
Article

Journal of Information Science

38(4) 313–332

� The Author(s) 2012

Reprints and permission: sagepub.

co.uk/journalsPermissions.nav

DOI: 10.1177/0165551512438357

jis.sagepub.com

A social inverted index for social-
tagging-based information retrieval

Kang-Pyo Lee
Seoul National University, South Korea

Hong-Gee Kim
Seoul National University, South Korea

Hyoung-Joo Kim
Seoul National University, South Korea

Abstract
Keywords have played an important role not only for searchers who formulate a query, but also for search engines that index docu-
ments and evaluate the query. Recently, tags chosen by users to annotate web resources are gaining significance for improving infor-
mation retrieval (IR) tasks, in that they can act as meaningful keywords bridging the gap between humans and machines. One critical
aspect of tagging (besides the tag and the resource) is the user (or tagger); there exists a ternary relationship among the tag, resource,
and user. The traditional inverted index, however, does not consider the user aspect, and is based on the binary relationship between
term and document. In this paper we propose a social inverted index – a novel inverted index extended for social-tagging-based IR –
that maintains a separate user sublist for each resource in a resource-posting list to contain each user’s various features as weights.
The social inverted index is different from the normal inverted index in that it regards each user as a unique person, rather than sim-
ply count the number of users, and highlights the value of a user who has participated in tagging. This extended structure facilitates
the use of dynamic resource weights, which are expected to be more meaningful than simple user-frequency-based weights. It also
allows a flexible response to the conditional queries that are increasingly required in tag-based IR. Our experiments have shown that
this user-considering indexing performs better in IR tasks than a normal inverted index with no user sublists. The time and space over-
head required for index construction and maintenance was also acceptable.

Keywords
information retrieval; inverted index; social tagging; tags; web search

1. Introduction

Keywords have been one of the most required elements in information retrieval (IR) tasks. Searchers’ information need

is represented by a search query, which usually consists of a set of keyword terms. Consequently, it is critical for the

searchers to formulate a good query that represents their information need as precisely as possible, in order to obtain

satisfactory search results. Search engines’ job is to collect and parse the text from a large number of documents in order

to extract and weigh each term in a document. It is important for search engines to determine how relevant the set of

terms in a document is in relation to the set of terms in the user query. In the context of this interaction between search-

ers and search engines, keywords act as a medium that bridges the gap between the searchers’ minds and the information

in the collection.

Recently, tags freely assigned by users to web resources have been gaining attention from researchers as good candi-

dates for use as significant keywords for a document. Tags represent not only keywords but also personal ratings or other

Corresponding author:

Kang-Pyo Lee, School of Computer Science and Engineering, College of Engineering, Seoul National University, 599 Kwanak-ro, Gwanak-gu, Seoul 151-

742, Korea.

Email: kplee@idb.snu.ac.kr

forms of comments or metadata [1]. Originally, when tagging services on the web began in the early 2000s, tags were

merely a more flexible form of web resource categorization. Each user organized the web resources with his or her own

vocabulary, or a set of tags, and when the user needed the resources later, he or she could easily retrieve them through

the tags. This kind of personal vocabulary and resource set is called personomy [2] (this term is a personal version of

folksonomy, which will be covered in the following paragraph).

As numerous users have participated in tagging, tags have begun to perform some intriguing social functions. Tags

have enabled users to share any type of content (e.g. bookmarks, blogs, photos, and music) with others by saving the con-

tent and freely assigning several tags to it. Furthermore, users may also assign tags to other users’ resources. This type of

tagging is called social tagging or collaborative tagging. There is an interesting observation that, if users can see other

users’ tags, they are highly likely to be socially influenced by one another when they choose their own tags [3]. As the

number of users increases, the formation of a stable tag distribution is observed, meaning that there might be a bottom-up

user consensus around the categorization of information [4, 5]. From an ontological viewpoint, the emergent semantics

resulting from socially created tags are of great value for creating and managing ontologies [6]. This bottom-up, socially

created, and non-hierarchical labelling system [1] is called folksonomy [7].

Both personomy and folksonomy have been contributory factors in improving web search, especially in terms of

indexing. In a traditional web search, index terms are automatically extracted from the text in a document by a search

engine, and these terms are then used for matching with query terms. In contrast, tags are chosen directly by humans

(we assume that tags are created only by humans, although sometimes they can be assigned by machine agents for bulk

loading or spamming purposes), and can be used as a good substitute for or as a supplement to the index terms in a doc-

ument. The tag-based web search is a new form of web search that exploits tag data for retrieving and ranking web

resources and, is now being serviced by most well-known tagging systems, including Delicious1 and Flickr.2 Owing to

the exploitation of interesting features of tagging, the tag-based web search has gained popularity among users. For

example, Delicious provides a variety of bookmark search services, including keyword searches over personomy or

folksonomy, browsing starting from a tag cloud, searches with date intervals, and querying assistance with related tags.

If we focus on indexing, an inverted index (or inverted file) is an index that maps each index term to a list of docu-

ments containing the index term, which is a fundamental data structure for the fast retrieval, evaluation, and ranking of

documents in a collection. The inverted index has been widely accepted in the IR community as the most efficient data

structure for supporting a range of web search tasks. Although the inverted index is also crucial to tag-based web search,

it presents an obstacle to its use in the social-tagging environment. In a traditional web search, a document consists of

terms that form a binary relationship from a document to terms; this relationship is inverted in a term-to-documents

inverted index. By contrast, in a tag-based web search the user serves as an additional dimension, namely a user dimen-

sion. A resource (document) is annotated with tags (terms) by a user, creating a ternary relationship among resource,

tag, and user that cannot be entirely contained in a normal inverted index. Most previous approaches that have incorpo-

rated tag data to improve web searches do not seem to treat each user in the ternary relationship individually. Instead, all

user information is merely aggregated into a single numeric value, such as the number of corresponding users. In some

situations, however, the ternary relationship should be preserved to generate a more meaningful value, rather than just a

user count. In order to preserve the ternary relationship, a new type of inverted index needs to be designed, which should

be different from the traditional term-to-documents inverted index and reflect the user aspect of tagging.

In this paper we propose a novel and extended index structure for social-tagging-based IR, namely a social inverted

index, and present implementation-level solutions to a wide range of computations in tag-based web search by using the

social inverted index. It is ‘social’ because it actively incorporates the social dimension in tagging.

The remainder of this paper is structured as follows. Section 2 presents related work on tag-based IR and inverted

indexes. Section 3 describes the details of the social inverted index, including data structures, applications, and index

construction and maintenance. Section 4 presents experimental results in terms of the cost and performance of the social

inverted index. Finally, Section 5 summarizes this paper and discusses future work.

2. Related work

In this section, we present a brief overview of various approaches to tag-based IR and research issues related to the tradi-

tional inverted index.

2.1. Tag-based information retrieval

Since the launch of online social sharing services, such as Delicious (since 2003) for bookmarks and Flickr (since 2004)

for photos, tagging has gained great popularity among Web 2.0 users. One stream of active studies on tagging is aimed at

Lee et al. 314

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

improving existing web search. To date, various approaches have been proposed for enhancing web search by leveraging

the unique characteristics of tagging. These approaches include adapting existing web search algorithms to the social-

tagging environment [2, 8–12], analysing the applicability of tag data for web search use [13–16], social search and per-

sonalized search [17–23], and multimedia search [24–27].

