
An Extensible Object-Oriented Database Testbed *

Magdi M. Morsi & Shamkant B. Navathe
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

shamQcc.gatech.edu

Abstract

This paper describes the object-oriented design and
implementation of an extensible schema manager for
object-oriented databases. In order to achieve ex-
tensibility, we have adopted an open class hierar-
ch y approach using an ob ject-oriented implementa-
tion where an object-oriented database maintains its
implementation classes as user-defined classes. A
- Graphical interface for an Object-Qriented database
- Schema Environment, GOOSE, has been developed.
GOOSE supports several advanced features which in-
clude schema evolution, schema versioning, and DAG
rearrangement view of a class hierarchy. Schema evo-
lution is the ability to make a variety of changes to
a database schema without reorganization. Schema
versioning is the ability to define multiple schema ver-
sions and to keep track of schema changes. A new
type of view for object-oriented databases, namely the
DAG rearrangement view of a class hierarchy, is also
supported.

1 Introduction

Database management systems have been success-
ful in supporting traditional business applications.
This success has created an interest in investigating
efficient support for nontraditional applications, such
as software engineering environments, engineering ap-
plications for CAD/CAM/CIM and VLSI data, knowl-
edge based systems, multimedia information systems,
and office information systems [I, 2, 31.

Nontraditional applications require support for
more complex modeling primitives and data struc-
turing capabilities. Moreover, they require additional
functionality to deal with evolving environments be-
cause design applications, in general, tend to be iter-
ative in nature, where the completion of the design

*This work is partially supported by NSF grant number IRI-
9010120.

Hyoung- Joo Kim
Computer Engineering Department

Seoul National University
Seoul, Korea

hj kOkrsnucc1. bit net

process may require investigating several alternatives.
The object-oriented data models are more powerful
than traditional data models due to their support for
inheritance in a class hierarchy, complex objects, ob-
ject identity, and an easy incorporation of new data
types.

Support for dynamically evolving objects includes
the evolution of objects as well as the evolution of their
schema. The evolution of the schema supports alter-
native representations of object classes. The schema
versioning mechanism enables the user to manipulate
versions of a class in a single class hierarchy. Also,
the class versioning should be independent of the ob-
ject versioning mechanism supported. For example,
a versioned class does not have to have all objects in
its scope versioned. The incorporation of schema ver-
sioning enables the user to experiment with alternative
objects aa well as alternative classes.

The open class hierarchy approach has been
adopted to achieve the extensibility of the implemen-
tation. In this approach, the system meta information
is implemented as objects of system classes. One of
our ultimate objectives is to extend the notion of con-
sistency to the methods. Method consistency is baaed
on the robustness of the method interface and the va-
lidity of a method implementation in a dynamically
changing schemas. In order to maintain method con-
sistency, the system maintains the method sources and
their interfaces. The advanced features, described in
this paper, have been implemented as a specialization
of the system classes.

1.1 Overview

This paper describes the advanced features and the
graphical interface, GOOSE, component of an object-
oriented database system under development at the
Georgia Institute of Technology. A primary objective
of this research is investigating support for dynam-
ically evolving objects and their schemas in object-
oriented databases. In this paper, we focus more on

I 5 0 0-818&2545-7/92 $3.00 0 1992 IEEE

http://shamQcc.gatech.edu

the structural aspects of the system and its schema
environment.

In this section, we define the terms used and the
implementation of an extensible object-oriented data
model. Section 2 describes the data model and the
extensibility of its implementation. Section 3 briefly
describes the architecture of our testbed. Section 4
describes the support for schema evolution and ver-
sioning in GOOSE. Also, we briefly describe the sup-
port for DAG rearrangement views of a class hierar-
chy (DAGR views), and method conversion. Section
5 concludes the paper by describing additional exten-
sions to GOOSE and future research issues.

