
XML query processing using document type definitions q

Tae-Sun Chung *, Hyoung-Joo Kim

School of Computer Science and Engineering, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, South Korea

Received 9 May 2001; received in revised form 21 September 2001; accepted 21 December 2001

Abstract

As eXtensible Markup Language (XML) has become an emerging standard for information exchange on the World Wide Web, it

has gained attention in database communities to extract information from XML seen as a database model. Data in XML can be

mapped to a semistructured data model based on edge-labeled graph, and queries can be processed against it. Here, we propose new

query optimization techniques using document type definitions which have the schema information about XML data. Our tech-

niques reduce the large search space significantly while at the same time requiring less memory compared to the traditional index

techniques. Also, as they preserve source database’s structure, they can process many kinds of complex queries. We implemented our

techniques and provided preliminary performance results.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

1.1. Motivation and problem definition

Recently, as eXtensible Markup Language (XML)

has become an emerging standard for information ex-

change on the World Wide Web, it has gained attention
in database communities to extract information from

XML seen as a database model. That is, it is clear that

an enormous amount of data in the Internet will be

encoded in XML in the near future. So, the technique of

querying XML documents will play a key role in the

applications such as electronic commerce, e-newspaper,

information retrieval, and so on.

There are two kinds of approaches to querying XML
documents. One is using traditional databases such as

relational databases or object-oriented databases for

storing and querying XML documents. The other is

using special purpose query engines for semistructured

data since an XML document can be regarded as an

instance of a semistructured data set. We assume the

latter in this paper. However, our technique can also be

applied in the former if the graph based schema is

constructed to store XML documents.

If we assume that XML data is mapped to a data

graph, the basic problem of XML query processing is

how to find the result of the single regular path query

which is defined as follows.

Definition 1 (Single regular path query). Given a regular

path expression r and a data graph D, the result of r on
D is the set of objects on D that are reachable by the

regular path expression r.

The result of the single regular path query is com-

puted by traversing the data graph with the regular path

expression. This query evaluation technique based on
graph traversal is usually inefficient compared to that of

traditional database systems since there is no schema

fixed in advance. That is, to process given queries tar-

geted to specific schemas in traditional database sys-

tems, a query processor can only process the schemas

targeted. On the other hand, in semistructured data

models, the entire data graph should be processed by a

query processor.
However, in XML there are document type defini-

tions (DTDs) (Bray et al., 1998) which provide schema

information, so we can reduce the search space of the

graph by using DTDs. Although the DTD is an optional

feature of XML, the DTD can be inferred from XML

qThis work was supported by the Brain Korea 21 Project.
*Corresponding author.

E-mail addresses: tschung@papya.snu.ac.kr (T.-S. Chung),

hjk@papaya.snu.ac.kr (H.-J. Kim).

0164-1212/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (02)00042-0

The Journal of Systems and Software 64 (2002) 195–205

www.elsevier.com/locate/jss

mail to: tschung@papya.snu.ac.kr

data by the technique proposed in Garofalakis et al.

(2000). Additionally, XML schemas (Fallside, 2001)

that are extensions to DTDs are being developed by the

Web community. XML schemas extend DTDs by add-

ing typing information. However, we concentrate on

DTDs in this paper since DTDs are simpler than XML
schemas and XML schemas are still evolving. Our tech-

nique can be aided when XML schemas are available.

For example, we process a query Q1, given the fol-

lowing DTD. 1

<!ELEMENT MLB (National|American)+>

<!ELEMENT National (East|Central|West)>

<!ELEMENT American (East|Central|West)>
<!ELEMENT East (stadium?, name, player+)>

<!ELEMENT Central (stadium?, name,

player+)>

<!ELEMENT West (stadium?, name,

player+)>

<!ELEMENT Player (nickname?, name, ERA?,

AVG?, win?)>

Q1:select x

where (MLB.National.Central.Player.

nickname) x

This query asks for the nicknames of the players in

the National League Central Division teams. Assuming

that there are no indexes, the query processor finds all

the objects reachable by the path, MLB.Nation-

al.Central.Player.nickname, and then returns

the objects. However, dealing with data in XML, DTDs

provide the following information about the query Q1.

1. The MLB consists of National League and American

League teams.

2. A National League team belongs to one of East,

West, or Central Divisions.
3. A player has or doesn’t have a nickname.

Using these information, the query search space can

be reduced by searching for only the players who belong

to the National League Central Division teams and have

nicknames. In this paper, we propose the query opti-

mization techniques using DTDs.

1.2. Contributions and organization

Our techniques improve the previous work as follows.

First, our techniques can be applied to queries having

several regular path expressions. For example, one can

issue the following query that asks for the National

League Central Division teams that have the player with

the nickname ‘‘Big Mac’’.

select x

where (MLB.National.Central) x (Player.

nickname.‘‘Big Mac’’) y

Many researchers have proposed enhanced query

evaluation techniques by schema extraction (Goldman

and Widom, 1997; Nestorov et al., 1997; Milo and Su-

ciu, 1999). That is, given a particular data instance of

large size, the technique finds the schema for it and

traverses the schema graph of small size instead of the

data graph. However, the techniques are not adequate
for queries having multiple regular path expressions.

