its subquery.

As the results of T;, and T;_, ; to be joined must be at the same site, the
cost of the join plan produced by buildJ Py(ay(T;p),a%(Ti-r,,)) is the sum of
the costs for getting the results of the subqueries T,, and T;_, , at site z and
the cost for joining them at this site. Similarly, the cost of the transmission

plan produced by buildT P,:(b¥ (T;;)) is the sum of the cost for materializing the
result of the query T;; at site z and the cost for transferring the result from site
z to site t. Let Cost(p) be the cost of a plan p. Then, we have

Cost(buildJ Pz(ay;(Trp), a7 (Ti-rq))) = Cost(ay(Trp)) + Cost(ar(Ti—rq))
' +jﬂl:ﬂ;-(Trp|. T;—r,r;,-) (4)
Cost(buildT Pz (b2 (T:;))) = Cost(b(Ti;)) + transz(T;) (5)

To choose the optimal plans among the plans produced by buildJ P.(—, —)
and buildT Pri(—), we use the principle of optimality: If plans differ only in
subplans, the plan with optimal subplans is also optimal. This principle can

be expressed formally in the following theorem. Proofs for Theorem 1 and the
following theorems are given in [8].

Theorem 1. Let the subplans al(T,,), ak(Ti-r,) and by (T;;) be the lowest cost
plans among all its equivalent plans a¥(T,,), aZ(Ti-r,q) and b3 (T;;) respectively.
That is, Cost(al(Typ)) < (Vu)Cost(a%(Typ)), Cost(ar(Ti-rq)) < (Yv)Cost(al
(Ti-r,4)), and Cost(b;(Ti;)) < (Vw)Cost(b¥(T;j)). Then
Cost(buildJ Pz (al(Trp), az(Ti=rq))) < (Yu,v)Cost(buildJ Pz(a}(Trp), az(Ti-rq)))
and Cost(buildT Py4(b2(Ti;))) < (Vw)Cost(buildT Py (b% (T3;)))-

We call al(T,,) the optimal transmission plan of T, at site z and b}(T;;)

the optimal join plan of 7;; at site z. According to the theorem, we can get the
following equations.

Cost(buildJPx(az (Trp), az (Ti—y,q))) = min{ Cost(buildJPx(az (Trp), az(Ti-r,q))))
| (6)

193

Cost(build TPz (bz (Ti;))) = %E{Cﬂst(buﬂdTPﬂ(b:’(T,'j)))} (7)

Now, let’s compute the cost of an optimal join plan of T}; at site z, Cost(b}
(T3;))- As there are i — 1 pairs of subqueries T,, and T;_, , for a query T;;, we
must compare i — 1 costs of all equivalent join plans. For each pair of subqueries,
the results of subqueries to be joined must be at site . Since there are many
alternative plans to get the result of subquery at site z, we also compare all

equivalent transmission plans of both subqueries at site z and then choose the
lowest cost plans. Thus, we have

Cost(b:(Ti;)) = min {min{Cost(buildJ P:(a%(Trp), as(Ti-r,q)))}}

¥p,q,vr Yu,v

min {Cost(buildJ P:(at(Trp), as(Tizrq)))}

Vp.q,r

min {Cost(ak(Trp)) + Cost(ar(Ti—r.q)) + joinz(Trp, Tierq)} (8)

Yp.q,7r

where Vp, ¢, means all pairs of subqueries 7;,, T;_, , such that T;; = T, U
Ti—r,q- This equation is developed from Equations (6) and (4).
Let’s compute the cost of an optimal transmission plan of T;; at site {,

Cost(a}(T;;)). In order to get a result of T;; at site ¢, the result may be di-
rectly materialized at site £ or materialized at another site, for example, at site
z and then transferred to site t. As the result of 7;; may be materialized at any
site in the resident site set of the given query, RS(7,:), we must compare the
costs of all equivalent transmission plans. Before a transmission of a result of
T;;j occurs, the result must be materialized. Since there are many equivalent join

plans to materialize the result of T;; at site z, we also compare them and then
choose the lowest cost plan. Thus, we have