2 Data model and its implementation

In this section, we describe the core concepts of
object-oriented data models with which our data
model is consistent. The adopted data model main-
tains its implementation components as well as user-
defined classes as a part of the overall schema defini-
tions. We use the term object to represent an encap-
sulation of instance variables containing a state, and
methods for manipulating it. Classes are used to de-
scribe object types, as defined by their instance vari-
ables and methods. The properties of a class connote
its instance variables and methods. Objects communi-
cate via messages. The domain of an instance variable
is the set of values it might have from its class type,
which is called the domain class.

Inheritance is a mechanism used for defining spe-
cialization relationships between classes. Given a
property V applicable to a number of classes, we define
the origin of V as the most generalized class where V
is locally defined. Multiple inheritance allows a class
to inherit properties from several superclasses. If a
property is inherited from more than one superclass
that has a single origin, only one property is included
in the class definition.

We use the notion of full forced inheritance (FFI) .
Under FFI, even if there is a naming conflict among
inherited properties, all of these properties must be
inherited and none should be rejected. To resolve the
naming conflict, the property name is prefixed with
the name of the c l w in which it is locally defined.

The ISA relationship captures the relationship be-
tween a class and its superclass and is represented in
a class hierarchy. Because of multiple inheritance, the
resulting structure is not just a hierarchy, but a single
rooted DAG (lattice). The database schema consists
of a class hierarchy along with the set of locally defined
properties of each class.

Subclasses are allowed to restrict the domain of
an inherited instance variable. The domain of an in-
stance variable inherited from multiple superclassee is
restricted to the intersection of the instance variable
domains.

The scope of a class C contains all objects that are
visible through C which consist of all objects of type
C as well aa those of the subclasm of C. The direct
scope of a class C contains all objects in the scope of
C which are not in the scope of any subclaw of C.

2.1 The extensibility of our data model

In our implementation, we extended the notion of
unique object identifiers to system objects which cap-
ture the database schema, namely classes, instance
variables, and methods. Each of these components is
an object of a meta class. This approach supports
a consistent data model where full forced inheritance
is supported. For each user-defined instance variable,
its name, origin class, domain class, and domain con-
straints are maintained. Also, for each method, its
name, origin class, and parameters are maintained.
The properties of each claw include its name, the set
of superclasses, the set of methods, and the set of in-
stance variables.

Schema Invariants The database schema invari-
ants are based on the invariants defined by Banerjee et
al. in [4]. The first invariant ensures that the class hi-
erarchy is a single rooted DAG. The second invariant
ensures unique naming of the database schema compo-
nents. However, in our model, this invariant ensures
the unique naming of claeses for only the locally de-
fined properties associated with each class. The third
invariant ensures unique origin of each property. The
fourth invariant ensures the domain compatibility of
the properties in the subclasses of their origin; that
is, a class C may modify the domain of an inherited
property P as long as the new domain is a subset of
the domain of P in the superclasses of C. The fifth
invariant ensures full inheritance among a class and
its subclasses; that is, a class inherits all the prop-
erties of its superclasses. The naming conflict that
may arise because of inheritance is resolved by prefix-
ing the property name with its class of origin. In our
implementation, the external name of a property is a
computed value which may change aa a side effect of
some schema evolution operations.

The objective of this approach includes providing
a consistent and extensible environment where the
system classes and the user-defined classes are main-
tained. That is, a full fledged object-oriented im-

plementation where the schema components and the
sources of the implementation are maintained. The
advantages of this approach include:

We classify the system claeeee used to maintain the
database schema into six categories. These categories
present functions and abstractions of the system.

Extending the implementation to support sev-
eral advanced features and customization of sup-
ported features for specific applications.

Maintaining the source code of methods im-
plementation enables the system to perform a
method conversion as a side effect of dynamic
schema changes. For example, renaming of a class
or a method would result in the conversion of the
affected methods source code.

Extending the notion of schema consistency to
method consistency. For example, dropping a
class C may result in notifying the user of p c ~
tential inconsistency if an instance variable or a
method parameter is of type C. Also a method
implementation may be invalidated if it contains
a local variable of type C.

2.2 Implementation of data model

In this section, we briefly describe the system
classes which are necessary to implement and main-
tain the database schema and its evolution operations.
These classes are shown in Figure 1. A more compre-
hensive description of these classes is found in [5].

