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Abstract 

This paper describes the object-oriented design and 
implementation of an extensible schema manager for 
object-oriented databases. In order to achieve ex- 
tensibility, we have adopted an open class hierar- 
ch y approach using an ob ject-oriented implementa- 
tion where an object-oriented database maintains its 
implementation classes as user-defined classes. A 
- Graphical interface for an Object-Qriented database 
- Schema Environment, GOOSE, has been developed. 
GOOSE supports several advanced features which in- 
clude schema evolution, schema versioning, and DAG 
rearrangement view of a class hierarchy. Schema evo- 
lution is the ability to make a variety of changes to 
a database schema without reorganization. Schema 
versioning is the ability to define multiple schema ver- 
sions and to keep track of schema changes. A new 
type of view for object-oriented databases, namely the 
DAG rearrangement view of a class hierarchy, is also 
supported. 

1 Introduction 

Database management systems have been success- 
ful in supporting traditional business applications. 
This success has created an interest in investigating 
efficient support for nontraditional applications, such 
as software engineering environments, engineering ap- 
plications for CAD/CAM/CIM and VLSI data, knowl- 
edge based systems, multimedia information systems, 
and office information systems [I, 2, 31. 

Nontraditional applications require support for 
more complex modeling primitives and data struc- 
turing capabilities. Moreover, they require additional 
functionality to deal with evolving environments be- 
cause design applications, in general, tend to be iter- 
ative in nature, where the completion of the design 
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process may require investigating several alternatives. 
The object-oriented data models are more powerful 
than traditional data models due to their support for 
inheritance in a class hierarchy, complex objects, ob- 
ject identity, and an easy incorporation of new data 
types. 

Support for dynamically evolving objects includes 
the evolution of objects as well as the evolution of their 
schema. The evolution of the schema supports alter- 
native representations of object classes. The schema 
versioning mechanism enables the user to manipulate 
versions of a class in a single class hierarchy. Also, 
the class versioning should be independent of the ob- 
ject versioning mechanism supported. For example, 
a versioned class does not have to have all objects in 
its scope versioned. The incorporation of schema ver- 
sioning enables the user to experiment with alternative 
objects aa well as alternative classes. 

The open class hierarchy approach has been 
adopted to achieve the extensibility of the implemen- 
tation. In this approach, the system meta information 
is implemented as objects of system classes. One of 
our ultimate objectives is to extend the notion of con- 
sistency to the methods. Method consistency is baaed 
on the robustness of the method interface and the va- 
lidity of a method implementation in a dynamically 
changing schemas. In order to maintain method con- 
sistency, the system maintains the method sources and 
their interfaces. The advanced features, described in 
this paper, have been implemented as a specialization 
of the system classes. 

1.1 Overview 

This paper describes the advanced features and the 
graphical interface, GOOSE, component of an object- 
oriented database system under development at  the 
Georgia Institute of Technology. A primary objective 
of this research is investigating support for dynam- 
ically evolving objects and their schemas in object- 
oriented databases. In this paper, we focus more on 
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the structural aspects of the system and its schema 
environment. 

In this section, we define the terms used and the 
implementation of an extensible object-oriented data 
model. Section 2 describes the data model and the 
extensibility of its implementation. Section 3 briefly 
describes the architecture of our testbed. Section 4 
describes the support for schema evolution and ver- 
sioning in GOOSE. Also, we briefly describe the sup- 
port for DAG rearrangement views of a class hierar- 
chy (DAGR views), and method conversion. Section 
5 concludes the paper by describing additional exten- 
sions to GOOSE and future research issues. 

2 Data model and its implementation 

In this section, we describe the core concepts of 
object-oriented data models with which our data 
model is consistent. The adopted data model main- 
tains its implementation components as well as user- 
defined classes as a part of the overall schema defini- 
tions. We use the term object to represent an encap- 
sulation of instance variables containing a state, and 
methods for manipulating it. Classes are used to de- 
scribe object types, as defined by their instance vari- 
ables and methods. The properties of a class connote 
its instance variables and methods. Objects communi- 
cate via messages. The domain of an instance variable 
is the set of values it might have from its class type, 
which is called the domain class. 

Inheritance is a mechanism used for defining spe- 
cialization relationships between classes. Given a 
property V applicable to a number of classes, we define 
the origin of V as the most generalized class where V 
is locally defined. Multiple inheritance allows a class 
to inherit properties from several superclasses. If a 
property is inherited from more than one superclass 
that has a single origin, only one property is included 
in the class definition. 