Cast(u:(T.';)) = v:erf?.é?*r I}{HJLH{CDSt(ﬁﬂidepzt(b:(TiJ)))}}

i ; - 1.
= vzegl.é?ﬂu }{Cﬂat(bulIdTP:t(b: (T35))}

= . cmin {Cost(ty(T,,)) + transs(T:,)) (9)
This equation is developed from Equations (7) and (5). In Equation (9),if z =1
the result of 7;; is directly materialized at site ¢ because of transy(Ti;) = 0.
Otherwise, it is materialized at site z and then transferred to site t.

Equations (8) and (9) form an indirect recurrence. Since there is no join plan
of 1-relation query, we will initialize the transmission plans of 1-relation query.
The initial condition for Equation (8) is Cost(a; (T1;)) = trans,:(R;) where z is
the resident site of relation R;. If z = t, Cost(a; (T1;)) will be zero. If Equations
(8) and (9) are computed for each i-relation query (2 < i < n) varying z and ¢
over all related sites, that is, Vz,t € RS(7T,1), an optimal plan of a given query
at a query site can be produced.

Equations (8) and (9) say that the optimal join plan of T;; at site z is
constructed by the optimal transmission plans of its subqueries 77, and T;_, ,
at this site and the optimal transmission plan of T;; at site ¢ is constructed by
the optimal join plan of T;; at site z. That is, the optimal join and transmission
plans are constructed recursively using each other.

194

3.3 Plan Aggregation and Elimination

We will aggregate some plans to avoid redundant computations, and eliminate
some plans from the execution space in order to prevent wasteful searches. The
optimal plans of an i-relation query are redundant if they always have the same
cost irrespective of the contents of the relations captured in the query. For ex-
ample, relation A at site 1 and relation B at site 2 may be joined at site 3 or 4

where a subsequent join will be executed. The costs of the optimal join plans at
site 3 and 4 are computed as follows.

Cost(ba({A, B})) = Cost(buildJ Pa(a3({A}), a3({B})))
= Cost(az({A})) + Cost(az({B})) + joina({A}, { B})
= trans13({A}) + transza({B}) + joina({A}, {B})
Cost(bs({A, B})) = transi1s({A}) + transz4 ({ B}) + joins({A}, { B})

Because of the uniformity assumption, Cost(b3({A, B})) is equal to Cost(b}({A,
B})).

Similarly, the join result between A and B may be directly materialized at
site 3 or materialized at a site other than site 3 and then be transferred to site

3. This 1s also true for site 4. Thus, the costs of the optimal transmission plans
at site 3 and 4 are

Cost(a3({A, B}))

= min{ Cost(buildT Py3(b ({A, B}))), Cost(buildT P23(b3({A, B}))),
Cust(buﬂdTPaa(bé({A, B}))), Caat(huﬂdTP;g(bi ({A, B})))}

= min{ Cost(bj({A, B})) + transia({A, B}), Cost(b3({A, B})) + transza(A, B),

Cost(b3({A, B})), Cost(bs({A, B})) + transss({A, B})}
Cost(as({A, B}))

= min{ Cost(bi({A, B})) + transi1s({A, B}), Cost(b3({A, B})) + trans24({A, B}),
Cost(V({A, BY)) + transsa({A, BY), Cost(bBi({A, B))))

Since Cost(b3({A, B})) = Cost(bj({A, B})) and trans,, ¢, ({A, B}) = trans,, 4,
({A, B}) for #; # t; and zo # t, according to the uniformity assumption,
Cost(as ({A, B})) is equal to Cost(aj({A, B})). These can be generalized for

any i-relation query in the following theorem.