Figure 1: Class hierarchy of system components for
supporting schema evolution

1. The identifier cleeeea of the system and user
objects are rooted by the Idontifior class
which has a single instance variable I D . The
Vorrionodid and Typodid are subclassee of
Identifier. The Verrionedld class has a lo-
cal instance variable, VorrionJo, whereas the
Typed-id class has Type as a local instance
variable. The Vorrionod-Typodld is a sub-
class of the Versionedid and Typed-id classes.
Each system object of class (Clara, Hethod,
and InstanceVariable) is uniquely identified
by a system identifier (Claesid, Hethid, and
InstVarid, respectively).

2. The classes for maintaining the description of
the database schema include InstancrVariable,
Hethod, and Class. The decomposition of the
database schema into instance variables, classes,
and methods enables the database implementor
(DBI), to define additional properties and con-
straints on system objects.

3. The Schemalanager class captures the semantics
of the data model and the schema evolution oper-
ations. It maps each schema evolution operation
to a set of operations on classes that maintain the
object-oriented database schema and propagates
the changes to the underlying system objects in
their scope. This includes parsing and validation
of the user provided operations.

4. The Objectlanager component maintains in-
formation about the object instances in the
database. This information includes object in-
stances in the direct scope of each class in the
database schema.

5 . The DomainJerger class is used for the computa-
tion of the domain intersection of inherited prop-
erties and relationships among domains, such as
subset and disjointedness.

6. The support classes include the Code-Trans-
former class and the Ref erenceDependency
class. The Code-Transf ormer class maintains
the source code of the methods in a format
independent of the user naming space. The
Ref erenceDependency class keeps track of the
instance variables and methods reference by a
method. Consider the following example.

152

Example: 1 A database schema contains the two
classes: Auto and Employee. The instance variables
of the Employee class include Car whose domain class
is Auto. This would result in a dependency between
the Car instance variable and its domain class Auto.
The deletion of the Auto class triggers a warning to
the user of a possible inconsistency in the database
schema. n

3 System Architecture

In order to provide extensibility of the implemen-
tation, the object identifiers used in GOOSE are inde-
pendent of the physical location of the object as well
as the object’s home class. This information is main-
tained in an object catalog along with the object label.
The object label is an optional symbolic label that is
used to logically manipulate objects in GOOSE. For
example, in order to delete, modify, or assign an ob-
ject reference to a value of an instance variable, the
object label is used instead of the object identifier.

The architecture of the system consists of four lay-
ers. The bottom layer consists of the Wisconsin Stor-
age System, WiSS [SI. The object manager is imple-
mented on top of WiSS. It contains two classes: Object
and Object Catalog. The Object class is used to store
and retrieve objects using class descriptions which de-
scribe the type of its instance variables. The Object
Catalog associates with each object identifier its home
class, the physical location, and its label. The Schema
Manager is implemented on top of the object man-
ager and supports schema evolution, versioning, and
DAGR views. It also maintains several main mem-
ory structures for caching information, such as Class
Scope and Object Buffer. The Class Scope associates
a set of object identifiers of those objects in its direct
scope. The Class Scope is created upon the first access
to the class scope and it provides operations on all ob-
jects in its direct scope, such as dropping or adding
an instance variable. Object Buffer maintains a main
memory image of each accessed object. The top layer
consists of the graphical interface (GOOSE).

Separating the objects from their physical loca-
tions and their home classes enables the system to
support object migration where objects may change
their home classes either implicitly as a side effect
of their constraints or explicitly through user com-
mands. The object-oriented design and implementa-
tion of GOOSE provides extensibility of the system
components through subclassing. For example, the
support for schema versioning is implemented by ape-
cializing the classes used to support schema evolution.

Also the support for viewing system classes en-
ables the user to manipulate the system claws as user
classes which are subject to schema evolution and ver-
sioning. This allows the user to add constraints on
system objects as user objects. For example, it is p o s
sible to disallow multiple inheritance by restricting the
set of superclasses to a single class identifier.