This is because that the queries like the one above

cannot be evaluated by only traversing the schema

graph. On the other hand, since our techniques preserve

source database’s structure, they can efficiently process

queries having multiple path expressions. Second, our

techniques construct index information efficiently and

do not require much additional storage for indexes.
The paper is organized as follows. Section 2 mentions

related work, Section 3 presents the overview of our

approach. Section 4 describes the classification of the

DTD elements which is used in query optimization. In

Section 5, we propose our query optimization tech-

niques. Section 6 presents the preliminary results. And

finally, we conclude in Section 7.

2. Related work

First, the overviews of semistructured data models
are summarized in Abiteboul (1997) and Buneman

(1997). Here, semistructured data is represented in edge-

labeled graph, in which the nodes correspond to the

objects, and the edges to their attributes.

In semistructured data represented in edge-labeled

graph, query languages are derived from those of object-

oriented DBMSs such as OQL (Cattell, 1994) and

XSQL (Kifer et al., 1992). In these query languages, the
expressive power is improved by using path expressions

that may have variables that range over classes and at-

tributes rather than data values in RDBMSs.

However, these query languages designed for well

structured data are inappropriate in semistructured data

whose structure may be irregular or incomplete. So,

many semistructured query languages based on the

regular path expression that allows many kinds of reg-
ular expressions in queries have been proposed. These

include XQuery (Chamberlin et al., 2001), UnQL

(Buneman et al., 1996), Lorel (Abiteboul et al., 1996),

XML-QL (Deutsch et al., 1999), and so on. Our tech-

niques proposed in this paper can be applied to these

kinds of queries.

1 We omitted the form of <!ELEMENT element_label

(#PCDATA)>.

196 T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205

The query optimization techniques for semistructured

data are derived from path indexes (Bertino and Kim,

1989) in OODBMSs. Path indexes introduced in Bertino

and Kim (1989), index on particular paths rather than

attributes of relations.

Theoretical foundations to query processing for
semistructured data are studied in Abiteboul and Vianu

(1997) and Mendelzon and Wood (1995). In Abiteboul

and Vianu (1997), the authors define regular path queries

that find all objects reachable by paths whose labels form

a word in a regular expression over an alphabet of labels,

and propose the query optimization techniques which

use information about path constraints. The complexi-

ties of query processing in a graph database is studied in
Mendelzon and Wood (1995). The authors only treat

simple paths, that is, those that have no cycles. We apply

the theoretical foundations in our framework and design

practical algorithms for real applications.

The query optimization techniques using graph sche-

mas are proposed in Fernandez and Suciu (1998) and

Suciu et al. (1997). By using graph schemas which have

partial information about a graph’s structure, they reduce
the large search space by query pruning and query re-

writing. However, graph schemas cannot be constructed

automatically, while we provide automatic construction

algorithms. The technique using graph schemas has

characteristicswhereby it defines graph schemas statically

and processes queries for data that conforms to them.

On the other hand, DataGuides (Goldman and Wi-

dom, 1997; Nestorov et al., 1997) focus on data and
record information about all the paths in a database

dynamically, and use them as indexes. DataGuides can

be used efficiently in the environment where there is no

schema information provided in advance. However, this

technique can be applied to only queries with a single

regular expression. That is, it cannot be directly applied

to complex queries with several regular expressions and

variables. T-index (Milo and Suciu, 1999) provides a
general indexing mechanism in evaluating queries in

semistructured data. And it is constructed by the com-

putation of a simulation or a bisimulation, for which

there exist efficient algorithms. However, the target

query should conform to the corresponding template.

The cost based optimization technique is addressed in

McHugh and Widom (1999a,b). It generates optimal

plans based on new kinds of indexing for semistructured
data and database statistics. Our result can be added its

plan space as another efficient plan.

3. Overview of our approach

3.1. Data model

We assume that data in XML is mapped to an object

exchange model (OEM) (Papakonstantinou and Abite-

boul, 1996) graph that is the de facto model for semi-

structured data. Every object in OEM consists of an

identifier and a value, and the nodes in the graph are

objects and the edges are labeled with attribute names.

The OEM objects are classified as the following two

kinds of objects, according to their values.

• Atomic objects: The value of the atomic objects is an

atomic quantity, such as an integer, a string, an im-

age, a sound, and so on.

• Complex objects: The value of the complex objects is

a set of <label, id> pairs.

XML corresponds closely to semistructured data
based on edge-labeled graph, so it is possible to map data

in XML to a semistructured data model such as OEM.

Before mapping data in XML to an OEM graph, we

assume that no element have attributes other than the

attribute ID and the attribute IDREF (Bray et al., 1998).

The XML elements which have attributes other than

those mentioned above can be redefined as ones that do

not have them in the following manner (Suciu, 1998).

<Paper format¼ 00ps00>
<author> Serge Abiteboul </author>

</Paper>

This is converted to the following XML data.