Theorem 2. Let z,y,s5,t € RS(Th1) — RS(Tij). Then
Cost(bL(Tij)) = Cost(b,(T;;)) and Cost(a,(Ti;)) = Cost(a;(Ti;))-

The above theorem states that all optimal join and transmission plans of T;;
at a site not in RS(7;;) are redundant. The implication of this theorem is that
it 1s unnecessary to compute the cost of an optimal plan of an i-relation query at
all resident sites. Therefore, without losing optimality, it is possible to aggregate
the redundant join plans into a single plan whose execution site is marked as
undetermined and also aggregate the redundant transmission plans into a single
plan whose delivery site is also marked as undetermined. The undetermined
execution and delivery site of an i-relation query 7;; can be any site not in
RS(T;;j). An undetermined site is not yet known when the i-relation query is

195

being optimized. It will be determined later when the query employing the i-
relation query as a subquery has been optimized.

Since we introduce the concept of an indefinite site, it becomes impossible
to compute the transmission cost between the undetermined sites. From the
steps of proving Theorem 2, we fortunately know that the only case of any
transmission plan from an undetermined site to another undetermined site to
be optimal is when both sites are the same. Thus, we can let this transmission
cost be zero. By plan aggregation, we can compute Equations (8) and (9) varying

execution and delivery site on the restricted set of sites, that is, Vz,t € RS(T;;)U
{undetermined site} instead of Vz,t € RS(T,,).

A plan of an i1-relation query is inferiorif there is a lower cost equivalent plan
irrespective of the contents of the relations involved in the query [15]. Without
losing optimality, we can eliminate the inferior plans of an i-relation query when
considering the equivalent plans of the query. Let’s reconsider the above chain
query. The cost of the optimal transmission plan of a subquery A, B at delivery
site 3 1s computed as follows.

Cost(az({A, B}))
= min{ Cost(buildT Pya(b;({A, B}))), Cost(buildT Pya(b3({A, B}))),
Cost(buildT P33 (b3 ({A, B}))), Cost(buildT Pss(bs({A, B})))}
= min{ Cost(b({A, B})) + trans13({A, B}), Cost(b3({A, B})) + trans2s({A, B}),
Cost(ba({A, B})), Cost(bs({A, B})) + transsa({A, B})}
= min{ transz; ({B}) + joini({A},{B}) + trans,a({A, B}),
transi2({A}) + join2({A}, {B}) + trans23({A, B}),
transya({A}) + transza({B}) + joina({A}, {B}),
transis ({A}) + transaq ({B}) + joing({A}, {B}) + trans«a({A, B})}
According to the uniformity assumption, the join cost at site 3 is equal to that
at site 4 because of RS({A, B}) = {1,2}. Furthermore, the transmission plan
from site 4, that is, buildT'P43(b3({A, B})) has an additional transmission cost
compared to that from site 3. Thus, the transmission plans from site 4 is inferior

to that from site 3. We will show that there may exist inferior transmission plans
of an 1-relation query in the following theorem.

Theorem 3. Lett € RS(Tn1), z € RS(T;;)U{t}, y € RS(Tn1)—{RS(T;;)U{t}}.
Then Cost(buildT Pyy(by(Ti;))) < Cost(buildT Pyy(by(Ti;)))-

Theorem 3 essentially says that, for any delivery site ¢, a transmission plan of
an i-relation query 7;; from a site not in RS(7;;)U {t} is inferior to that from a
site in RS(T;;)U{t}. We can then choose the optimal transmission plan without
comparing all equivalent plans. Thus, we have

Minyzers(T,,){Cost(buildT Py (b3(T3,)))} =

minyzers(r,, uie) {Cost(buildT Per (b (T:;)))) (10)
The upshot of Theorem 3 is that we need not search through all the possible
transmission plans to find one guaranteed to be optimal. Elimination of inferior

plans reduces the execution space That must be searched to find an optimal
plans, and thereby makes the process of optimization more efficient.