GOOSE has been implemented using X windows [7]
and the C++ programming language [8]. The com-
ponents of the database schema and user-defined ob-
jects are stored using the Wisconsin Storage System,
WiSS [SI. The purpose of GOOSE is to provide a
user friendly graphical interface for the database de-
signer or the DBA for designing and modifying object-
oriented schemas. It may be looked upon as a quick
prototyping interface for building and prototyping to
obtain user approval by showing users how various up-
date operations (insert, delete, and modify) affect un-
derlying object instances.

4 Schema evolution, versioning, and
DAGR view support

In this section, we briefly describe the design and
implementation of GOOSE and our approach to sup-
port the schema evolution and versioning mechanisms.

4.1 Schema evolution

An important requirement for nontraditional appli-
cations is schema evolution: the ability to make a wide
variety of changes to the database schema dynamically
without resorting to database reorganization. These
changes include modifying the structure of a class hi-
erarchy and changing a class properties. The schema
evolution operations are provided as methods of the
Schemaaanager class that manipulate the underlying
database schema. Our framework for schema evolu-
tion is based on the framework described in [lo].

4.1.1 Issues and related work

Two main approaches to propagating schema changes
to the affected objects have been suggested. The
Orion approach, called screening [ll], defers the prop-
agation of schema changes to persistent objects. These
changes are propagated to the affected objects only
when they are retrieved. In the Gemstone approach,
called conversion [ll], schema changes are made in-
stantly which include auxiliary structures of the af-
fected objects. Our approach to propagate schema
evolution operations differs from the ORION screen-
ing approach and the Gemstone conversion approach

in propagating schema changes to the affected objects. 4.2.2 Schema versioning operations
GOOSE propagates the changes instantly to main
memory objects which are made permanent upon issu- The derivation of a class version from its parent class
ing a sBvB operation. we this a reason- is either through specialization, generalization, or sib-

for each versioned class, namely generic and dictio- to resolve dangling references.
nary. The purpose of the generic class is to provide

able compromise. GOOSE uses a screening approach ling derivation. supports two system

access to all objects in the direct scope of all versions
of a class. A generic class of a versioned class is cre- 4.1.2 Schema evolution operations

GOOSE supports a wide set of schema evolution op-
erations, which include addition, deletion, and modifi-
cation of schema components, such as classes, instance
variables, and methods.

The schema evolution operations manipulate in-
stance variables, methods, classes, and ISA relation-
ships among classes. These operations include the
adding and dropping a class, an instance variable
to/from a class, a method to/from a class, and an ISA
relationship. Operations on instance variables include
modifying its name, the class of origin, the domain
class, or the domain constraints. Similarly, operations
on a method include specialization of the interface,
modifying its name and the class of origin, and over-
riding of its code.

4.2 Schema versioning

Schema versioning is supported by extending the
schema evolution framework to allow the users to ma-
nipulate several schema versions of an object-oriented
database in a single class hierarchy. Our framework is
based on the schema versioning mechanism described
in [lo]. The major benefits of our schema versioning
is in keeping track of schema versions and the support
for more flexible derivation of object versions; that is,
object version derivation may cross multiple schema
versions. Each version of a class is subject to schema
evolution operations. Also it may have its own direct
scope.

4.2.1 Issues and related work

Related work in supporting multiple versions of the
schema includes Encore [12], and a proposed schema
versioning approach for ORION database system by
Kim and Chou in [13].

The adopted schema versioning mechanism is based
on versions of a class. The implementation of the
schema versioning mechanism is incorporated with the
schema evolution operations. The schema versioning
mechanism is based on functionality rather than a
mechanism to improve performance, such as the ap-
proach proposed in ORION [13].

ated as a subclass of the root class, OBJECT, and
has no direct scope associated with it. The proper-
ties of a generic class include the intersection of the
instance variables and methods which are locally de-
fined in all the class versions. The dictionary class of
a versioned class is defined to contain a union of all
locally defined instance variables and methods in ev-
ery version of its class. The dictionary class is created
as a subclass of the generic class and has neither a
scope nor a subclass. The unique naming invariant
of a class property is enforced among all versions of
a versioned class. For example, if CAR is a versioned
class and CAR;l is a class version of CAR which has
numberOfDoors aa a locally defined instance variable,
no other class versions of CAR may have another local
property with the same name. However, any class ver-
sion of CAR which does not have numberOfDoors may
include it from the class dictionary, which is called
CAR.Dictionary.