Dmitriev et al. [8] integrate user tags as a particular form of user relevance feedback into an enterprise search engine,

and assert that tags should be treated as metadata rather than as page content, and be used in a manner similar to the

way anchor text is used. Hotho et al. [2] propose a formal model for folksonomies and a personalized and topic-specific

ranking algorithm called FolkRank, an version of the PageRank algorithm adapted to folksonomies. FolkRank converts

the folksonomy structure into an undirected tripartite graph structure so that the PageRank-like link structure-based rank-

ing algorithms can be applied. Bao et al. [9] propose two ranking algorithms, SocialSimRank (SSR) for similarity ranking

and SocialPageRank (SPR) for static ranking, which integrate social-tagging information with existing well-known

metrics. Both algorithms are based on the interesting observation that useful information such as the semantic similarity

between tags and the quality score of a resource can be extracted from the cyclic relations among user, tag, and resource.

Yanbe et al. [10] calculate the popularity of a web page, called SBRank, from the number of users who bookmark the

page. This tries to capture the popularity of resources, and shows the possibility of more complex searches that use con-

textual, temporal, or sentiment-related tagging information. Zhou et al. [11] propose a unified framework to combine

social tag modelling with traditional language modelling-based methods for IR. Most recently, Carmel et al. [12] have

proposed a framework for social bookmark weighting in order to improve social search effectiveness and derive solu-

tions to recommendation tasks. This framework assigns a weight value to every individual bookmark according to its

estimated quality.

With the introduction of tag-based search approaches, tag data’s applicability to searching has been analysed.

Heymann et al. [13] collect a large amount of social bookmarking data from Delicious, and conduct comprehensive

experiments to analyse the positive and negative effects of social data on web search. They conclude that, despite the

current lack of sufficient size and distribution of tags, social bookmarking can complement what cannot be supported

from other sources. Bischoff et al. [14] analyse three different kinds of collection (music resources, pictures, and web

pages). One interesting finding regarding the search in their study is that most tags can be used for searching, and that in

most cases tagging behaviour is very similar to searching behaviour. Chi and Mytkowicz [15] evaluate the efficiency of

the social-tagging system Delicious, based on information theory, and hold the negative opinion that social-tagging sys-

tems encouraging users to share their vocabularies do not seem to enhance navigation efficiency. Carman et al. [16]

make a direct comparison between the distributions of tags assigned to URLs and the corresponding query terms used to

access the URLs. They show that the vocabularies in tags and query terms are similar but not identical.

Recently, a wide variety of advanced search services, including social searches and personalized searches, has been

presented. Social tagging provides these new search types with useful features by creating networks of entities, either

explicitly or implicitly. A user’s tagging activities may reflect the user’s own preferences and interests. Yahia et al. [17]

present the so-called network-aware search, which returns the top-ranked relevant answers to a query given to a user with

a particular network that is formed through the user’s tagging activities. Similarly, Schenkel et al. [18] propose an effec-

tive scoring model for user-centric searches in social networks, and develop an incremental top-k querying algorithm with

both social expansion from user relations and semantic expansion from tag relations. Zanardi and Capra [19] propose

social ranking, which exploits information extracted from a social network of users and tags in order to rank content,

making it more meaningful to the querying user. Amitay et al. [20] propose the social search in the enterprise, which cov-

ers heterogeneous object types, such as document, person, and tag, based on a unified approach. Noll and Meinel [21]

use social bookmarking and tagging information to re-rank web search results in which the searcher’s tag profile is com-

pared with the tags assigned to each result page. In [22], users and web pages are associated by a topic space that is mod-

elled based on tags. The authors propose a topic-adjusting algorithm that ranks a web page by topic matching between

the user’s interests and the web page’s topic. Carmel at al. [23] propose a personalized social search by considering each

user’s direct and indirect social relationships with documents, tags, and other persons or groups of persons. They then

compare three types of social network: familiarity-based, similarity-based and overall network.

Tags can be leveraged as index terms for large collections of documents with non-textual multimedia data types, such

as photos, audio, and videos [24]. Aurnhammer et al. [25] combine user tags with the visual features of images for

improved data navigation and search. Levy and Sandler [26] represent audio tracks with both social tags and audio

words (extracted audio features) for music information retrieval (MIR). Bischoff et al. [27] analyse three different tag-

ging systems to verify the usefulness of tags for search, and propose a method for identifying emotions from music and

picture resources using tagging information, thereby bridging the gap between tag terms and query terms.

It is important to note the inherent characteristics of tags regarding the vocabulary problem [28], which is said to be

one of the most well-known problems in IR. The vocabulary problem arises when search engines fail to understand the

Lee et al. 315

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

semantics of words (or tags). Golder and Huberman [5] explain three aspects of the vocabulary problem in tagging:

synonymy, polysemy, and level variation. ‘Synonym’ refers to multiple tags sharing similar meanings (e.g. car and auto-

mobile), whereas ‘polyseme’ refers to a tag with multiple related senses (e.g. head as a part of the body and head as a

person in charge of an organization). Level variation of tags exists because each user has his or her own semantic level

in describing a resource, which is usually dependent on his or her degree of expertise (e.g. a blog post on Ajax program-

ming may be annotated with the tag javascript by a programming expert, but may be annotated with just the tag pro-

gramming by a user who is unfamiliar with programming languages). These three aspects constitute the main reasons

for the vocabulary mismatch between query terms and tag terms. In fact, these problems have been also challenging for

traditional IR, but they may become less serious in tag-based IR if many people participate in tagging and generate vari-

ous terms for the same resource [13]. Some papers referenced earlier in this paper try to address the vocabulary problem

in tagging. For example, in order to improve simple term-matching-based scoring and resource ranking, Bao et al. [9]

built a global tag-to-tag similarity matrix based on the ternary relationship between tag, resource, and user. Aurnhammer

et al. [25] tried to tackle the problems caused by the synonymy and homonymy of image tags by considering the relation

between tags and the visual features of images.

2.2. Inverted index

As mentioned earlier, the inverted index has proven to be the most efficient data structure for retrieving and ranking doc-

uments in a large collection. Most textbooks on IR and text search discuss the details of the inverted index. Research

issues related to the inverted index include its usage, indexing, index construction, maintenance and representation.

Persin et al. [29] present an efficient query evaluation and ranking algorithm that filters out unimportant documents

based on the frequency-sorted index. Deerwester et al. [30] propose latent semantic indexing (LSI), to reduce the dimen-

sionality of the original term-document matrix by automated indexing based on concepts rather than words. Although

LSI has proven to be a good solution to overcoming the weakness of inverted indexes – that is, the inability to handle

the semantics of words – LSI also has a critical drawback, in that it does not provide indexing. Moffat and Zobel [31]

propose a method for efficient index representations by compressing sequences of positive integers using various coding

techniques. Most recently, Zobel and Moffat [32] have presented a comprehensive and exhaustive survey of the issues

of inverted files for text search engines.