196

3.4 Two-Step Pruning

In this subsection, we describe the dynamic programming algorithm to generate
an optimal plan of a given query (n-relation query, 7,;) at a query site and
compute its cost. The optimal cost 1s obtained by recursively computing the
following costs. Let CostJ,(7T;;) be the cost of an optimal join plan of T;; at
site z and CostTi(7;;) be the cost of an optimal transmission plan of T;; at
site ¢, that is, CostJ(T;;) = Cost(bL(T};)) and CostTi(T;;) = Cost(a;(Ti;)).
By the definition of CostJ, CostT and Theorem 2, 3, Equations (8) and (9) are
rewritten as follows.

C{HIJ_.-;(T,J) = ml’ﬂvp*qr.r{ Cﬂ-‘-'tT.rI (Trp) -+ CﬂJtTIE(Ti—r,q) +jﬂiﬂI(Trp: Ti—r.q)}

(11)
CostTi(Tij) = mingyzeRrs Ty; yu(t}{ CostJz(Ti;) + transze(Ti5)} (12)

In Equation (11), if z € RS(T;,), z1 = z. Otherwise, z, is an undetermined
site. Similarly, if z € RS(T;—,,), 2 = z. Otherwise, z3 is an undetermined
site. The initial condition for Equation (11) is CostTy(T1;) = trans;(R;) for
all t € RS(T};)U {undetermined site} = {z, undetermined site} where z is the
resident site of relation R;.

If CostJ(T;j) and CostT;(T;;) are computed for each i-relation query T;;
varying z and t over RS(T;;)U {undetermined site} and this computations
are repeatedly applied for i = 2,3, - -, n, CostTyuery_site(Tn1) for n-relation
query Ty can be finally obtained. When computing C'ostJ.(7};), Equation (11)
prunes equivalent join plans except the optimal one. Similarly when computing
CostTy(T;;), equivalent transmission plans except the optimal one are pruned
by Equation (12). The obtained CostJ.(T;;) and CostT(T;;) are saved in order
to reuse when the query 7;; is employed as a subquery of another larger query.

Generating an optimal plan of an i-relation query is the process of construct-
ing feasible optimal subtrees (subplans) of an optimal GET. For each i-relation
query, computing the costs CostJ.(71;;) and CostT;(7;;) means computing the
costs of optimal subtrees whose roots are the corresponding join and transmis-
sion nodes in GET. That is, CostJ.(T;;) is the cost of an optimal subplan whose
root is a join node with site label z, and CostT;(T;;) is the cost of an optimal
subplan whose root is a transmission node with site label t.

The dynamic programming equations are coded in the algorithm TSP in
Figure 4. The algorithm first initializes C'ostT;(7};) for each 1-relation query
in lines 1-5. In lines 6-23, it then uses Equations (11) and (12) to compute
CostJ;(T;;) and CostTi(T;;) for each i-relation query varying z and ¢ over the
resident site set of the query and an undetermined site. This process is repeatedly
applied in bottom-up fashion, that is, for 1 = 2,3,---,n.

An optimal GET of a given n-relation query is constructed from that of an
i-relation query. For each i-relation query, TSP algorithm maintains not only the
optimal join and transmission costs but also additional information such as opti-
mal join pair and execution site in its optimal plan, Opt Plan(T;;). Thus, we can
construct an optimal GET of a given query by the postorder traversal from the
root node, Opt Planyery site(Tn1). The algorithm Build in Figure 5 constructs

197

Algorithm TSP

Input: All i-relation query T;;’s (1 < j < m;) and its resident site set RS(T;,)’s.
Output: An optimal GET with its cost.