Derive a class version Vj from another class
version Vi: The derivation of a class version Vj
from its parent class Vi through specialization creates
Vj as a subclaaa of Vi without any additional local
properties. Subsequently, the user may add local prop-
erties to Vj. The derivation through generalization
creates Vj as a superclass of Vi. Vj will have only the
generic class as its superclass. Also the locally defined
properties of the Vi class are promoted to Vj; That is
Vj become the origin of all locally defined properties
in Vi. Subsequently, the user may change the origin
class of some of these properties. Similarly, the deriva-
tion of Vj as a sibling of Vi creates Vj as a sibling class
version with the same superclasses and locally defined
properties as those of Vi. However, Vj will not have
any subclasses. Subsequently, the user may drop and
add local properties to Vj.

The class derivation hierarchy of a versioned class is
maintained. This derivation hierarchy provides label-
ing of the nodes (classes), released or transient, where
each node present a class version. Also the type of
derivation of a class version from its parent claas is
also maintained as an edge label.

The implementation of the schema versioning com-

I54

ponent, as depicted in Figure 2, is based on the spe-
cialization of a generic version control and schema evo-
lution classes. This approach enables the user to ac-
cess class versions in a manner similar to object ver-
sions. Its also reduces the redundancy of the system
code. In the rest of this section, we briefly describe the
specialization of the system claases to support schema
versioning. A more comprehensive description of the
implementation is found in [5].

Figure 2: Class hierarchy of system classes for sup-
porting schema versioning

Each instance of a class is uniquely identified by an
instance of the Class id class. Class-id is a subclass
of Versioned-Typed-id. Since a class may have sev-
eral versions, the version number is used to uniquely
identify each. The different class types include non-
versioned, versioned, dictionary, and generic.

The InstanceVariableVersion class is a subclass
of Instancevariable class. Since an instance variable
of a versioned class may be locally defined in several
class versions, an additional instance variable is added
to maintain auxiliary origins which contains a set of
Classid’s. Similarly, the HethodVeraion class is a
subclass of Methods class.

The Classversion class is a subclass of the
Class class for supporting system classes. Also, the
Add-Class method has an additional parameter indi-
cating the class type.

4.5 Graphical interface for schema evolu-
tion and versioning operations

The schema evolution and versioning operations are
incorporated in a single interface. The GOOSE en-
vironment enables the uBer to manipulate an entire
schema using Create, Load, Copy, and Save opera-
tions. These operations are shown in a separate win-
dow, called GOOSE Graphical Schema Environment.

The GOOSE Editor component supports the
schema evolution and versioning operations. The
GOOSE editor command line is used to display the
currently executing command; whereas the GOOSE
editor message displays warning and system me%
sages. The editor operations are grouped into eight
groups, namely Show, Add, Modify, Drop, Cancel,
Save, Print, and Layout, where each group has an aa-
sociated button at the bottom of the editor window.
Clicking on a group button may result in either car-
rying out the associated operation (Cancel and Save)
or creating a window with a set of options. An option
window defines a set of operations associated with a
class or a property of a class. For example, the Drop
option window includes dropping a class, an instance
variable or a method from a class, an object from the
direct scope of a class, and a constraint associated
with an instance variable. The classes of the database
schema are graphically represented where each class is
presented by a push button. For example, to drop a
class, the user has to click on the Drop button. The
Drop option window appears from which the Class op-
tion is selected. In order to perform this action, the
user has to click on one or more classes to be dropped.

4.4 DAG rearrangement views

A new type of view for object-oriented databases,
namely DAG rearrangement (DAGR) view of a class
hierarchy [lo] , is being developed by specializing the
classes of the schema manager. We refer to them as
DAGR views. The main premise behind the DAGR
views is that users would like to we certain claases
and properties that are relevant to their applications.
These views have to be consistent with the underlying
database schema.