We use the notion of full forced inheritance (FFI ) .  
Under FFI, even if there is a naming conflict among 
inherited properties, all of these properties must be 
inherited and none should be rejected. To resolve the 
naming conflict, the property name is prefixed with 
the name of the c l w  in which it is locally defined. 

The ISA relationship captures the relationship be- 
tween a class and its superclass and is represented in 
a class hierarchy. Because of multiple inheritance, the 
resulting structure is not just a hierarchy, but a single 
rooted DAG (lattice). The database schema consists 
of a class hierarchy along with the set of locally defined 
properties of each class. 

Subclasses are allowed to restrict the domain of 
an inherited instance variable. The domain of an in- 
stance variable inherited from multiple superclassee is 
restricted to the intersection of the instance variable 
domains. 

The scope of a class C contains all objects that are 
visible through C which consist of all objects of type 
C as well aa those of the subclasm of C. The direct 
scope of a class C contains all objects in the scope of 
C which are not in the scope of any subclaw of C. 

2.1 The extensibility of our data model 

In our implementation, we extended the notion of 
unique object identifiers to system objects which cap- 
ture the database schema, namely classes, instance 
variables, and methods. Each of these components is 
an object of a meta class. This approach supports 
a consistent data model where full forced inheritance 
is supported. For each user-defined instance variable, 
its name, origin class, domain class, and domain con- 
straints are maintained. Also, for each method, its 
name, origin class, and parameters are maintained. 
The properties of each claw include its name, the set 
of superclasses, the set of methods, and the set of in- 
stance variables. 

Schema Invariants The database schema invari- 
ants are based on the invariants defined by Banerjee et 
al. in [4]. The first invariant ensures that the class hi- 
erarchy is a single rooted DAG. The second invariant 
ensures unique naming of the database schema compo- 
nents. However, in our model, this invariant ensures 
the unique naming of claeses for only the locally de- 
fined properties associated with each class. The third 
invariant ensures unique origin of each property. The 
fourth invariant ensures the domain compatibility of 
the properties in the subclasses of their origin; that 
is, a class C may modify the domain of an inherited 
property P as long as the new domain is a subset of 
the domain of P in the superclasses of C. The fifth 
invariant ensures full inheritance among a class and 
its subclasses; that is, a class inherits all the prop- 
erties of its superclasses. The naming conflict that 
may arise because of inheritance is resolved by prefix- 
ing the property name with its class of origin. In our 
implementation, the external name of a property is a 
computed value which may change aa a side effect of 
some schema evolution operations. 

The objective of this approach includes providing 
a consistent and extensible environment where the 
system classes and the user-defined classes are main- 
tained. That is, a full fledged object-oriented im- 



plementation where the schema components and the 
sources of the implementation are maintained. The 
advantages of this approach include: 

We classify the system claeeee used to maintain the 
database schema into six categories. These categories 
present functions and abstractions of the system. 

Extending the implementation to support sev- 
eral advanced features and customization of sup- 
ported features for specific applications. 

Maintaining the source code of methods im- 
plementation enables the system to perform a 
method conversion as a side effect of dynamic 
schema changes. For example, renaming of a class 
or a method would result in the conversion of the 
affected methods source code. 

Extending the notion of schema consistency to 
method consistency. For example, dropping a 
class C may result in notifying the user of p c ~  
tential inconsistency if an instance variable or a 
method parameter is of type C. Also a method 
implementation may be invalidated if it contains 
a local variable of type C. 

2.2 Implementation of data model 

In this section, we briefly describe the system 
classes which are necessary to implement and main- 
tain the database schema and its evolution operations. 
These classes are shown in Figure 1. A more compre- 
hensive description of these classes is found in [5].  

Figure 1: Class hierarchy of system components for 
supporting schema evolution 

1. The identifier cleeeea of the system and user 
objects are rooted by the Idontifior class 
which has a single instance variable I D .  The 
Vorrionodid and Typodid are subclassee of 
Identifier.  The Verrionedld class has a lo- 
cal instance variable, VorrionJo, whereas the 
Typed-id class has Type as a local instance 
variable. The Vorrionod-Typodld is a sub- 
class of the Versionedid and Typed-id classes. 
Each system object of class (Clara, Hethod, 
and InstanceVariable) is uniquely identified 
by a system identifier (Claesid, Hethid, and 
InstVarid, respectively). 