<Paper>
<format> ps </format>

<value>

<author> Serge Abiteboul </author>

</value>

</Paper>

Data in XML can be represented by the OEM

model. 2 That is, XML elements are represented by
nodes of an OEM graph and element–subelement, ele-

ment-attribute, and reference relationships are repre-

sented by edges labeled by the corresponding names.

Values of XML data are represented by leaves in the

OEM graph.

Fig. 1 shows an XML data and a corresponding

OEM graph. Here, &0, &1, etc. are object identifiers.

Objects such as &5 and &6 are atomic objects and those
such as &1 and &2 are complex objects.

3.2. Key idea

From the flexibility of XML data, we can classify

each element using DTDs and give a hint to a query

processor in run time. For example, let’s assume that a

2 In this case some information can be lost.

T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205 197

DTD declaration for the person element in Fig. 1 is as

follows:

< !ELEMENT person ðname; e� mail�; ðschool�
linkjcompany� linkÞÞ > ð1Þ

From the DTD, we can classify the person element

into four groups: (1) ones who have one or more e-mail

addresses and work for companies, (2) ones who have

no e-mail address and work for companies, (3) ones who
have one or more e-mail addresses and are students, and

(4) ones who have no e-mail address and are students.

When each element is classified in this way, the search

space can be reduced. For example, when the query that

is related to students who have e-mails is processed, the

nodes denoting persons who have no e-mail and work

for companies need not be traversed.

In this paper, we present a method of classification of
DTD elements (Section 4), and query optimization

techniques using this information (Section 5).

4. Classification of DTD elements

Data in XML can be represented as an OEM graph

using the method in the previous section, and queries
can be processed over it. At this point, the problem is

that the graph search space is too large.

Our techniques make use of the DTD information to

reduce the search space. DTDs provide structural in-

formation about elements by regular expressions. So, we

can classify DTD elements from DTDs. First, we make

some assumptions about DTDs as in Papakonstantinou

and Velikhov (1999), i.e., XML documents always have
DTDs, and do not have attributes other than the ID and

IDREF attributes as mentioned in Section 3.1. Addi-

tionally, DTDs do not have mixed contents elements

whose contents mixes strings with elements. If this is the

case, our technique bypasses the declaration since they

do not give information to the query processor. Then,

let N be a set of element names, we can abstract the

element declaration in a DTD as a set of ðn : rÞ pairs,
where n 2 N , r is either a regular expression over N or

PCDATA which denotes a character string or EMPTY

which denotes an empty element.

4.1. DTD automata

The regular expressions appearing in DTDs can be
divided into five categories, as follows. If r, r1, and r2 are
regular expressions that DTDs represent, LðrÞ, Lðr1Þ,
and Lðr2Þ are the languages that can be described by the

regular expressions.

1. Case r ¼ r1; r2: The languages that r denotes are the

concatenation of Lðr1Þ and Lðr2Þ.
2. Case r ¼ r1jr2: LðrÞ is the union of Lðr1Þ and Lðr2Þ.

This kind of DTDs becomes important hints in query

processing. For instance, in the MLB DTD, the ele-

ment of ‘National’ is the union of ‘East’, ‘Central’,

and ‘West’. This information can be used when the

query which has a label of ‘National’ is processed.

That is, the query search space can be divided into

three categories, according to the query’s having a

label of ‘East’, ‘Central’, or ‘West’.
3. Case r ¼ r1þ: This represents one or more occur-

rences of the same structure. As these regular expres-

sions mean that particular attributes exist more than

once, this kind of information is not necessary in re-

ducing the search space. That is, we should process all

the attribute values when an attribute exists more

than once.

Fig. 1. An example of XML data and OEM graph.

198 T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205

4. Case r ¼ r1�: This represents zero or more than one

occurrence of the same structure. This can be a hint

to the query processor since the elements of this form

can be divided into two types according to having one

or more than one corresponding structure or not.

5. Case r ¼ r1?: This kind of regular expressions can be
a hint as in case 2. In the previous MLB DTD, a

player can have an attribute nickname or not. This

can be a piece of information to reduce the query

search space. That is, if a query is related to players

having a nickname, the query processor need not tra-

verse the player who doesn’t have a nickname.

So, we define the following relaxed regular expression
to extract only the necessary information during the

query processing.

Definition 2 (Relaxed regular expression). A relaxed

regular expression is constructed from a given regular

expression as follows.

1. r1; r2) r1; r2
2. r1jr2) r1jr2
3. rþ) r
4. r�) r þ j ?) rj ? (by rule 3)

5. r?) rj ?

Example 1. The DTD declaration in Formula (1) is

abstracted to (person: (name, e-mail*, (schoolj
company))), and the corresponding relaxed regular ex-

pression is (person: (name, (e-mailj ?), (schoolj
company))).

DTD automata are constructed in the following

ways. Let ðni : r0iÞ be an expression which is obtained by

applying relaxed regular expressions to each DTD dec-

laration ðni : riÞ. We construct automation Ai by Algo-
rithm 1 with a new regular expression nir0i.

3 These

automata which have the DTD information classify the

each DTD element, and they are used in pruning the

search space. Here, we use the notation about automata

in Hopcroft and Ullman (1979). An automaton is de-

noted by a five-tuples ðQ;R; d; q0; F Þ, and the meanings

of each tuple are as follows.