1

=1 & O = W b

8
9
10
11

12

13
14
15
16

17
18
19
20
21
22
23

for j:=1ton do
let z be the resident site of R;;
for all t € {z, undetermined site} do

CostTi(Ty;) := trans.(Th,);
save z into OptPlan,(T););

1:=2 to n do
for 7:=1 to m,; do

/* optimal join plan of T}, at site z */
for all z € RS(T;,)U {undetermined site} do /* execution site */
CostlJ:(Ti;) := oo;
for all pair Typ,Ti v g s.t. Ti; =T, p UT;_,q do
if € RS(T;p) then z; :=1z
else z; := undetermined site;
if € RS(Ti—v,q) then z; :==x
else r; := undetermined site;
jc:=CostTy, (Trp) + CostT s, (Ti=rq) + joinz(Trp, Tier,q);
if CostJ.(Ti;) > jc then /* pruning */
CostJz(T1;;) := jc;
save p, q,r and CostJ into OptPlan.(T};);
/* optimal transmission plan of T;; at site t */
for all t € RS(T;,)U {undetermined site} do /* delivery site */
CostT(T;;) := oo;
for all z € RS(T:;) U {t} do
tc := CostJ:(Ti,) + trans(T3,);
if CostTi(T;,) > tc then /* pruning */
CostT(T;;) := tc;
save z and CostT into OptPlan.(T;,);

24 Plan := Optpfﬂﬂquery_ailte(Tnl) with CﬂSthuery_ﬁt:(Tnl);

an optimal GET from partial plans. The initial call is Build(n, 1, query_site,
TRANS).

When constructing an optimal GET,the algorithm Build decides the definite
sites of the undetermined sites in lines 2-6. Since the decisions are made in a top-
down fashion, an undetermined delivery site of an i-relation query 7;; is decided
before its undetermined execution site. If the delivery site of an i-relation query
Tij 1s in RS(T;;), it is not an undetermined site. In this case, the undetermined
execution site may be any site not in RS(7;;). But if the delivery site of the
query 1s not in RS(7;;), it was the undetermined site when the query was being
optimized and its definite site has been decided in previous construction stages.
In that case, the undetermined execution site is equal to its delivery site, because
the only case of any transmission plan from an undetermined site to another

Fig. 4. Two-step pruning algorithm

undetermined site to be optimal is when both sites are the same.

198

Algorithm Build(z, 3,1, flag)
Input: Optimal plan of i-relation query 7T;;, Opt Plant(T;,). If flag is TRANS,
t is the delivery site of T;,. Otherwise, 1 is the execution site of T;;.
Output: Execution sequence of operations in an optimal GET.
1 if flag = TRANS then
2 if OptPlant(T,;).z = undetermined site then
/* execution site is undetermined */
if t € RS(T;;) then /* delivery site is not undetermined */
let OptPlan:(T;,).z be any site not in RS(T;;)
else /* delivery site was undetermined */
OptPlan.(T;;).z :=1t;
if 1# 1 then
Build(z, 3, OptPlan,(T;;).z, JOIN);
if OptPlan:(T;,).z # t then
0 print “T'R;¢(T;,) : transfer 7;, from site z to t”
1 else /* flag = JOIN */
/* let the execution site of T;; be the delivery sites of its subqueries */
12 Build(Opt Plan:(T;;).r, Opt Plan:(T;;).p,t, TRANS);
13 Build(: — OptPlan,(T;,).r, OptPlan(T;,).q,t, TRANS);
14 print “JN¢(T5p, Ti—r,q) : join between 1;, and T,_, 4 at site t7;

b = D 00 =] O U & WO

Fig.5. Optimal GET construction algorithm

3.5 Complexity of Algorithm

For each site in the resident site set of an i-relation query and an undetermined
site, TSP algorithm considers all equivalent join and transmission plans except
the inferior plans and chooses the lowest cost join and transmission plans as the
optimal ones. Thus, the time complexity of the algorithm is determined by the
number of considered plans, which depends on the initial distribution of relations
and the number of subqueries.