There have been few discussions about introducing the inverted index to the social-tagging environment. As previous

approaches focused mainly on tag usages at an application level, they did not mention the inverted index at an imple-

mentation level. Consequently, the previous approaches were assumed to have an inverted index of their own type, and

the details were not discussed in the papers. As far as we know, the only social-tagging system that revealed its whole

system architecture is BibSonomy [33]. However, BibSonomy does not mention the existence of inverted structures in

the paper, and seems to rely only on RDBMS for query processing. We have found some examples that consider the

exploitation of inverted index in tag-based web search. Dmitriev et al. [8] build an inverted index that handles the terms

separately from the contents, anchor texts, and tags of each page. However, this approach does not consider incorporat-

ing individual user-tagging information in the inverted index. Yahia et al. [17] manage one inverted list per (tag, seeker)

pair to facilitate easy and fast access to the seeker-dependent scores that are assigned to each item. Even though this

approach takes into account the user aspect of searching in the inverted index, it does not consider incorporating individ-

ual user information into the inverted index. Interestingly, approaches that incorporate the ternary relationship into the

index structure are found in the field of RDF (resource description framework) triple data processing. An RDF triple

(s, p, o) represents the ternary relationship among subject, predicate and object, which is very similar to the ternary rela-

tionship in tagging. A representative approach is Hexastore [34], which is an indexing scheme for managing a large

amount of RDF triples by indexing them in six possible ways, one for each possible ordering of the three RDF elements

s, p and o. Because Hexastore is designed to guarantee the scalability of RDF query processing, it cannot be exploited in

search query processing.

2.3. Indexing in tag-based web search

Table 1 summarizes the differences between traditional web search engines (e.g. Google, Yahoo, and Bing) and tag-

based web search engines (e.g. Delicious, Flickr, and BibSonomy) in terms of indexing. As an initial step, the document-

crawling process differs, in that in traditional search engines it is done by web crawlers (or spiders) targeted at the whole

web, whereas in tag-based search engines there is no need to crawl, because users themselves save and tag resources.

Once the documents are collected in traditional search engines, several text operations are needed, such as tokenizing,

case-folding, stopping, and stemming. In tag-based search engines, preprocessing work is also needed, but is usually

Lee et al. 316

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

performed to a minimal degree. One of the most marked differences between the two search engine types is that in tag-

based search engines index terms are tags themselves, and thus are not necessarily derived from the words appearing on

the document. This is because tags are freely assigned by humans, and are not automatically extracted from the text by

machines, as is the case in traditional search engines. Likewise, index term selection and weighting are done explicitly

by a traditional search engine, whereas they are implicitly done by users (e.g. the tag frequency) in tag-based search

engines. Update issues for index maintenance on the tag-based web search are more complex than those on the tradi-

tional web search, because new resources and tags are continually added to the collection. The last distinct difference is

the document collection size, because traditional web search engines cover the whole web, whereas tag-based web search

engines cover only the tagged resources in their systems, producing a relatively small collection. This small coverage

may be the major drawback of tag-based web search.

3. Social inverted index

This section introduces the social inverted index. Notations for our data structure and algorithm are defined in Section

3.1. The data structure of the social inverted index and its applications are presented in Sections 3.2 and 3.3 respectively.

The processes of index construction and maintenance are described in Sections 3.4 and 3.5 respectively.

3.1. Notations

Most papers on tagging consider resource, tag, and user3 to be the three basic elements of a formal tagging model. In this

paper, we follow the common notations that have been presented in previous approaches. Let R be a set of resources, T

be a set of tags, and U be a set of users. A resource r ∈ R is annotated with a tag t ∈ T by a user u ∈ U. A tag assign-

ment is represented by a triplet of (1) a resource, (2) an assigned tag, and (3) a user who annotates the resource. This tri-

plet is denoted by (r, t, u). A social-tagging system STS = {(r, t, u) | r ∈ R, t ∈ T, u ∈ U} is a collection of triplets. Rt =

{ri ∈ R | (ri, t, u) ∈ STS, u ∈ U} is a set of resources annotated with tag t. Ut, r = {uj ∈ U | (r, t, uj) ∈ STS}is a set of

users who annotate resource r with tag t.

The frequency values of any element are crucial for indexing and query evaluation. Let N be the number of (tagged)

resources in the collection, and let n be the number of index tags (i.e. tags used as index terms) in the collection. Let ft, r

be the frequency of tag t in resource r (i.e., the number of users who annotate resource r with tag t). Let ft, R be the

resource frequency of tag t in the collection (i.e., the number of unique resources annotated with tag t). Let Ft, R be the

total frequency of tag t in the collection (i.e., the sum of all ft, r). Let ft, r, u be the frequency of tag t in resource r by user

u (in fact, ft, r, u is always 1 because each user annotates a resource with the same tag only once). Let cof(t1, t2) be the

co-occurrence frequency of tag t1 and tag t2.

3.2. Data structure

A sample social-tagging system, used as an example throughout this paper, contains resources, tags, users, and triplets as

follows:

Table 1. Comparison of tag-based web search engines with traditional web search engines in terms of indexing

Traditional web search engines Tag-based web search engines

Example services Google, Yahoo, Bing Delicious, Flickr, BibSonomy
Document crawling By web crawlers (targeted at the whole web) No need to crawl (targeted at the resources

in the system saved and tagged by users)
Document text preprocessing Some text operations (such as tokenizing,

case-folding, stopping, and stemming)
No or minimum preprocessing

Candidate index terms Words in a document Tags assigned to a resource
Only from the words in the document Not necessarily from the words in the

resource
Index terms selection and
weighting

Explicitly by a search engine Implicitly by users

Index maintenance Static and discrete Dynamic and continuous
More frequent document insertions than
updates

Frequent document insertions and updates

Document collection size Usually very large Relatively small

Lee et al. 317

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

R= r1, r2, r3f g

T = apple, iphone, mobilef g

U = Alice, Bob, Tomf g

STS = f r1, apple, Aliceð Þ, r1, apple, Bobð Þ, r1, mobile, Aliceð Þ, r1, mobile, Tomð Þ,
r2, apple, Aliceð Þ, r2, apple, Bobð Þ, r2, apple, Tomð Þ, r2, iphone, Aliceð Þ, r2, iphone, Tomð Þ,

r3, apple, Bobð Þ, r3, apple, Tomð Þ, r3, iphone, Aliceð Þ, r3, iphone, Tomð Þ, r3, mobile, Bobð Þg

When considering a situation that requires a tag-to-resources inverted index while maintaining user information (i.e.

to preserve the (r, t, u) ternary relationship), two possible combinations of two inverted lists may be available. One is

cross-references (Figure 1) that interlink the resources and users, and the other is sublists (Figure 2) that maintain a sepa-

rate user sublist for each resource. The latter is better for the following reasons:

• It has a simpler structure leading to easier implementation.

• Each entry for user sublists may have its own weight that varies according to the resource.

• The sublists, if needed, may be sorted by weight.

The only drawback is the space cost owing to the redundancy of users in the sublists. This drawback is acceptable, how-

ever, when considering the efficiency gains from maintaining separate user sublists. Furthermore, numerous existing

methods for index compression can be applied.

If we take the sublists as a basic structure of the social inverted index, every entry has its own weight as a numeric

value. As shown in Figure 3, there are three major components in the social inverted index: a tag index, (resource) post-

ing lists, and (user) sublists. A tag index is a set of index tags that consists of three subcomponents: a tag name, the

Figure 3. Part of a basic social inverted index.

Figure 2. Sublists.

Figure 1. Cross-references.

Lee et al. 318

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

weight of a tag (wt, R), and a pointer to the head of the corresponding resource-posting list. Each resource-posting list

represents resources that are annotated with a tag, and a node in the list has three subcomponents: a resource identifier,

the weight of the resource annotated with the tag (wt, r), and a pointer to the head of the corresponding user sublists.

Each user sublist represents those users who annotate a resource with a tag, and a node in the sublist has two subcompo-

nents: a user name, and the weight of the user annotating the resource with the tag (wt, r, u). We propose this type of

extended inverted index as a basic structure of the social inverted index, namely basic social inverted index.