DAGR view invariants The first invariant re-
quires that the set of properties of a class in a DAGR
view is a subset of its underlying properties. This en-
sures that the state of a viewed object is consistent
with its state in the database. The second invariant
requires that the scope of a class in a DAGR view is
a subset of its underlying scope.

I55

The operations used to define a DAGR view include
hiding a class, hiding an ISA relationship between two
classes, adding a new class, and adding an ISA rela-
tionship between two classes. For example, the se-
mantics of the hiding operation on a clsss C include
dropping all locally defined properties of C from its
subclasses. However, all objects in the direct scope of
C will remain visible in the scope of its superclasses.

fect on method conversion. We shall investigate a
mechanism for achieving compatibility of methods in
light of dynamic schema changes. This includes a
framework for the automatic method conversion and a
notification mechanism for user interaction whenever
automatic method conversion ie limited.

**a Status
Also the schema of a class may be modified either

through hiding a property, demoting a property, or
constraining the domain of a property. The notion
of a black box is used to view a set of related sibling
classes as a single category class. The GOOSE support
for DAGR views in described in [14].

4.5 Method conversion

Maintaining the consistency of the database schema
is an important issue in object-oriented databases.
The effect of schema evolution operations may leave
the database schema in an inconsistent state. For ex-
ample, whenever a class C is deleted and there may
exist a set of instance variables having C as their do-
main class, the user has to be notified of the incon-
sistency as a result of this operation. Similarly, each
method and instance variable has associated with it a
set of dependent methods that uses it.

Monitoring the effect of schema changes is an im-
portant issue in a dynamically evolving environment
in order to preserve the consistency of the database
schema. In order to monitor the effect of schema
changes, we shall maintain the reference dependen-
cies of system components as well as method source
code. A code transformer will be used to translate
the references to schema components with their re-
spective object identifiers. It will also produce a list
of dependencies used to monitor the schema change
operations. The code transformer will also support
the reverse operation; that is, producing an updated
source code of the methods affected by the schema
change operations. These dependencies will be used
for notifying the users of possible inconsistency which
may result as a side effect of schema changes.

Since the behaviors of objects are captured as meth-
ods of the object class, the efficient support of method
invocation on versioned objects will be addressed. For
example, if an object B contains a static binding to
a version of an object, the invocation of a method
which updates B may be prohibited or at least no-
tified of possible abortion as dictated by the object
version type.

The research for investigating method conversions
include classification of schema changes and their ef-

At the time of writing GOOSE supports schema
evolution, versioning, and DAGR views. For schema
versioning, we currently support two types of ver-
sioned classes, iransieni and released. The modifica-
tion of a released class version is restricted; that is,
no properties can be dropped from it. Two modes of
operations will be supported, a restricted mode and a
free mode. The free mode is a DBA mode in which
the restrictions associated with a released class version
are relaxed.

The support classes Code- lhns former and Refer-
ence-Dependencies are in the design phase along with
the notification mechanism. We expect that this fea-
tures would be incorporated by the mid 1992.

5 Conclusion and future research

In this paper, we described the implementation
of a graphical interface for object-oriented database
schema environment. The data model supported is
based on generalizing the concept of object identifiers
to the database schema components. GOOSE sup-
ports several advanced features which include schema
evolution, schema versioning, and DAG reamnge-
ment view of a class hierarchy.

This research investigates the support for dynam-
ically evolving objects and their schema in object-
oriented databases. It is motivated by the complex-
ity of nontraditional application requirements and the
complexity of object-oriented database schema. In or-
der to support these environments, several advanced
features have been incorporated in the object-oriented
database schema environment. The design and im-
plementation of GOOSE generalizes the concept of
unique object identifiers of user-defined objects to the
database schema components and to the DBMS sys-
tem components as well.