• Q is a finite set of states. The notation ½q1; q2
 de-
scribes a new state that is related to the states q1
and q2.

• R is a finite input alphabet, namely labels in DTDs

and a special symbol ?.
• q0 is the start state with q0 2 Q.

• F is the set of all final states with F � Q.
• d is the transition function which maps Q� R to Q.

Algorithm 1 is similar to the standard automata

construction for a regular expression. However, in our

technique, since the input regular expression is a relaxed
regular expression, it directly derive a nondeterministic

finite automaton. On the other hand, in the traditional

technique, first, an NFA with �-transitions is con-

structed. The label ? can be regarded as engendering an

epsilon transition in the DTD automata. However, since

the label is not treated as an epsilon transition but as an

input symbol in our algorithm, it doesn’t require further

nondeterminism. The following theorem shows the
soundness of Algorithm 1.

Theorem 1. There always exists an automaton M con-
structed by Algorithm 1 for the input regular expression r,
and if LðMÞ is the language accepted by M, and LðrÞ is the
language which is describable by the regular expression r,
then LðMÞ ¼ LðrÞ.

The proof is shown in the Appendix A.

Example 2. Fig. 3 shows an automaton constructed by

Algorithm 1 for the person element in Example 1.

Algorithm 1 (The construction of DTD automata).

1: Input: A relaxed regular expression r
2: Output: An automaton M
3: procedure Make_DTD_Automata (regular expres-

sion r)
4: if r ¼ a (a 2 R) then
5: Construct an automaton M as shown in Fig. 2;

6: return M;

7: else if r ¼ r1jr2 then
8: M1 ¼ ðQ1;R1; d1; q1; F1Þ

Make DTD Automataðr1Þ;
9: M2 ¼ ðQ2;R2; d2; q2; F2Þ

Make DTD Automataðr2Þ;
10: Construct the new automaton M ¼ ðQ1 � fq1g[

Q2 � fq2g [½q1; q2
;R1 [R2; d; ½q1; q2
; F1 [F2Þ
from the automata M1 and M2, where d is defined

by

1. dðq; aÞ ¼ d1ðq; aÞ for q 2 Q1 � fq1g and a 2 R1,
2. dðq; aÞ ¼ d2ðq; aÞ for q 2 Q2 � fq2g and a 2 R2,

3. dð½q1; q2
; aÞ ¼ d1ðq1; aÞ where a 2 R1,

4. dð½q1; q2
; aÞ ¼ d2ðq2; aÞ where a 2 R2;

11: else {r ¼ r1; r2}

3 In this paper, we occasionally omit concatenation operator, that

is, nir0i ¼ ni; r0i. Fig. 2. r ¼ a.

T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205 199

12: M1 ¼ ðQ1;R1; d1; q1; F1Þ
Make DTD Automataðr1Þ;

13: M2 ¼ ðQ2;R2; d2; q2; F2Þ
Make DTD Automataðr2Þ;

14: Let the final states F1 of M1 be states f1; f2; . . . ;
fm ðmP 1Þ. Construct the new automaton
M ¼ ðQ1 � F1 [Q2 � fq2g [f½f1; q2
; ½f2; q2
; . . . ;
½fm; q2
g;R1 [R2; d; q1; F2Þ from the automata M1

and M2, where d is defined by

1. dðq; aÞ ¼ d1ðq; aÞ for q 2 Q1 � F1, d1ðq; aÞ 6¼ fk
(where 16 k6m), and a 2 R1,

2. dðq; aÞ ¼ d2ðq; aÞ for q 2 Q2 � q2 and a 2 R2,

3. dð½fk; q2
; aÞ ¼ d2ðq2; aÞ for all k (where k ¼
1; 2; . . . ;m) and a 2 R2,

4. dðqf ; aÞ ¼ ½fk; q2
 for all qf which satisfies

d1ðqf ; aÞ ¼ fk (where 16 k6m) and a 2 R1;

15: end if

16: return M

4.2. Classification of DTD elements

In this section, using the DTD automata constructed
by Algorithm 1, we classify each element of DTDs. As

the DTD automata are constructed from relaxed regular

expressions, they contain information only about con-

catenations and unions. Here, the diverging points in

automata become those of the query search. So, by re-

cording the labels at diverging points we can classify the

DTD elements. We define the classification tree as the

tree having labels at the diverging points of the DTD
automata. Algorithm 2 shows the construction of clas-

sification trees. It traverses from the start state to the

final states of an automaton Mk, and constructs the

classification tree recursively. In Algorithm 2, as each

transition is processed exactly once, the complexity of it

is in OðmÞ, where m is the number of transitions in the

automaton.

In Algorithm 2, the function transitionðqÞ returns p
when there is a transition function dkðq; aÞ ¼ p.
No effect labelk stores the set of labels which do not

affect the classification of the DTD elements, and it is

used when we restructure the OEM graph in the next

section. For instance, the No effect label for the DTD

element of the person is {person, name}.

Algorithm 2 (The construction of classification trees from
DTD automata).