Noticeably, the spaces for the wt, r values of the social inverted index may remain empty and be determined on the fly

at the time of query evaluation, depending on the query types. In Figure 3, the question mark in each entry means that its

value may not be determined, while the exclamation mark means that its value is determined, as will be covered shortly

in this subsection.

The naı̈ve frequency values defined in Section 3.1 can be used as weights. For example, wt, R = ft, R, wt, r = ft, r, and

wt, r, u = ft, r, u (= 1). In this case, all user weights equal simply 1. If all user weights are not equal – in other words, if the

weight of each triplet is not treated as just 1 – any existing triplet or user-weighting scheme can be applied. To illustrate,

we use an example from [12], in which every bookmark (i.e., tag assignment) triplet is weighted separately, as shown in

Figure 4. The wt, r value may be calculated on the fly if there is a restriction in a query that, for example, only triplets

whose weight is greater than a threshold value, say 1.000, should be counted.

As a second example, the network-aware personalized search is also supported, in which each user is assigned one

(or more) label that indicates a group (or cluster) to which the user belongs. Suppose that Alice is assigned ‘a’, Bob is

assigned ‘a’, and Tom is assigned ‘b’ by a certain user-grouping scheme. As shown in Figure 5, every user entry for

Alice is then set as ‘a’, for Bob as ‘a’, and for Tom as ‘b’. When a searcher who belongs to group ‘a’ sends a query, only

those users labelled with ‘a’ may be counted on the fly.

As a last example, the timestamp information recorded at the time of tagging can be exploited. In other words, wt, r, u

= tst, r, u (the timestamp when r is annotated with t by u), as shown in Figure 6. The temporal information for each triplet

may be of great value in various situations: for example, when resource freshness is to be incorporated in a search [35],

or to enhance personalized recommendations with the tag and time information for predicting users’ preferences [36].

Again, the wt, r value may be calculated on the fly if there is a restriction in a query that, for example, only those users

whose timestamp belongs to a certain period, say Q4 in year 2010, should be counted.

Figure 4. Part of a basic social inverted index with weighted triplets.

Figure 5. Part of a basic social inverted index with user labels.

Lee et al. 319

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

Note that all or some of the three examples above may be combined into one social inverted index. This is very use-

ful when trying to contain various user weights from both the dynamic aspects (e.g. timestamp or triplet weight) and sta-

tic aspects (e.g. group, location, or even age or gender) of a user profile. The weight values in Figure 7 are user name,

timestamp, triplet weight, user location, and gender. This flexible structure facilitates the processing of any conditional

queries, for example, ‘retrieve the resources that were annotated (1) with tag apple (2) during the year 2010 (3) by male

users (4) in Paris’.

When looking for users, not resources (in social search or, more specifically, people search) using tags, the positions of

resources and users can be reversed. In other words, there are user-posting lists and resource sublists, as shown in Figure

8. The index structure around resource, tag, and user may be modified, depending on the goal of each search system.

In an inverted index, list ordering is crucial for effective query evaluation. Possible orderings include sorting by name

(alphabetical order), integer ID (ascending order), or weight (descending order). The ordering is very useful when the

lists are so long that their insignificant tails need to be cut out [29]. Figure 9 shows that resources are sorted in

Figure 8. Part of an adaptive social inverted index.

Figure 9. Part of a sorted social inverted index.

Figure 6. Part of a basic social inverted index with user timestamps.

Figure 7. Part of a basic social inverted index with various user weights.

Lee et al. 320

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

descending frequency order (or in some well-known ranking order such as FolkRank [2] or SocialPageRank [9]), and

users are sorted in reverse chronological order with respect to timestamps.

In summary, the main advantages of the social inverted index are as follows:

1. They preserve the resource–tag–user ternary relationship of tagging.

2. They can support a wide variety of existing triplet or user-weighting schemes.

3. They are flexible enough to support conditional queries that use varying weight values in the lists, depending on

the query.

4. They facilitate several critical computations, such as calculations of tag frequencies and tag co-occurrence fre-

quencies (which will be covered in the following subsection).

3.3. Applications

Two measures reflecting the social semantics of tagging are tag frequency and tag co-occurrence frequency. The tag fre-

quency represents the number of times a tag is used by people in a resource (or over the collection), and thus reflects the

popularity of the tag or the degree of consensus among users about describing or categorizing the resource that is anno-

tated with the tag. The tag frequency is one of the most widely used measures in many tag-based applications. The tag

co-occurrence frequency represents the number of times two tags co-occur in a resource (or over the collection). The tag

co-occurrence is important, because we can assume that those two tags that co-occur in the same resource are likely to be

semantically related to each other. Tag co-occurrence therefore reflects the degree of semantic similarity between tags,

and is said to be meaningful because it is human-generated semantics. Traditionally, the term ‘co-occurrence’ has already

been used in IR, but these tag co-occurrences can be also applied to other applications, such as tag recommendations [37,

38] or query expansion [18, 39].

3.3.1. Tag frequency. As a social inverted index is being built, tag frequencies of any kind can be computed in a straight-

forward way. The frequency of t in r is the number of users who annotate r with t. The resource frequency of t in the col-

lection is the number of resources that are annotated with t. The total frequency of t in the collection is the sum of the

frequencies of t in all resources.

ft, r = Ut, rj j

ft, R = jRtj

Ft, R =
X

r∈Rt

ft, r

Usually these types of tag frequency value are stored at the corresponding entry of inverted index.

3.3.2. Tag co-occurrence frequency. Tag co-occurrences can be viewed at two levels: the macro level and the micro level.

Two tags form a macro-level co-occurrence if they are assigned to the same resource, and they form a micro-level co-

occurrence if they are assigned to the same resource by the same user. In other words, the criterion for a micro-level co-

occurrence is stricter than that for a macro-level co-occurrence because the two tags must co-occur (1) within a resource

and (2) by the same user. Accordingly, the frequencies of two levels are different. The macro-level tag co-occurrence

frequency is the number of resources that are annotated with both tags (i.e., the number of common resources), whereas

the micro-level tag co-occurrence frequency is the number of users who annotate the same resource with both tags (i.e.,

the number of common users in common resources). The social inverted index makes it easy to calculate the tag co-

occurrence frequency at both levels.

macrocof t1, t2ð Þ= jRt1 ∩Rt2 j

microcof t1, t2ð Þ=
X

r∈Rt1
∩Rt2

jUt1, r ∩Ut2, rj

Using the two lists in Figure 10, the tag co-occurrence frequencies of apple and iphone at both levels are calculated as

follows: macrocof(apple, iphone) = |{r2, r3}| = 2 and microcof(apple, iphone) = |{Alice, Tom}| + |{Tom}| = 2 + 1 = 3.

The two metrics above depend mainly on the intersection (∩) operation between two lists. The time complexity of

the intersection operation between two sorted lists using the Merge-Join (or Sort-Merge-Join) algorithm in relational

databases is O(m + n), where m and n are the lengths of the two lists respectively. The Merge-Join method is efficient

because each item in the sorted order needs to be read only once.

Lee et al. 321

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

3.4. Index construction

During the tag-indexing process there is no need for tokenizing, because tags are already delimited by white spaces or

commas. Additional preprocessing work, such as case-folding, stopping, stemming, and compound word decomposition,

depends on the strategy (for this work, only the case-folding was done). We assume that the input to the index construc-

tion engine of a social inverted index is a set of resources that contains (r, t, u) triplets. We use the tag names and user

names (mostly the user IDs used in the system) themselves as the identifiers of tags and users respectively, and we assign

an ordinal number to each resource as a resource identifier. Consequently, we need to maintain an additional mapping

table that maps resource IDs to their corresponding URLs or URIs. The primary concern is then how to construct the

social inverted index efficiently from a set of resources with triplets.