2. The classes for maintaining the description of 
the database schema include InstancrVariable, 
Hethod, and Class. The decomposition of the 
database schema into instance variables, classes, 
and methods enables the database implementor 
(DBI), to define additional properties and con- 
straints on system objects. 

3. The Schemalanager class captures the semantics 
of the data model and the schema evolution oper- 
ations. It maps each schema evolution operation 
to a set of operations on classes that maintain the 
object-oriented database schema and propagates 
the changes to the underlying system objects in 
their scope. This includes parsing and validation 
of the user provided operations. 

4. The Objectlanager component maintains in- 
formation about the object instances in the 
database. This information includes object in- 
stances in the direct scope of each class in the 
database schema. 

5 .  The DomainJerger class is used for the computa- 
tion of the domain intersection of inherited prop- 
erties and relationships among domains, such as 
subset and disjointedness. 

6. The support classes include the Code-Trans- 
former class and the Ref erenceDependency 
class. The Code-Transf ormer class maintains 
the source code of the methods in a format 
independent of the user naming space. The 
Ref erenceDependency class keeps track of the 
instance variables and methods reference by a 
method. Consider the following example. 

152 



Example: 1 A database schema contains the two 
classes: Auto and Employee. The instance variables 
of the Employee class include Car whose domain class 
is Auto. This would result in a dependency between 
the Car instance variable and its domain class Auto. 
The deletion of the Auto class triggers a warning to 
the user of a possible inconsistency in the database 
schema. n 

3 System Architecture 

In order to provide extensibility of the implemen- 
tation, the object identifiers used in GOOSE are inde- 
pendent of the physical location of the object as well 
as the object’s home class. This information is main- 
tained in an object catalog along with the object label. 
The object label is an optional symbolic label that is 
used to logically manipulate objects in GOOSE. For 
example, in order to delete, modify, or assign an ob- 
ject reference to a value of an instance variable, the 
object label is used instead of the object identifier. 

The architecture of the system consists of four lay- 
ers. The bottom layer consists of the Wisconsin Stor- 
age System, WiSS [SI. The object manager is imple- 
mented on top of WiSS. It contains two classes: Object 
and Object Catalog. The Object class is used to store 
and retrieve objects using class descriptions which de- 
scribe the type of its instance variables. The Object 
Catalog associates with each object identifier its home 
class, the physical location, and its label. The Schema 
Manager is implemented on top of the object man- 
ager and supports schema evolution, versioning, and 
DAGR views. It also maintains several main mem- 
ory structures for caching information, such as Class 
Scope and Object Buffer. The Class Scope associates 
a set of object identifiers of those objects in its direct 
scope. The Class Scope is created upon the first access 
to the class scope and it provides operations on all ob- 
jects in its direct scope, such as dropping or adding 
an instance variable. Object Buffer maintains a main 
memory image of each accessed object. The top layer 
consists of the graphical interface (GOOSE).  

Separating the objects from their physical loca- 
tions and their home classes enables the system to 
support object migration where objects may change 
their home classes either implicitly as a side effect 
of their constraints or explicitly through user com- 
mands. The object-oriented design and implementa- 
tion of GOOSE provides extensibility of the system 
components through subclassing. For example, the 
support for schema versioning is implemented by ape- 
cializing the classes used to support schema evolution. 

Also the support for viewing system classes en- 
ables the user to manipulate the system claws as user 
classes which are subject to schema evolution and ver- 
sioning. This allows the user to add constraints on 
system objects as user objects. For example, it is p o s  
sible to disallow multiple inheritance by restricting the 
set of superclasses to a single class identifier. 

GOOSE has been implemented using X windows [7] 
and the C++ programming language [8]. The com- 
ponents of the database schema and user-defined ob- 
jects are stored using the Wisconsin Storage System, 
WiSS [SI. The purpose of GOOSE is to provide a 
user friendly graphical interface for the database de- 
signer or the DBA for designing and modifying object- 
oriented schemas. It may be looked upon as a quick 
prototyping interface for building and prototyping to 
obtain user approval by showing users how various up- 
date operations (insert, delete, and modify) affect un- 
derlying object instances. 

4 Schema evolution, versioning, and 
DAGR view support 

In this section, we briefly describe the design and 
implementation of GOOSE and our approach to sup- 
port the schema evolution and versioning mechanisms. 