The number of i-relation queries is determined by the shape of the query
graph and the number of relations in the graph. Let’s consider the special cases
of a tree query, namely, a chain query and a star query whose corresponding
query graphs are chain and star respectively. For a chain query with n relations,
an i-relation query is composed of i consecutive relations. Thus, the number of
i-relation queries, m;, is n — ¢ + 1. Also, for a star query with n relations, an
i-relation query is constructed by choosing i — 1 relations from n — 1 relations
around the root relation. Thus, we have m; = (7). It has been shown that,
for a tree query, the total number of subqueries, 5" m;, is the largest with a star
query and the smallest with a chain query [12]. Thus, if the initial distributions
of relations involved in chain and star queries are equal, the algorithm has the

worst case complexity with a star query and the best case with a chain query.

199

For a tree query with n relations distributed over s sites, let’s analyze the
complexities of TSP algorithm. The time complexity of the algorithm is deter-
mined by the number of plans considered in lines 14 and 21. For a chain query,
m; = n — 1+ 1 and there are 1 — 1 pairs of subqueries for each i-relation query.
The cardinality of the resident site set of an i-relation query varies according to

the initial distribution and is no more than s. Thus, the number of join plans
considered in line 14 is

n n—i4+l |[RS(T:;)|+1 i1 n n—it+ls4li-1 (n—l)n(n +1)
22 L 2ls< ZZZI—(5+1
=2 j=1 =1 p=1 =2 =1 o=1p=l

and the number of transmission plans considered in line 21 is

n n—i4+1|RS(T,;)|+1|RS(T;;)|+1 n n—i+4+ls4l s4+1 (ﬂ B 1)7’1
Lol X X 1522 22 1=0+1
1=2 =1 (=2 =1 i=] 3=l

Clearly, considering join and transmission plans take time O(sn®) and O(s*n?)

respectively. Because s is less than or equal to n, the total best case time com-
plexity is less than O(sn?).

For a star query, the process of complexity computation is the same as that of

the chain query except m; = ("’:1) Thus, the numbers of join and transmission

plans considered in lines 14 and 21 are

"1) |RS(T35)l41 -1 n T:i s+4!;:'—41‘
2D IED D BT D 3B 3 BT T TR
=2 j=1 r=1 p=1 i=2 y=1 z=]lp=1
and
n (3Z1) IRS(Ti;)|+1 |RS(T3;)|+1 21) s41 541
IID DD DD D 1<ZZ > > 1=(+1*@ " -1
i=2 j=1 =2 j=1 t=1=z=1

Therefore, the total worst case time complexity is O(sn2"~!) according to the
same reason.

The above analysis only shows upper bounds of complexities because we
use the maximum upper bound of the cardinality of a resident site set, that is,

|RS(T;;)| = s instead of a precious bound. Actually, |RS(7;;)| is bounded by

the following inequalities.

2<i<s, |RS(T;j)| <1
s<i<n,]RS(T,J)|£

The complexities are lowered by using these actual upper bounds of the cardi-
nality. For example, the number of join plans considered in the case of a star

query is rewritten as follows.

200

:-—1 IRE'(T.J}HM 1 ':_-l i1 $=1 ._1 s4+1 i—1
>y 2 ZI*ZZZEHZ 2, 220
tml y=] p=] =2 =1 z=1 p=I =841 =1 z=1 p=1

_Z(n—l)(,+2)l+(3+l)i (:-}-3—1) (1+s—1)

=1 s==]

Since this equation can not be expressed as a closed form of n and s [4], we can

not help using the maximum upper bound of the cardinality. This implies that
the above analysis does not reflect the effects of plan aggregation and elimination
unfortunately. However, the actual optimization work is considerably smaller
compared to the analysis.

Though the number of considered plans is reduced by plan aggregation and
elimination, the worst case complexity is still exponential in terms of the number
of relations in the query. We do not believe that the exponential complexity at
the worst case hinders the practicality of our algorithm. This is because queries
with more than 10 joins are rare. In a survey of 30 major DB2 customers [14],
for example, the most complex join query involves just 8 relations. Furthermore,
a star query 1s just a hypothetical query that is rarely made by a user.