1: Input: Mk ¼ ðQk;Rk; dk; qk; FkÞ (for k ¼ 1; 2; . . . ; n)
2: Output: The classification tree Tk (for k ¼ 1; 2; . . . ; n)
3: procedure Make_classification_tree (state q, automa-

ton Mk)

4: if q 2 Fk then
5: make a vertex q0 corresponding to a state q;
6: return q0;
7: else

8: if transitionðqÞ has more than two states then

9: make a vertex q0 corresponding to a state q;
10: let T be a tree rooted q0 and having children of

Make_classification_tree(w,Mk) for all w where

w 2 transitionðqÞ with edges labeled a in the

transition;

11: return T;
12: else

13: q dkðq; aÞ;
14: No effect labelk ¼ No effect labelk [a;
15: Make_classification_tree(q,Mk);

16: end if

17: end if

Example 3. Fig. 4 shows a classification tree and a cor-

responding classification table constructed from the

DTD automaton of the person element in Fig. 3 using

Algorithm 2.

5. Query optimization

Using the classification tables, we restructure an input

OEM graph, and provide a query processor with in-

formation about reducing the search space. Here we

propose two techniques. One is that the query processor
keeps classification information only about each object

and the other is about all objects under the target object.

Before we describe our techniques, we define path

expressions that occur in queries.

Definition 3 (Regular path expression). A regular path

expression is a form of H :P where

1. H is an object name or a variable denoting an object,

2. P is a regular expression over labels in an OEM

graph. Namely, P ¼ labeljðP jPÞjðP :P ÞjP�.

Definition 4 (Simple regular path expression). A simple

regular path expression is a sequence H :p1:p2 . . . pn where

1. H is an object name or a variable denoting an object,

2. pi (16 i6 n) is a label in an OEM graph or wild-card

‘‘�’’ which denotes any sequence of labels.

5.1. NodeInfo

Algorithm 3 shows the construction of NodeInfo.

Fig. 3. A DTD automaton.

200 T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205

The inputs of Algorithm 3 are an OEM graph which
specifies data in XML, and the classification table con-

structed in the previous section. The classification table

T is a two-dimensional array and the value of

T ½element label
½i
 is a label set of element label’s ith
group. For instance, T ½person
½1
 ¼ fe-mail; companyg
in Fig. 4. Algorithm 3 traverses the OEM graph in a

post order way, and determines the value of the variable

node_info, which stores the index of the label set that
corresponding objects belongs to in the classification

table.

Algorithm 3 (The construction of NodeInfo).

Input: An OEM graph, and a classification table

T ½element label
½index

Output: An OEM graph with node_info
procedure PostOrderNodeInfo(vertex v)
for all w which has an connected edge from v and it is

unmarked do

PostOrderNodeInfo(w);
end for

if v is a complex object

L element labelðvÞ;
S child label setðvÞ [L;
S S �No effect labelk; {assume L is kth
element in a DTD}

for all T ½L
½index
 where 06 index < number of

groups corresponding to L do

if T ½L
½index
 � S ¼ / then

v:node info ¼ index;

break;

end if
end for

end if

mark v;

In Algorithm 3, the function child label setðvÞ returns
the set of child labels which the node v has. For example,

in Fig. 1, child label setð&2Þ ¼ fperson; name; urlg. The
function element labelðvÞ returns the element label cor-
responding to the node v. For example, in Fig. 1,

element labelð&1Þ ¼ person.

Each node v in an OEM graph is processed as fol-

lows. When the node v is an atomic object, it has no

meaning in constructing NodeInfo since it has no child

label. When the node v is a complex object, Algorithm 3

finds the group which the node belongs to from its child

labels by referring to the classification table, and keeps

the index of the label set in the table to the variable

node_info.

The NodeInfo technique gives classification infor-

mation about each object to a query processor. For
example, the person element is divided into four groups

as in Fig. 4, and the object &1 in Fig. 1 belongs to 1:{e-

mail, company} and the object &3 to 2:{school}. The

variable node_info in the NodeInfo technique stores

the index of the label set to which the corresponding

object belongs in the classification table. For example,

the object &1 has node_info of 1 which is an index of

a label set {e-mail, company}.
The construction cost of NodeInfo in the worst case

is in OðknÞ where k is the maximum number among the

number of groups for each DTD element, and n is the

number of nodes. So, it is superior to DataGuides

(Goldman and Widom, 1997; Nestorov et al., 1997) of

exponential cost in the worst case. Moreover, in average

case, it is usually superior to 1-index (Milo and Suciu,

1999) of Oðm log nÞ construction cost under a graph with
m edges and n nodes.

The NodeInfo technique can process the queries that

only have simple regular path expressions. First, we

define a variable classification_info for simple regular

path expressions.

Definition 5. Let H :p1:p2 . . . pn be a simple regular path

expression. For each pi (i ¼ 1; 2; . . . ; n� 1), the value of
pi’s classification_info is

1. {} where piþ1 ¼ �, or piþ1 6¼ � and piþ1 2
No effect label, 4 and

2. fpiþ1g where piþ1 6¼ � and piþ1 62 No effect label.