The index construction process of a social inverted index is similar to that of a normal inverted index, except that user

information in each triplet should be considered. Note that this process is done resource by resource, each of which con-

tains a set of triplets. The process for the index construction of a basic social inverted index with naı̈ve frequency weights

is as follows. First, retrieve the set of input resources R, each with (r, t, u) triplets. For each resource r* ∈ R, retrieve the

(r*, t, u) triplets and sort and group these triplets by t. For each t* of the sorted (r*, t*, u) triplets, first check whether t*
is new to the system. If t* is new, add t* to the tag index, initialize a resource-posting list of t*, and set ft*, R = 0. If t* is

not new, retrieve the corresponding resource-posting list of t*. Next, check whether r* is new to the resource-posting list

of t*. If r* is new (in fact, it is always new, because r* is new to the system), add r* to the resource-posting list of t*,

increase ft*, R by 1, initialize a user sublist of r*, and set ft*, r* = 0 and ft*, r*, u = 0. Then, for each u* in Ut, r, add u* to

the user sublist of r* and increase ft*, r* and ft*, r*, u* by 1 respectively. The algorithm is shown below.

Algorithm: BuildBasicSocialInvertedIndex
Input: A set of resources, each with (r, t, u) triplets in a social-tagging system
Output: A set BasicSocialInvertedIndex
<Notation>

Let R, T, and U be the set of resources, tags, and users respectively.
Let TagIndex be a set of index tags.
Let Rt be a set of resources annotated with t, and Ut, r be a set of users who annotate r with t.
Let ft, r be a frequency of t on r, ft, R be a resource frequency of t, and ft, r, u be a frequency of t in r by u.
Let ResourceListt be a list of resources that are annotated with t, each of which is a triplet of < resource, frequency, address of user
sublist> and UserListt, r be a list of users who annotate r with t, each of which is a pair of < user, frequency> .
< Index Building>

01 – Initialize TagIndex Ø.
02 – For each resource r* ∈ R,
03 ––– Read the (r*, t, u) triplets.
04 ––– Sort and group the (r*, t, u) triplets by t.
05 ––– For each t* of (r*, t*, u) triplets,
06 ––––– If t* !∈ TagIndex, then
07 ––––––– Set TagIndex TagIndex ∪ {t*}.
08 ––––––– Initialize Rt* Ø, ft*, R 0, ResourceListt* Ø.
09 ––––– Else, then read ResourceListt*.
11 ––––– If r* !∈ Rt*, then
12 ––––––– Set Rt* Rt* ∪ {r*}, ft*, R+ + .
13 ––––––– Initialize Ut*, r* Ø, ft*, r* 0, ft*, r*, u 0, UserListt*, r* Ø.
14 ––––––– Execute Add(ResourceListt*, < r*, ft*, r*, Address(UserListt*, r*)>).
15 ––––– For each u* of (r*, t*, u*) triplets,
16 ––––––– Set Ut*, r* Ut*, r* ∪ {u*}, ft*, r*+ + , ft*, r*, u*+ + .
17 ––––––– Execute Update(ResourceListt*, ft*, r*), Add(UserListt*, r*, < u*, ft*, r*, u*>).
18 – Return BasicSocialInvertedIndex = {< t, ft, R, Address(ResourceListt)> | t ∈ TagIndex}.

Figure 10. Two lists for calculating tag co-occurrence frequencies of apple and iphone.

Lee et al. 322

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

Note that the input to this algorithm is a set of resources, each with (r, t, u) triplets in the target social-tagging system, and

that the output is a set BasicSocialInvertedIndex with a tag index and the corresponding resource-posting lists and user

sublists. Note also that various user weights other than the naı̈ve frequency weights can be applied in the same manner.

3.5. Index maintenance

The index maintenance of a social inverted index is more complex than that of a normal inverted index. Suppose that a

social inverted index has already been constructed, and is working. A later crawling is then performed, and a new set of

resources with triplets is provided to the maintenance engine of the social inverted index. Generally, there are three stra-

tegies for index maintenance: rebuild, intermittent merge, and incremental update [32]. The rebuild strategy is to rebuild

an index from scratch. For the intermittent merge strategy, new resources are indexed in memory, and when the memory

is full, the in-memory index is merged with the on-disk index. The incremental update strategy consists of updating the

main index, term by term. A tag’s resource-posting list and its user sublists are fetched from the disk, the new informa-

tion is integrated into the lists, and the lists are written back to disk. Choosing a strategy among these three depends on

the characteristics of the social-tagging systems.

With respect to the index update issue, we made four important observations of tagged resources:

1. The collection is highly dynamic. New resources are continually being added, and existing resources are continu-

ally being annotated with new sets of tags by new users.

2. Once users annotate a resource with tags, they rarely change their tags after that point.

3. The only update operation conducted on a resource is the additions of new sets of tags assigned by new users.

4. Temporal information of tagging can be very useful. Tags may represent the popularity or freshness of a resource,

and searchers may expect to find timely content through tags.

The first and last observations indicate that tag-based search engines should reflect the dynamic nature of tagging.

Furthermore, the second and third observations give us an intuition into how to update the social inverted index: when

updating the social inverted index, we only need to consider the newly added triplets, regardless of whether the resource

is new or existing in the social inverted index. This differs from a traditional web search, in which some parts of the con-

tent of a document are modified, not just incremented from the end of the previous version, as in tagged resources. Based

on this intuition, we propose a merge-based index update method that proceeds with the following three steps:

1. Identify the new triplets that have been added since the last update using the timestamp information of tagging.

2. Build a social inverted index with these new triplets.

3. Merge this (small) social inverted index with the existing social inverted index.

In order to perform Step 1, we need to maintain an additional table that records the tagging history of each resource.

3.6. Considering the semantics of tags

One critical weakness of inverted indexes is their inability to handle tag meanings, as already mentioned in Section 2.1.

Inverted indexes are used for the fast retrieval of documents containing the query terms (i.e., syntactic matching), not

looking at documents containing terms whose meanings are the same as or similar to the query terms (i.e., semantic

matching). For example, the social inverted index does not treat tags nyc and newyorkcity as the same, because their syn-

taxes (spellings) are different, although their semantics is exactly the same. In order to overcome the limitation of

inverted indexes and understand the semantic relatedness between tags, we compute the semantic similarity between

tags using the tag co-occurrence information. As explained in Section 3.3.2, tag co-occurrences are good indicators for

calculating the semantic relatedness of two tags. Following the experimental results of Markines et al. [40], who com-

pare a variety of similarity measures in a social-tagging environment, we compute the similarity between two tags based

on mutual information as follows.

Sim t1, t2ð Þ=
X

x1 ∈T1

X

x2 ∈ T2

p x1, x2ð Þlog
p x1, x2ð Þ

p x1ð Þp x2ð Þ

where T is the row vector of tag t that contains the tag frequency in each resource, and

p xð Þ= ft, rxP
r ∈Rt

ft, r

Lee et al. 323

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

p x1, x2ð Þ=
P

x min ft1, x, ft2, xð ÞP
r∈Rt1

∩Rt2
ft1, r + P

r ∈Rt1
∩Rt2

ft2, r

The similarity measure above is based on the fact that two tags that share more common resources get a higher score. All

of the frequency values and resource intersection operations are easily calculated through the social inverted index, as

illustrated in Section 3.3. This semantic similarity of two tags acquired from tag co-occurrences can be utilized in query

expansion, or in more sophisticated calculations of the similarity between a query and resources.