4.1 Schema evolution 

An important requirement for nontraditional appli- 
cations is schema evolution: the ability to make a wide 
variety of changes to the database schema dynamically 
without resorting to database reorganization. These 
changes include modifying the structure of a class hi- 
erarchy and changing a class properties. The schema 
evolution operations are provided as methods of the 
Schemaaanager class that manipulate the underlying 
database schema. Our framework for schema evolu- 
tion is based on the framework described in [lo]. 

4.1.1 Issues and related work 

Two main approaches to propagating schema changes 
to the affected objects have been suggested. The 
Orion approach, called screening [ll], defers the prop- 
agation of schema changes to persistent objects. These 
changes are propagated to the affected objects only 
when they are retrieved. In the Gemstone approach, 
called conversion [ll], schema changes are made in- 
stantly which include auxiliary structures of the af- 
fected objects. Our approach to propagate schema 
evolution operations differs from the ORION screen- 
ing approach and the Gemstone conversion approach 



in propagating schema changes to the affected objects. 4.2.2 Schema versioning operations 
GOOSE propagates the changes instantly to main 
memory objects which are made permanent upon issu- The derivation of a class version from its parent class 
ing a sBvB operation. we this a reason- is either through specialization, generalization, or sib- 

for each versioned class, namely generic and dictio- to resolve dangling references. 
nary. The purpose of the generic class is to provide 

able compromise. GOOSE uses a screening approach ling derivation. supports two system 

access to all objects in the direct scope of all versions 
of a class. A generic class of a versioned class is cre- 4.1.2 Schema evolution operations 

GOOSE supports a wide set of schema evolution op- 
erations, which include addition, deletion, and modifi- 
cation of schema components, such as classes, instance 
variables, and methods. 

The schema evolution operations manipulate in- 
stance variables, methods, classes, and ISA relation- 
ships among classes. These operations include the 
adding and dropping a class, an instance variable 
to/from a class, a method to/from a class, and an ISA 
relationship. Operations on instance variables include 
modifying its name, the class of origin, the domain 
class, or the domain constraints. Similarly, operations 
on a method include specialization of the interface, 
modifying its name and the class of origin, and over- 
riding of its code. 

4.2 Schema versioning 

Schema versioning is supported by extending the 
schema evolution framework to allow the users to ma- 
nipulate several schema versions of an object-oriented 
database in a single class hierarchy. Our framework is 
based on the schema versioning mechanism described 
in [lo]. The major benefits of our schema versioning 
is in keeping track of schema versions and the support 
for more flexible derivation of object versions; that is, 
object version derivation may cross multiple schema 
versions. Each version of a class is subject to schema 
evolution operations. Also it may have its own direct 
scope. 

4.2.1 Issues and related work 

Related work in supporting multiple versions of the 
schema includes Encore [12], and a proposed schema 
versioning approach for ORION database system by 
Kim and Chou in [13]. 

The adopted schema versioning mechanism is based 
on versions of a class. The implementation of the 
schema versioning mechanism is incorporated with the 
schema evolution operations. The schema versioning 
mechanism is based on functionality rather than a 
mechanism to improve performance, such as the ap- 
proach proposed in ORION [13]. 

ated as a subclass of the root class, OBJECT, and 
has no direct scope associated with it. The proper- 
ties of a generic class include the intersection of the 
instance variables and methods which are locally de- 
fined in all the class versions. The dictionary class of 
a versioned class is defined to contain a union of all 
locally defined instance variables and methods in ev- 
ery version of its class. The dictionary class is created 
as a subclass of the generic class and has neither a 
scope nor a subclass. The unique naming invariant 
of a class property is enforced among all versions of 
a versioned class. For example, if CAR is a versioned 
class and CAR;l is a class version of CAR which has 
numberOfDoors aa a locally defined instance variable, 
no other class versions of CAR may have another local 
property with the same name. However, any class ver- 
sion of CAR which does not have numberOfDoors may 
include it from the class dictionary, which is called 
CAR.Dictionary. 

Derive a class version Vj from another class 
version Vi: The derivation of a class version Vj 
from its parent class Vi through specialization creates 
Vj as a subclaaa of Vi without any additional local 
properties. Subsequently, the user may add local prop- 
erties to Vj. The derivation through generalization 
creates Vj as a superclass of Vi. Vj will have only the 
generic class as its superclass. Also the locally defined 
properties of the Vi class are promoted to Vj; That is 
Vj become the origin of all locally defined properties 
in Vi. Subsequently, the user may change the origin 
class of some of these properties. Similarly, the deriva- 
tion of Vj as a sibling of Vi creates Vj as a sibling class 
version with the same superclasses and locally defined 
properties as those of Vi. However, Vj will not have 
any subclasses. Subsequently, the user may drop and 
add local properties to Vj. 