Example 4. Consider the simple regular path expression
‘AGroup.person.*.e-mail’. Here, p1 ¼ person and

p2 ¼ �. So, the classification_info of p1 is {} and that of

p2 is {e-mail}.

Query processing in the NodeInfo technique is per-

formed as follows. To find all objects reachable by a

simple regular path expression H :p1:p2 . . . pn a query

processor begins searching the graph. When the query
processor searches an object v which has a directed edge

to an object w and the corresponding label is

pi ð16 i6 n� 1Þ, the search should be expanded to the

object w when the condition classification info of

pi�classification table½element label of w
½w:node info
¼
/ holds.

Fig. 4. A classification tree and a classification table.

4 No effect label is an union set of No effect labelk for all k.

T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205 201

Example 5. Consider the simple regular path expression

‘AGroup.person.company.url’ against the data graph in

Fig. 1. In a naive method, the objects &1 and &3 should

be traversed. However, in the NodeInfo technique,

when the query processor searches the object &0 and

reads the values for the object &3, pi ¼ person, and
classification info of pi � classification table ½person
 �
½w:node info
 ¼ fcompanyg�fschoolg 6¼/. So it doesn’t

traverse the object &3.

5.2. MergeNodeInfo

The MergeNodeInfo technique provides classification

information about all the objects that are reachable
from the target object. That is, in the MergeNode-

Info technique, the variable merge_node_info has

the union of all node_info of its descendants. For

example, merge_node_info of the object &1 is

fe-mail; company; urlg.
The size of MergeNodeInfo is in OðtnÞ where t is the

cardinality of a difference in set between the set of labels

which exist in a DTD and the set of labels in
No effect label, and n is the number of objects in the

OEM graph. In DataGuides, the size may be as large as

exponential in that of database.

The MergeNodeInfo technique can process the que-

ries that have simple regular path expressions and reg-

ular path expressions. First, we define a variable

merge_classification_info of pi for simple regular path

expressions in queries.

Definition 6. Let H :p1:p2 . . . pn be a simple regular path

expression that exists in a query. The merge_classifica-
tion_info of pi ði ¼ 1; 2; . . . ; n� 1) is defined by

[n�1
k¼i classification info of pi:

Query processing in the MergeNodeInfo technique is

as follows. To find all objects reachable by a simple reg-

ular path expression H :p1:p2 . . . pn, a query processor

begins searching the graph. When the query processor
searches an object vwhich has a directed edge to an object
w and the corresponding label is pi ð16 i6 n� 1Þ, the
search should be expanded to object w when the condi-

tion merge classification info ofpi�w:merge node info¼
/ holds.

Example 6. Consider the simple regular path expression

‘AGroup.person.*.baseball-team’. To find all objects

reachable by this path in a naive method, the whole

graph should be traversed to find the label ‘baseball-

team’ which follows the ‘�’ symbol. However, in the

MergeNodeInfo technique, when the query processor
searches the object &0 and reads its values for the object

&1, pi ¼ fpersong and merge_classification_info of

pi � w:merge node info ¼ fbaseball-teamg � fe-mail;
company; urlg 6¼ /. So, the objects under the object &1

is not traversed.

The MergeNodeInfo technique can be used for que-

ries that have regular path expressions without the ‘j’
operator. 5 In this case, query processing is carried out

as follows. First, we define the following variables.

Definition 7. When a query processor searches an object

v which has a directed edge to an object w, the variables
P, Q, and R are defined as follows.

• P: A difference in a set between the set of labels which
exist in the query and the set of labels in No_effect_la-

bel,

• Q: A set of labels in merge_node_info for the node

w,
• R: A set of labels in the path from the root to the

node w.

Here, when the condition P � ðQ [RÞ ¼ / is satisfied,
the search is expanded from node v to node w.

Example 7. Consider the regular path expression

‘Bib.paper(.section)*.figure’ with a new bibliography

database. We assume that an object v which denotes a

section in the database and there are no figures in all the

subsections of it. Then, when the query processor sear-

ches the object v, it is a possible condition that P ¼
fpaper; section; figureg, Q ¼ fsectiong, and R ¼ fpaper;
sectiong. So, P � ðQ [RÞ ¼ ffigureg 6¼ /, after which

it stops searching.

6. Preliminary results

We have implemented our techniques described in
this paper with about 3000 lines of Java code to illus-

trate their enhancement in query processing. Addition-

ally, we implemented the well known dataguide

algorithm and compared it with our algorithms. Our

techniques are applied to the MLB database 6 that is

composed of 14 646 objects including 60 teams and 2400

players.

The dataguide algorithm resembles the technique to
transform a nondeterministic finite state automaton into

a deterministic one. Here, the nondeterministic finite

state automaton corresponds to source data graph and

the deterministic one to an index graph. The technique

finds all of the objects reachable by a regular path ex-

5 The regular path expression which has a ‘j’ operator can be divided

into more than one regular path expressions without a ‘j’ operator.
6 This is constructed synthetically by programming techniques but it

is similar to the real MLB database.

202 T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205

pression from the root efficiently. However, the tech-

nique is restricted to a single regular path expression.