4. Evaluation

In this section, we describe the implementation details for the social inverted index and the collected dataset, and then

discuss the results of four experiments that were conducted for evaluation.

4.1. Implementation and data

General web search engines use web crawlers as a means for collecting web documents. To date, there is not an intelli-

gent web crawler that can automatically identify tagged resources and extract tagging information without any prior

knowledge of the resources. Generally, there are two approaches. The first approach is focused web crawling, based on

the observation that tagged web pages have their own HTML structures according to the service they belong to (e.g.

Delicious or Flickr). This approach is to make the crawlers parse the target resources and extract the appropriate tagging

information using the common structure of each tagging service. The drawback to this approach is that the crawler

should be adaptive to changes in the UI. The second approach uses publicly available datasets or open APIs. Some tag-

ging services, such as CiteULike4 and BibSonomy, provide their complete data dumps in a downloadable format for

researchers. Data dumps provide the benefits of convenience in data acquisition and data completeness at the expense of

using older data. Open APIs are a good option, except that they do not always provide all the data researchers want to

use. We decided to utilize both approaches in this work. In focused web crawling, the crawler extracts a series of (r, t,

u) triplets as it parses the content of a tagged resource. The available datasets used were already processed in the format

of (r, t, u) triplets.

Tagged resources are found the same way as in general web crawling. The process starts from some seed pages, fol-

lows the outgoing links of the page, and repeats this process recursively (this method is known as a snowball sampling

[41]). For example, in Delicious, the Hotlist page (which provides the list of the most popular bookmarks on Delicious)

and the Explore Everyone’s Tags page (which provides the tag cloud for Delicious) are some of the best seed pages when

crawling for Delicious web pages.

For an inverted index, data structure and storage choices depend largely on the size of the term index and posting lists.

In the ideal situation, both the term index and the posting lists fit into main memory. In large collections, however, the

term index may be held in memory whereas the posting lists may be stored on a disk, because the lists of millions or

more document IDs cannot fit in memory. In some very large collections even the term index cannot fit in memory, and

is thus stored on a disk. Fortunately, our tag index can fit in memory. This is mainly because tags are a set of filtered

vocabulary terms chosen directly by humans, and they are expected to be of higher quality than the vocabulary of general

collections of web documents. As far as we know, the maximum number of unique Delicious tags that have been col-

lected by researchers is 6,933,179 [42]. Therefore 10 million index tags (at most) with an average tag length of around

10 characters (i.e., 10 bytes) need approximately 100 MB for the tag index (not considering space for the weights and

pointers). Our choice for the social inverted index is such that the tag index is implemented by a hash table residing in

main memory, and the resource-posting lists and user sublists are implemented by linked lists stored on a disk. The hard-

ware specification is 8-core 3.0 GHz CPU and 16 GB main memory. The implementation specification is as follows:

Java SE 1.6 (JRE 6) for implementing the social inverted index; ActivePerl 5.12 for implementing the crawler; Oracle

Database 11g (as a relational database); and MongoDB [43] 2.0.1 (as a NoSQL5 database) for storing the triplets. The

RDB and NoSQL DB are for comparison with the social inverted index. The Oracle databases are the most widely used

relational databases, and the MongoDB is a document-oriented storage known as a simple-to-set-up and easy-to-operate

NoSQL database. We implemented the MongoDB in the same standalone server as that running the social inverted index

and the Oracle database, not considering the cloud-level scalability of MongoDB.

We chose three social-tagging systems for the datasets: Delicious (DL), BibSonomy (BS), and CiteULike (CU). We

used the databases provided by CiteULike and BibSonomy because they are complete and unbiased. Unfortunately,

Delicious does not provide public databases, so we collected the Delicious tag data from February 2011 to September

2011 using our focused web-crawling method. Table 2 summarizes the data statistics in the three datasets.

Lee et al. 324

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

4.2. Experiments

The goal of the experiments is to show that the social inverted index is better than (1) a normal inverted index and (2) no

inverted index, despite the time and space costs required for index construction and maintenance. We used three datasets

as mentioned, and for each dataset we compared two types of inverted index: N (normal) and B (basic with timestamp

weights). In other words, Type N is a normal inverted index with no user sublists (i.e., weights aggregated by just count-

ing the number of users who annotate a resource with a tag). Type B is the basic social inverted index with timestamp

information as user weights. With these three datasets and two types of inverted index, we conducted four experiments:

the first experiment for investigating the time and space required to build the inverted index (Type N vs Type B); the sec-

ond for investigating the time required to evaluate queries (Type N with an RDB support vs Type N with a NoSQL DB

support vs Type B); the third for investigating the time needed to calculate the tag co-occurrence frequencies (RDB vs

NoSQL DB vs Type B); and the fourth for investigating the time needed to update the social inverted index (Type B by

rebuild vs. by merge).

4.2.1. Index construction. The first experiment compared the time and space costs for building the inverted indexes of

Types N and B. We assumed that a series of triplets in each resource was being sent to the construction engine as a

stream. In other words, we did not take into account the process for extracting the triplets in a resource. We focused

solely on how this set of triplets is converted into a social inverted index. For this reason, we created a single file for

each social-tagging system that contains the whole set of triplets in each system. In this file, each triplet is of the form

resourceID< tab> userName< tab> tagName< tab> taggedDate< new line> , and a set of triplets in each resource

is delimited by <RESOURCE> and < /RESOURCE> tags. We also assumed that the volume of data handled for

index construction could not be held in main memory, even though it safely fits into memory. This assumption is crucial

for the extensibility of the social inverted index. We adopted the practical method known as merge-based inversion, by

which resources with triplets are read and indexed in memory until a fixed capacity is reached. We set this capacity as k

number of resources, and k was 1100, 88,000, and 310,000 in DL, BS, and CU respectively (approximately 10% of the

number of resources in each system). When the memory was full (in this work when the number of processed resources

becomes k), the partial index was flushed to disk as a single run and then deleted from memory. All runs are merged

one by one to give a final index. As a last step of the index construction process, we sorted all resource-posting lists and

user sublists such that, for Type N, the resource-posting lists were sorted by resource ID and the user sublists were sorted

by user name, whereas for Type B the resource-posting lists were sorted by resource frequency and the user sublists

were sorted by timestamp. This three-step (build–merge–sort) process was repeated 10 times, and the results were

averaged.

Figure 11 illustrates the run-building times (the first step) of Types N and B in DL, BS, and CU. Note that Type B

should be compared with Type N within each DL, BS, and CU (i.e. intra-comparisons). The comparisons across different

social-tagging systems (i.e. inter-comparisons) are meaningless, because their sizes are different. The run-building times

of the two types in all three social-tagging systems increase linearly as the number of runs (i.e., resources) increases. This

indicates that the social inverted index can be extended to the vast amount of tag data on a web scale. Note that DL exhib-

ited the largest gap between Type N and B among the three social-tagging systems. This means that DL is a broader

folksonomy than BS and CU. In other words, in Delicious, a resource may be annotated by a larger number of users,

which results in longer user sublists, than in BS and CU.