The class derivation hierarchy of a versioned class is 
maintained. This derivation hierarchy provides label- 
ing of the nodes (classes), released or transient, where 
each node present a class version. Also the type of 
derivation of a class version from its parent claas is 
also maintained as an edge label. 

The implementation of the schema versioning com- 
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ponent, as depicted in Figure 2, is based on the spe- 
cialization of a generic version control and schema evo- 
lution classes. This approach enables the user to ac- 
cess class versions in a manner similar to object ver- 
sions. Its also reduces the redundancy of the system 
code. In the rest of this section, we briefly describe the 
specialization of the system claases to support schema 
versioning. A more comprehensive description of the 
implementation is found in [5]. 

Figure 2: Class hierarchy of system classes for sup- 
porting schema versioning 

Each instance of a class is uniquely identified by an 
instance of the Class id  class. Class-id is a subclass 
of Versioned-Typed-id. Since a class may have sev- 
eral versions, the version number is used to uniquely 
identify each. The different class types include non- 
versioned, versioned, dictionary, and generic. 

The InstanceVariableVersion class is a subclass 
of Instancevariable class. Since an instance variable 
of a versioned class may be locally defined in several 
class versions, an additional instance variable is added 
to maintain auxiliary origins which contains a set of 
Classid’s. Similarly, the HethodVeraion class is a 
subclass of Methods class. 

The Classversion class is a subclass of the 
Class class for supporting system classes. Also, the 
Add-Class method has an additional parameter indi- 
cating the class type. 

4.5 Graphical interface for schema evolu- 
tion and versioning operations 

The schema evolution and versioning operations are 
incorporated in a single interface. The GOOSE en- 
vironment enables the uBer to manipulate an entire 
schema using Create, Load, Copy, and Save opera- 
tions. These operations are shown in a separate win- 
dow, called GOOSE Graphical Schema Environment. 

The GOOSE Editor component supports the 
schema evolution and versioning operations. The 
GOOSE editor command line is used to display the 
currently executing command; whereas the GOOSE 
editor message displays warning and system me% 
sages. The editor operations are grouped into eight 
groups, namely Show, Add, Modify, Drop, Cancel, 
Save, Print, and Layout, where each group has an aa- 
sociated button at the bottom of the editor window. 
Clicking on a group button may result in either car- 
rying out the associated operation (Cancel and Save) 
or creating a window with a set of options. An option 
window defines a set of operations associated with a 
class or a property of a class. For example, the Drop 
option window includes dropping a class, an instance 
variable or a method from a class, an object from the 
direct scope of a class, and a constraint associated 
with an instance variable. The classes of the database 
schema are graphically represented where each class is 
presented by a push button. For example, to drop a 
class, the user has to click on the Drop button. The 
Drop option window appears from which the Class op- 
tion is selected. In order to perform this action, the 
user has to click on one or more classes to be dropped. 

4.4 DAG rearrangement views 

A new type of view for object-oriented databases, 
namely DAG rearrangement (DAGR) view of a class 
hierarchy [lo] , is being developed by specializing the 
classes of the schema manager. We refer to them as 
DAGR views. The main premise behind the DAGR 
views is that users would like to we certain claases 
and properties that are relevant to their applications. 
These views have to be consistent with the underlying 
database schema. 

DAGR view invariants The first invariant re- 
quires that the set of properties of a class in a DAGR 
view is a subset of its underlying properties. This en- 
sures that the state of a viewed object is consistent 
with its state in the database. The second invariant 
requires that the scope of a class in a DAGR view is 
a subset of its underlying scope. 
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The operations used to define a DAGR view include 
hiding a class, hiding an ISA relationship between two 
classes, adding a new class, and adding an ISA rela- 
tionship between two classes. For example, the se- 
mantics of the hiding operation on a clsss C include 
dropping all locally defined properties of C from its 
subclasses. However, all objects in the direct scope of 
C will remain visible in the scope of its superclasses. 

fect on method conversion. We shall investigate a 
mechanism for achieving compatibility of methods in 
light of dynamic schema changes. This includes a 
framework for the automatic method conversion and a 
notification mechanism for user interaction whenever 
automatic method conversion ie limited. 