That is, it cannot be directly applied to complex queries

with several regular expressions and variables. More-

over,in the worst case, the index size and the construc-

tion cost may be exponential.
In our techniques, the variables node_info and

merge_node_info play an index role and are added in

the OEM graph. The query processor prunes the search

space by reading the variables during query processing.

Our experiment presented in Table 1 shows that the

NodeInfo and MergeNodeInfo technique have small

index size and construction cost compared to the data-

guide algorithm, although small dataguide graph is
constructed in our MLB database.

Next, we consider the performance results of our

techniques for simple regular path expressions. Table 2

shows queries used in the experiment. Table 3 shows

the number of objects that satisfy the queries and the

number of objects that are searched to evaluate the

queries with four methods: naive, NodeInfo, Merge-

NodeInfo, and dataguide. The number of objects in the

result set shows the minimum number of objects that the

query processor should traverse to answer the queries.
We can see that the NodeInfo and MergeNodeInfo

technique reduce the search space significantly com-

pared to naive evaluation of the queries. Since dataguide

is an optimal solution for processing the single regular

path queries without wildcards in average case, data-

guide wins our technique for the queries Q1, Q2, and Q3.

However, dataguide has a critical problem that it cannot

be applied to queries having multiple regular path ex-
pressions as mentioned earlier, whereas our technique

can be applied to them. Additionally, when queries

having ‘�’ expression are processed, the MergeNodeInfo

technique outperforms the NodeInfo and the dataguide

techniques. This is because the entire dataguide graph

should be traversed to process ‘�’ expression. So, when
the size of dataguide is large, the MergeNodeInfo

technique outperforms the dataguide technique in pro-
cessing a single regular path expression. Finally, since

data queries are I/O bound, we measured the number of

page I/O and the total execution time. The result is

shown in Fig. 5.

If queries are mainly composed of labels that do not

classify elements, our approach will show a rather poor

performance. However, we think that this is a rare case

and if we store the result of that kind of query as ma-
terialized views the weakness can be overcome. The

issues on materialized views are our future work.

Fig. 5. Page I/O and execution time: (a) the number of page I/O and (b) the total elapsed time (s).

Table 1

Construction cost and index size

Construction cost (s) Index size (byte)

DataGuide 116.397 63 132

NodeInfo 37.168 38 912

MergeNodeInfo 36.703 43 308

Table 2

Queries used in the experiment

Q1 MLB.*.Central.player.RBI

Q2 MLB.American.East.player.win

Q3 MLB.National.West.player.nickname

Q4 MLB.*.West.stadium

Table 3

The number of objects searched

Q1 Q2 Q3 Q4

The number of objects in the

result set

500 100 10 2

Naive 11 105 591 451 9807

NodeInfo 10 805 321 41 9789

MergeNodeInfo 1041 321 41 7

DataGuide 188 106 16 90

T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205 203

7. Conclusion

In this paper, we proposed two query optimization

techniques named NodeInfo and MergeNodeInfo.

From the DTD automata constructed from given re-

laxed regular expressions, the techniques captures in-
formation about the structures of data and about the

classification of queries, and uses it in pruning the graph

traversal. Our technique doesn’t require much addi-

tional storage for indexes, and since the structure of the

source database to which queries are processed is pre-

served, they can process complex queries such as those

that have more than one regular expressions.

Appendix A. Proof of Theorem 1

We can prove Theorem 1 in similar ways to Theorem

2.3 of (Hopcroft and Ullman, 1979) by induction on the

number of the operators in the regular expression r.

1. If there are no operators in the regular expression r,
it corresponds to the form of r ¼ a. The constructed

automaton is just like Fig. 2. It clearly satisfies the
conditions (induction basis).

2. We assume that the theorem is true for the regular ex-

pressions which have fewer than i operators (induc-

tion hypothesis).

3. When r has i operators, r is in the form of r ¼ r1jr2 or
r ¼ r1r2 since r is a relaxed regular expression.

(a) Case r ¼ r1jr2. As the number of operators in r1 and
r2 are surely less than i, there are automata M1 and
M2 with LðM1Þ ¼ Lðr1Þ and LðM2Þ ¼ Lðr2Þ based on

the induction hypothesis. In the transition function

d for case r ¼ r1jr2 in Algorithm 1, according to

equations 1, 3 all the moves of M1 are present in

M, and according to equations 2, 4 all the moves

of M2 are present inM. And for Q1 and Q2, as states

can be renamed, we can assume Q1 \ Q2 ¼ /. The
automaton M constructed from Algorithm 1 is
shown in Fig. 6. In Fig. 6, any path from the initial

state to the final states inM has two kinds of moves.

One is that it starts from a state ½q1; q2
 and ends in a

state of F1 by following any path in M1, and the

other is that it begins from the state ½q1; q2
 and ends

in a state of F2 by following any path of M2. This
means that there is a path labeled x from the start

state to the final states in M if and only if there is

a path labeled x from the start state to the final

states in M1 or a path labeled x from the start state

to the final states in M2. Hence LðMÞ ¼
LðM1Þ [LðM2Þ ¼ Lðr1Þ [Lðr2Þ ¼ LðrÞ as required.