Table 3 compares the time costs (in seconds) for the three steps of index construction. As expected, Type B always

requires more time than Type N during every step in all three social-tagging systems. For total time, we can see that even

Type B in CU (the largest combination) shows a reasonable index construction time of 7383 seconds (approximately 123

minutes). The increase rates from Type N to Type B are 223% in DL, 36% in BS, and 37% in CU. Again, DL exhibited

the maximum increase rate among the three, for the same reason as above. The increase from Type N to Type B will be

enlarged as the social inverted index incorporates more user weights.

Table 2. Data statistics in Delicious, BibSonomy and CiteULike

STS Method No. of triplets No. of tags No. of resources No. of users Completeness

Delicious (DL) Crawling 13,510,165 300,901 10,826 637,166 N
BibSonomy (BS) Database 2,727,080 222,958 873,467 7,238 Y
CiteULike (CU) Database 14,028,761 633,443 3,051,409 89,461 Y

Lee et al. 325

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

Tables 4 and 5 display the size (in megabytes) of a tag index and of resource-posting lists plus user sublists respec-

tively. Note that, in Table 4, the sizes of the tag indexes are the same for both N and B, because the tag index residing in

main memory is identical, whereas the corresponding resource-posting lists plus user sublists differ, depending on type.

The sizes of the tag indexes were approximately 13 MB in DL, 10 MB in BS, and 30 MB in CU, which are very small.

Table 5 shows that the sizes of resource-posting lists plus user sublists of Type N (i.e., no sublists) were approximately

11 MB in DL, 21 MB in BS, and 95 MB in CU. The space increase rates caused by adding user sublists were 2860% in

Figure 11. Run-building times of DL, BS, and CU (seconds).

Table 3. Comparison of time costs for the three steps of index construction (seconds)

Run building Run merging Sorting Total

DL Type N 109 675 111 895
Type B 261 (+ 139%) 2244 (+ 232%) 389 (+ 250%) 2894 (+ 223%)

BS Type N 136 1014 180 1330
Type B 166 (+ 22%) 1393 (+ 37%) 250 (+ 39%) 1809 (+ 36%)

CU Type N 597 4061 731 5389
Type B 747 (+ 25%) 5629 (+ 39%) 1007 (+ 38%) 7383 (+ 37%)

Table 5. The space costs for resource-posting lists plus user sublists (megabytes)

DL BS CU

Type N 10.51 20.80 95.21
Type B 311.05 (+ 2860%) 68.62 (+ 230%) 710.64 (+ 646%)

Table 4. Space costs for a tag index (megabytes)

DL BS CU

Type N and B 13.01 10.00 30.17

Lee et al. 326

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

DL, 230% in BS, and 646% in CU. Again, DL exhibited the maximum increase rates among the three. Although the

increase rate of 2860% may seem large, we believe that this is still acceptable, considering the explosive growth of disk

and memory size.

Finally, we investigated the distribution of resource-posting lists and user sublists in a social inverted index. Table 6

displays the average lengths, the standard deviations of length, and the minimum and maximum lengths of resource-

posting lists and user sublists. In DL, the average lengths of resource-posting lists and user sublists were 4.6 and 9.8

respectively, which means that, on average, a tag is used to annotate 4.6 resources by 9.8 users. The standard deviations

were 42.5 and 39.5 respectively, and the maximum list lengths were 4356 and 1832 respectively. Figures 12 and 13 dis-

play, respectively, the distributions of the lengths for the resource-posting lists and user sublists of DL. They show that

95% of the lengths of the resource-posting lists and user sublists were less than 9 and 26, respectively, which also implies

that, in Delicious, the distributions are skewed towards short lengths and have a long tail. Note that the distributions of

BibSonomy and CiteULike are not shown, because they exhibit an almost uniform length (= 1) of user sublists. This

implies that most resources in BibSonomy and CiteULike are annotated by one single user, even though BibSonomy and

CiteULike are also known as broad folksonomies.

4.2.2. Query evaluation. The second experiment compared the time costs for evaluating queries of Types N and Type B. To

emphasize the need to maintain the user sublists in the inverted index, we chose temporal range queries (queries targeted

at a specific period of time). Type B can handle temporal queries, because the user sublist contains timestamp information

as a user weight, whereas Type N cannot handle temporal queries, owing to its lack of user sublists. To assist Type N, we

acquired the necessary information on the fly from the triplet table stored in an RDB and a NoSQL DB. We adopted the

cosine measure from the vector space model to calculate the similarity score between a query and a resource. We used a

set of randomly chosen tag pairs as queries such that the tag co-occurrence frequency of the two tags was higher than 100,

which guarantees that the two tags are related to each other enough to be expected to be real query terms. We then

Table 6. List lengths in a social inverted index

Average S.D. Minimum Maximum

DL Resource-posting lists 4.6 42.5 1 4,356
User sublist 9.8 39.5 1 1,832

BS Resource-posting lists 12.2 98.1 1 245,120
User sublist 1.0 1.0 1 7

CU Resource-posting lists 19.7 58.2 1 509,848
User sublist 1.1 1.2 1 201

Figure 13. Distribution of lengths of user sublists in DL.

Figure 12. Distribution of lengths of resource-posting lists in DL.

Lee et al. 327

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

calculated the cosine similarity scores between 100 temporal queries (from the start date of 1 January 2010 to the end date

of 31 December 2010) and the corresponding resources to get a ranked list of resources by using the normal inverted index

with an RDB/NoSQL DB support and the basic social inverted index, and recorded the execution time. To get the neces-

sary information from an RDB/NoSQL DB setting, we used the triplet table and the count function of DBMS. For exam-

ple, the following SQL pseudo-query is used to calculate the frequency of a query term (i.e., tag t) in resource r.

select count USER_NAMEð Þ

from TRIPLET_TABLE

where TAG_NAME=QUERY _TERM and RESOURCE_ID= TARGET_RESOURCE_ID

and TIMESTAMP> = START_DATE and TIMESTAMP< =END_DATE

To guarantee the best performance of DBMS, we built every possible index on the columns of the TRIPLET_TABLE.

We did the same work for the NoSQL DB setting.

Table 7 displays the total execution time for evaluating the queries (plus the comparison with Type B). It shows that

Type B performs far better than Type N (from 16 times to 77 times) in all three social-tagging systems. The performance

gap between the two types is natural, because in Type N with an RDB/NoSQL DB support, the necessary frequency val-

ues should be calculated from the DBMS to process the queries. We can conclude that, in order to evaluate conditional

queries, such as temporal range queries, that should handle the varying weight values in the inverted index, it is very

helpful to maintain a separate user sublist per resource. An additional finding is that NoSQL DB always outperformed

RDB in this experiment. This shows that the newly emerging NoSQL DB may be superior to the traditional RDB, espe-

cially for the simple processing of very large datasets.