3.6 Comparison

Though OSP, semi-TSP and our TSP algorithm all employ dynamic program-
ming as a search strategy, their characteristics and search efficiencies are dif-
ferent. The time complexity of OSP algorithm is determined by the number of

plans considered in Equation (1). For chain and star queries,these numbers are
computed as follows.

n n—i41 [RS(T)l+1 2 |RS(Tj;)|+1 8§ n=idl i4l 2 il n—i+1 s4+1 2 541

IIDIEDIEDIEDS 5353 3)) RS I IS H 3

1=3 j=1 t=1 1=3 =1 t=1 p=1 x=1 =341 =1 t=1 pml x=1

n (1-1)|H-S'ET:1}|+11 1 IRS(Ti1}|+1 - 141 i—=1 141 1-— s4+1 1—=1 3541

IIDIEDIEDIEDD HLLLLLHZ LLZD

1=3 =1 p=1 x=1 =3 j=]1 t=1 p=1 x=1 i=s+1 j=1 t=1 p=1 x=1

In Figure 6, we draw diagrams concerning the number of plans considered
in OSP and TSP algorithms varying n and s such that n > 2 and n > s > 2.
In the figure, the bright surface represents the number of plans considered in
OSP algorithm and the dark surface, the number of plans considered in TSP

algorithm. By comparing the two surfaces, we know that the number of plans
considered in TSP algorithm is smaller than that in OSP algorithm when n >

3 and s > 3. As OSP algorithm does not search the bushy execution plans,
this algorithm produces a suboptimal plan. Therefore, in most cases, our TSP

algorithm produces an optimal plan while considering less partial plans than the
suboptimal algorithm OSP.

201

(a) best case (b) worst case

Fig. 6. The number of plans considered in OSP and TSP algorithm

The time complexity of semi-TSP algorithm is determined by the number of
trajectories considered in Equation (3) and this number depends on the number
of states generated. As in the cases of algorithms OSP and TSP, the number of
states generated i1s determined by the initial distribution and the shape of the
query graph. Contrary to these two algorithms, the number is the smallest with
a star query because the bushy states like (—; —; AB,C'D; —) are not generated
with a star query. Thus, semi-TSP algorithm has the best case time complexity
with a star query. However, if all n relations are stored at different sites, the
number of states generated with a star query is exponential in n (though that
number is reduced by the equivalence class technique in [9]). Thus, in case of this
initial distribution, the best case time complexity is also exponential in n. Since
our TSP algorithm has a polynomial time complexity at the best case with this
initial distribution, and its extra work in generating all subqueries 1s much less
than that in constructing a state space of semi-TSP algorithm, our algorithm
has computational advantages over semi-TSP algorithm.

4 Conclusion

We have presented an algorithm which determines the optimal global plan for
a tree query in a distributed database. The objective function of optimization
1s the total processing time including not only the communication costs but
also the local processing costs. The optimizer we have developed considers the
execution plans which may be deep or bushy trees. The search work done by our
optimizer i1s reduced by applying dynamic programming technique. We devise
the two-step pruning mechanism to choose an optimal plan among all feasible

202

plans. In the first pruning step, an optimal join plan of a subquery is chosen
among all equivalent plans which materialize the result of the subquery at the
same site. Then, in the second pruning step, an optimal transmission plan of a
subquery 1s chosen among all equivalent plans which transfer the result of the
subquery to the same site. While building an optimal global plan of a given
query, we apply the mechanism successively to each subquery so that the plans
except the optimal one are pruned efficiently. The algorithm has the polynomial
time complexity O(sn®) at the best case, but the exponential O(sn2"~!) at the
worst case. Although finding an optimal plan is costly, the optimization overhead
1s rapidly amortized if the query is executed frequently.

We show that, without losing optimality, it i1s possible to aggregate some
redundant plans into a single plan. Furthermore, we can always guarantee the
optimality though we eliminate the inferior plans from the execution space of our
optimizer. This means that we can produce the optimal plan without exhaustive
search. Clearly, the plan aggregation and elimination significantly reduce the
optimization work.