(b) Case r ¼ r1r2. Based on the induction hypothesis, as

the number of operators in r1 and r2 are less than i,
there are automata M1 and M2 with LðM1Þ ¼ Lðr1Þ
and LðM2Þ ¼ Lðr2Þ. Fig. 7 shows the automaton con-

structed. Every path from the start state to the final

states in M is a path labeled by some string x which

is a string from q1 to ½fk; q2
 ð16 k6mÞ, followed by

a path labeled by some string y which is a string

from ½fk; q2
 to F2. Namely, the language that au-

tomaton M accepts satisfies the following equation,
LðMÞ ¼ fxyjx is in LðM1Þ and y is in LðM2Þg. So, the
equation LðMÞ ¼ LðM1ÞLðM2Þ ¼ Lðr1ÞLðr2Þ ¼ LðrÞ is
satisfied.

So, the Theorem 1 is true for any number of opera-

tors.

References

Abiteboul, S., 1997. Querying semi-structured data. In: Proceedings of

the International Conference on Database Theory.

Abiteboul, S., Vianu, V., 1997. Regular path queries with constraints.

In: Proceedings of ACM Symposium on Principles of Database

Systems.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J., 1996.

The lorel query language for semistructured data. International

Journal on Digital Libraries.

Bertino, E., Kim, W., 1989. Indexing techniques for queries on nested

objects. IEEE Transaction on Knowledge and Data Engineering.

1 (2).

Bray, T., Paoli, J., Sperberg-McQueen, C., 1998. Extensible markup

language (XML) 1.0. Technical report, W3C Recommendation.

Buneman, P., 1997. Semistructured data. In: Proceedings of ACM

Symposium on Principles of Database Systems.

Buneman, P., Davidson, S., Hillebrand, G., Suciu, D., 1996. A query

language and optimization techniques for unstructured data. In:

Proceedings of the ACM SIGMOD International Conference on

the Management of Data.

Cattell, R., 1994. The object database standard: ODMG-93. Morgan

Kaufmann Publishers.

Chamberlin, D., Florescu, D., Robie, J., Simeon, J., Stefanescu, M.,

2001. XQuery: A query language for XML. Technical report, W3C

Working Draft.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D., 1999.

Query language for XML. In: Proceedings of Eighth International

World Wide Web Conference.Fig. 6. r ¼ r1jr2.

Fig. 7. r ¼ r1r2.

204 T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205

Fallside, D.C., 2001. Xml schema part 0: Primer. Technical report,

W3C Recommendation.

Fernandez, M., Suciu, D., 1998. Optimizing regular path expressions

using graph schemas. In: IEEE International Conference on Data

Engineering.

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K., 2000.

XTRACT: A system for extracting document type descriptors from

XML documents. In: Proceedings of the ACM SIGMOD Inter-

national Conference on the Management of Data.

Goldman, R., Widom, J., 1997. DataGuides: enabling query formu-

lation and optimization in semistructured databases. In: Proceed-

ings of the Conference on Very Large Data Bases.

Hopcroft, J.E., Ullman, J.D., 1979. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley Publishing Com-

pany.

Kifer, M., Kim, W., Sagiv, Y., 1992. Querying object-oriented

databases. In: Proceedings of the ACM SIGMOD International

Conference on the Management of Data.

McHugh, J., Widom, J., 1999a. Optimizing branching path expres-

sions. Technical report, Stanford University Database Group.

McHugh, J., Widom, J., 1999b. Query optimization for XML. In:

Proceedings of the Conference on Very Large Data Bases.

Mendelzon, A., Wood, P., 1995. Finding regular simple paths in graph

databases. SIAM Journal of Computing 24 (6).

Milo, T., Suciu, D., 1999. Index structures for path expressions. In:

Proceedings of the International Conference on Database Theory.

Nestorov, S., Ullman, J., Wiener, J., Chawathe, S., 1997. Represen-

tative objects: concise representations of semistructured, hierarchi-

cal data. IEEE International Conference on Data Engineering.

Papakonstantinou, Y., Abiteboul, S., 1996. Object fusion in mediator

systems. In: Proceedings of the Conference on Very Large Data

Bases.

Papakonstantinou, Y., Velikhov, P., 1999. Enhancing semistructured

data mediators with document type definitions. IEEE International

Conference on Data Engineering.

Suciu, D., 1998. Semistructured data and XML. In: Proceedings of

International Conference on Foundations of Data Organization.

Suciu, D., Fernandez, M., Davidson, S., Buneman, P., 1997. Adding

structure to unstructured data. In: Proceedings of the International

Conference on Database Theory.

T.-S. Chung, H.-J. Kim / The Journal of Systems and Software 64 (2002) 195–205 205

	XML query processing using document type definitions
	Introduction
	Motivation and problem definition
	Contributions and organization

	Related work
	Overview of our approach
	Data model
	Key idea

	Classification of DTD elements
	DTD automata
	Classification of DTD elements

	Query optimization
	NodeInfo
	MergeNodeInfo

	Preliminary results
	Conclusion
	Proof of Theorem 1
	References