This research is part of investigating an object-
oriented design and implementation of an extensi-
ble object-oriented database system. The approach
adopted to achieve extensibility is an open architec-
ture approach. The goal of this approach is to pro-
vide a set of mechanisms for maintaining the database
system components that is also used to maintain the

I56

database applications in an integrated environment.
The following is a list of additional research problems
being addressed.

GOOSE extensions One of these extensions is the
support of a graphical query language for object-
oriented databases and the incorporation of a tu-
torial using computer animation. Extensible ver-
sion management of objects and its efficient sup-
port will also be addressed.

Schema integration We shall investigate the use of
an object-oriented data model as a meta model
for schema integration. A set of primitive oper-
ations for mapping from relational, network, hi-
erarchical, and object-oriented database schemas
to an object-oriented data model will be pro-
vided. Also, the automatic integration of these lo-
cal schema into an object-oriented global schema
will be addressed which includes automatic con-
flict detection and resolution techniques.

Storage Models This research includes the study of
performance of several physical models for storing
objects. This study only addresses the effect of
schema change operations. Also efficient support
for versioned objects in object-oriented databases
will be investigated.

References

D. Woelk and W. Kim, “Multimedia information
management in an object-oriented database sys-
tem,” in Proc. of the 13th Conf. on Very Large
Databases, UK, pp. 319-329, Sept. 1987.

H. Assarmanesh, D. McLeod, D. Knapp, and
A. Parker, “An extensible object-oriented ap-
proach to databases for VLSI/CAD,” in Proc. of
the 11th Conf. on Very Large Databases, Sweden,
pp. 13-24, Aug. 1985.

R. Ahmed and S. Navathe, “Version Control of
Complex Objects in CAD Databases,” in Proc. of
ACM-SIGMOD Conf., Denver, CO, pp. 218-227,
May 1991.

J . Banerjee, H.-T. Chou, J . Garza, W. Kim,
D. Woelk, N. Ballou, and H.-J. Kim, “Data
model issues for object-oriented applications,”
A C M Trans. on Ofice Info. Sys., vol. 5 , pp. 3-26,
Jan. 1987.

M. Morsi, H.-J. Kim, and S . Navathe, “Object-
Oriented Design and Implementation of an ex-
tensible Schema Manager for Object-Oriented
Databases .” In preparation.

H.-T. Chou, D. DeWitt, R. Kats, and A. Klug,
“Design and implementation of the Wisconsin stor-
age system,” Software-Pmctice and Experience,
vol. 15, pp. 943-962, Oct. 1985.

R. Scheifler and J . Gettys, “The X Window Sys-
tem,” A C M Transactions On Graphics, vol. 5,
pp. 79-109, Apr. 1986.

B. Stroustrup, The C++ programming Language.
Reading, MS: Addison-Wesley Publishing Co.,
1986.

M. Morsi and H.-J. Kim, “Extensible database
management systems: Existing approaches and a
new approach,” in To Appear in Progress in Object
Oriented Databases (J. Prater, ed.), Albex Pub.
Cor., Submitted for copy-editing.

[lo] H.-J. Kim, Issues in Object-Oriented Database
Schemas. PhD thesis, Department of Com-
puter Science, The University of Texas at Austin,
Austin, TX, May 1988.

[ll] D. Penney and J . Stein, “Class modification in
the Gemstone Object-Oriented DBMS,” in Proc.
of the 2nd. OOPSLA Conf.,, Kissimmee, FL,
pp. 111-117.

[12] A. Skarra and S. Zdonik, “The management of
changing types in an object-oriented database,” in
Proc. of the 1st OOPSLA Conf.,, Portland, OR,
pp. 483495.

[13] W. Kim and H.-T. Chou, “Versions of schema
for object-oriented databases,” in Proc. of the 14th
Conf. on Very Large Databases, Los Angles, CA,
pp. 148-159, Sept. 1988.

[14] M. Morsi, S. Navathe, and H.-J. Kim, “A Schema
Management and Prototyping Interface for an
Object-Oriented Database Environment,” in Proc.
of the IFIP conf. on the Object Oriented Approach
in Information Sys., Canada, pp. 157-181, North
Holland, Oct. 1991.

I57