Future work includes: extending the algorithm to minimize the response time
of processing a query and to be used in the case of recursive queries, elaborating
the cost model to predict the cost of query processing exactly.

Acknowledgement

This work was partially supported by the Korea Science and Engineering
Foundation (KOSEF) under Grant No. 931-0900-022-2.

References

1. Apers, P., Hevner, A., and Yao, S.B., “Optimization algorithm for distributed
queries”, IEEE Trans. Software Engineering, SE-9, No.1, Jan. 1983, pp.57-68.

2. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., and Rothnie, Jr., J.B.,
“Query Processing in a System for Distributed Databases (SDD-1)”, ACM Trans.
Database Systems, Vol.6, No.4, Dec. 1981, pp.602-625.

3. Chiu, D-M, Bernstein, P. and Ho, Y-C, “Optimizing chain queries in a distributed
database system”, SIAM Journal of Computing, Vol.13, No.1, Feb., 1984, pp.116-
134.

4. Graham, R.L., Knuth, D.E., and Patashnik, O., Concrete Mathematics, Addison-
Wesley Publishing Company, Inc., 1989, pp.165-166.

5. Hevner, A.R., and Yao, S.B., “Querying Distributed Databases on Local Area
Networks”, Proceedings of The IEEE, Vol.75, No.5, May 1987, pp.563-572.

6. Horowitz, E., Sahni, S., Fundamentals of Computer Algorithms, Computer Science
Press, Inc., 1978, pp.198-202.

7. loannidis, Y.E., Kang, Y.C., “Left-deep vs. bushy trees: An analysis of strategy
spaces and its implications for query optimization”, Proc. ACM SIGMOD, May
1991, pp.168-177.

8. Kim, H., Lee, S., Kim, H.-J., “T'wo-step pruning algorithm for distributed query
optimization”, Technical report DBTR-95-1, 1995.

10.

11.

12.

13.

14.

15.

16.

203

. Lafortune, S., and Wong, E., “A state transition model for distnibuted query pro-

cessing”, ACM Transactions on Database Systems, Vol.11, No.3, Sep. 1986, pp.294-
322.

Lohman, G.M., Mohan, C., Haas, L.M., Lindsay, B.G., Selinger, P.G., Wilms, P.F.,
“Query processing in R*”, IBM Research Report RJ4272, San Jose, Calif., April
1984.

Mackert, L.M., Lohman, G.M., “R* optimizer validation and performance evalua-
tion for distributed queries”, Proc. VLDB, August 1986, pp.149-159.

Ono, K. and Lohman, G.M., “Measuring the complexity of join enumeration in
query optimization”, Proc. VLDB, August 1990, pp.314-325.

Ozsu, M.T., and Valduniez, P., Principle of Distributed Database Systems, Prentice-
Hall International, Inc., 1991, pp.230-252.

Tsang, A., Olschanowsky, M., “A study of Database 2 customer queries”, Technical
Report 03.413, IBM Santa Teresa Laboratory, Aprl 1991.

Yu, C.T., “Optimization of distributed tree query”, Journal of Computer and Sys-
tem Science, Academic Press, Inc., Vol.29, 1984, pp.409-445.

Yu, C.T. and Chang C.C., “Distributed query processing”, ACM Computing Sur-
veys, Vol.16, No.4, Dec., 1984, pp.399-432.

	bbb1.bmp
	bbb2.bmp
	bbb3.bmp
	bbb4.bmp
	bbb5.bmp
	bbb6.bmp
	bbb7.bmp
	bbb8.bmp
	bbb9.bmp
	bbba.bmp
	bbbb.bmp
	bbbc.bmp
	bbbd.bmp
	bbbe.bmp
	bbbf.bmp
	bbbg.bmp
	bbbh.bmp
	bbbi.bmp
	bbbj.bmp
	bbbk.bmp
	bbbl.bmp