**a Status 
Also the schema of a class may be modified either 

through hiding a property, demoting a property, or 
constraining the domain of a property. The notion 
of a black box is used to view a set of related sibling 
classes as a single category class. The GOOSE support 
for DAGR views in described in [14]. 

4.5 Method conversion 

Maintaining the consistency of the database schema 
is an important issue in object-oriented databases. 
The effect of schema evolution operations may leave 
the database schema in an inconsistent state. For ex- 
ample, whenever a class C is deleted and there may 
exist a set of instance variables having C as their do- 
main class, the user has to be notified of the incon- 
sistency as a result of this operation. Similarly, each 
method and instance variable has associated with it a 
set of dependent methods that uses it. 

Monitoring the effect of schema changes is an im- 
portant issue in a dynamically evolving environment 
in order to preserve the consistency of the database 
schema. In order to monitor the effect of schema 
changes, we shall maintain the reference dependen- 
cies of system components as well as method source 
code. A code transformer will be used to translate 
the references to schema components with their re- 
spective object identifiers. It will also produce a list 
of dependencies used to monitor the schema change 
operations. The code transformer will also support 
the reverse operation; that is, producing an updated 
source code of the methods affected by the schema 
change operations. These dependencies will be used 
for notifying the users of possible inconsistency which 
may result as a side effect of schema changes. 

Since the behaviors of objects are captured as meth- 
ods of the object class, the efficient support of method 
invocation on versioned objects will be addressed. For 
example, if an object B contains a static binding to 
a version of an object, the invocation of a method 
which updates B may be prohibited or at least no- 
tified of possible abortion as dictated by the object 
version type. 

The research for investigating method conversions 
include classification of schema changes and their ef- 

At the time of writing GOOSE supports schema 
evolution, versioning, and DAGR views. For schema 
versioning, we currently support two types of ver- 
sioned classes, iransieni and released. The modifica- 
tion of a released class version is restricted; that is, 
no properties can be dropped from it. Two modes of 
operations will be supported, a restricted mode and a 
free mode. The free mode is a DBA mode in which 
the restrictions associated with a released class version 
are relaxed. 

The support classes Code- lhns former  and Refer- 
ence-Dependencies are in the design phase along with 
the notification mechanism. We expect that this fea- 
tures would be incorporated by the mid 1992. 

5 Conclusion and future research 

In this paper, we described the implementation 
of a graphical interface for object-oriented database 
schema environment. The data model supported is 
based on generalizing the concept of object identifiers 
to the database schema components. GOOSE sup- 
ports several advanced features which include schema 
evolution, schema versioning, and DAG reamnge-  
ment view of a class hierarchy. 

This research investigates the support for dynam- 
ically evolving objects and their schema in object- 
oriented databases. It is motivated by the complex- 
ity of nontraditional application requirements and the 
complexity of object-oriented database schema. In or- 
der to support these environments, several advanced 
features have been incorporated in the object-oriented 
database schema environment. The design and im- 
plementation of GOOSE generalizes the concept of 
unique object identifiers of user-defined objects to the 
database schema components and to the DBMS sys- 
tem components as well. 

This research is part of investigating an object- 
oriented design and implementation of an extensi- 
ble object-oriented database system. The approach 
adopted to achieve extensibility is an open architec- 
ture approach. The goal of this approach is to pro- 
vide a set of mechanisms for maintaining the database 
system components that is also used to maintain the 
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database applications in an integrated environment. 
The following is a list of additional research problems 
being addressed. 

GOOSE extensions One of these extensions is the 
support of a graphical query language for object- 
oriented databases and the incorporation of a tu- 
torial using computer animation. Extensible ver- 
sion management of objects and its efficient sup- 
port will also be addressed. 

Schema integration We shall investigate the use of 
an object-oriented data model as a meta model 
for schema integration. A set of primitive oper- 
ations for mapping from relational, network, hi- 
erarchical, and object-oriented database schemas 
to an object-oriented data model will be pro- 
vided. Also, the automatic integration of these lo- 
cal schema into an object-oriented global schema 
will be addressed which includes automatic con- 
flict detection and resolution techniques. 

Storage Models This research includes the study of 
performance of several physical models for storing 
objects. This study only addresses the effect of 
schema change operations. Also efficient support 
for versioned objects in object-oriented databases 
will be investigated. 
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