4.2.3. Tag co-occurrence frequency calculation. The third experiment compared the time costs for calculating tag co-

occurrence frequencies. As discussed in Section 3.3.2, a social inverted index can be exploited in order to calculate tag

co-occurrence frequencies. In comparison with the social inverted index of Type B, we used an RDB/NoSQL DB triplet

table as a baseline. Considering that targeting all pairs of all tags is very costly and time-consuming (in CU, there are

more than 200 billion pairs), and that not all tag pairs are interesting, we used a set of randomly chosen tags such that

the resource frequency of each tag was greater than 1 and smaller than 30,000 (tags with a resource frequency greater

than 30,000 are extremely rare and are usually useless for IR, such as imported or no-tag). In addition, the sample size

was 1% of the original size (3009 tags from DL, 2229 tags from BS, and 6334 tags from CU). We then calculated the

macro-level and micro-level co-occurrence frequencies for all pairs of the chosen tags using the basic social inverted

index and an RDB/NoSQL DB triple table, and we recorded the execution time. To obtain necessary information from

the RDB/NoSQL DB setting, we used a self-join for the triplet table and a count function of DBMS. For example, the

two following SQL pseudo-queries were used to calculate the macro-level and micro-level co-occurrence frequencies of

two tags respectively. Note that the two differences between the two queries are: (1) the counted column; and (2) the

existence of the condition that T1.USER_ID = T2.USER_ID.

select count distinct T1:RESOURCE_IDð Þ

from TRIPLET_TABLET1, TRIPLET_TABLET2

where T1:TAG_NAME= TAG1 and T2:TAG_NAME= TAG2

and T1:RESOURCE_ID= T2:RESOURCE_ID;

select count T1:USER_IDð Þ

Table 7. Comparison of execution times for query evaluations (seconds)

Type B Type N with RDB Type N with NoSQL DB

DL 132 9001 (× 68) 2144 (× 16)
BS 25 1921 (× 77) 770 (× 31)
CU 54 2587 (× 48) 1033 (× 19)

Lee et al. 328

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

from TRIPLET_TABLET1, TRIPLET_TABLET2

where T1:TAG_NAME= TAG1 and T2:TAG_NAME= TAG2

and T1:RESOURCE_ID= T2:RESOURCE_ID

and T1:USER_ID= T2:USER_ID;

To guarantee the best performance of DBMS, we again built every possible index on the columns of the

TRIPLET_TABLE. The same was done for the NoSQL DB setting.

Table 8 displays the total execution time required for calculating all of the tag co-occurrence frequencies at the macro

and micro levels (plus the comparison with Type B). It is evident that Type B performs better than RDB/NoSQL DB

(from 3.8 times to 244 times) in all three social-tagging systems. This performance gap indicates that the social inverted

index is useful in calculating tag co-occurrence frequencies on a large scale. An additional finding again is that for this

experiment it was RDB, not NoSQL DB, that was usually superior. This result indicates that NoSQL DB may have

weaker performance, especially in processing complex join queries, such as the queries used to calculate the tag co-

occurrence frequencies.

4.2.4. Index maintenance. The last experiment compared the index-updating time utilized by rebuild and by our merge-

based update method in order to choose an optimal strategy for maintaining a social inverted index. For the experiment,

we created 12 subsets of an original triplet dataset of DL (each of which represents a monthly cumulative version) using

the timestamp information of the triplets. We then subsequently recorded the whole index-updating time of Type B

required for naı̈ve rebuild from scratch, and for merge with the previous version, respectively. For example, a social

inverted index for the Apr-11 version can be built either by rebuilding (i.e., by our index construction algorithm pre-

sented earlier) or by merging the new information with the previous Mar-11 version. Table 9 displays the statistics for

the monthly cumulative versions of DL datasets, and shows a gradual increase in the volume of the datasets.

In general, for highly dynamic collections, rebuild may be the most plausible option, because the cost for updating a

large number of inverted lists may exceed the cost for rebuilding those lists from scratch. However, as shown in Figure

14, the index-updating time for rebuild is much greater (by around three times) than the time required for merge. This

indicates that our merge-based update method is more efficient than the naı̈ve rebuild method, confirming the intuition

learned from the second and third observations listed in Section 3.5. An important point to note is that choosing an update

method depends mainly on the policy for the update interval. If the update interval is short (in other words, if the search

Table 9. Statistics for monthly cumulative versions of DL datasets

Version No. of triplets No. of tags No. of resources No. of users

May 2010 7,923,364 202,764 6,503 508,573
Jun 2010 8,297,092 209,840 6,671 517,776
Jul 2010 8,701,895 217,037 6,839 527,886
Aug 2010 9,115,754 224,143 7,009 537,870
Sep 2010 9,553,282 232,107 7,200 548,693
Oct 2010 9,999,912 240,442 7,402 559,802
Nov 2010 10,483,851 249,265 7,651 570,902
Dec 2010 10,874,076 256,062 7,858 579,081
Jan 2011 11,321,369 263,846 8,080 588,459
Feb 2011 11,773,890 271,840 8,351 598,726
Mar 2011 12,304,037 280,731 8,720 609,580
Apr 2011 12,711,291 287,716 9,212 617,405

Table 8. Comparison of execution times for tag co-occurrence frequency calculations (seconds)

MacroCoF MicroCoF

Type B RDB NoSQL DB Type B RDB NoSQL DB

DL 96 13,733 (× 143) 23,411 (× 244) 172 14,025 (× 82) 28,016 (× 163)
BS 83 10,317 (× 124) 7,139 (× 86) 582 6,838 (× 11.7) 7,199 (× 12.4)
CU 848 57,796 (× 68) 86,005 (× 101) 14769 55,790 (× 3.8) 89,286 (× 6.0)

Lee et al. 329

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

engine wants to provide the freshest information possible), our merge-based method is superior to the rebuild method,

because it is capable of handling the new fresh content at minimum cost.

5. Conclusion

In this paper, we present a novel extended inverted index, or social inverted index, for social-tagging-based IR. Our

social inverted index fully supports the social dimension of social tagging by adding a user sublist to each resource in

resource-posting lists. Each user in the user sublist has various weights for matching with the user query. This differs

significantly from the traditional inverted index, in that it regards each user as a unique person, and does not simply

count the number of users in a resource. It highlights the value of a user who participated in tagging. This extended

structure facilitates the use of dynamic resource weights, which are expected to be more meaningful than weights based

on simple user frequency. It also allows flexible response to various types of conditional query, an ability that is increas-

ingly required in recent tag-based IR.

Some issues remain for future work. First, more efficient and compact index representations are needed, which are not

covered in this paper. These can be achieved by compressing the resource-posting lists and user sublists, applying the

existing or modified index compression methods. Although we have shown that the time and space costs for the index

construction and maintenance are acceptable, the performances will probably be enhanced with more compact represen-

tations of lists.

Second, a new index structure that integrates more than one social-tagging system is also needed. Currently, the social

inverted index can handle only one social-tagging system. In order to extend coverage of tag-based search engines, how-

ever, multiple social-tagging systems need to be integrated, and the problems caused by their heterogeneity need to be

addressed. If more than one social-tagging system is merged in a single social inverted index, careful consideration

should be given to weight normalization for query processing. For example, resources in Delicious that attract many

users and tags may look more prominent than resources in BibSonomy and CiteULike, if we apply simple frequency-

based weighting schemes.

Third, as mentioned above, focused web crawling or open APIs are possible methods to collect tag data. However,

we believe that a more intelligent crawling algorithm that can automatically detect, collect, and index the tag data spread

on the social web should be devised. If this is possible, limitations owing to the small coverage problem of tag-based

web search will be overcome sooner than expected, and a true social-tagging-based search system that integrates several

social-tagging systems will be serviced. The int.ere.st website [44] and DataPortability6 Project are good examples of

attempts to integrate heterogeneous social systems.

Finally, we plan to develop a more extended index, similar to the adaptive social inverted index, that will facilitate the

search for all types of entity.

Notes

1 Delicious. http://www.delicious.com/

2 Flickr. http://www.flickr.com/

Figure 14. Index-updating times of DL for rebuild and merge.

Lee et al. 330

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

3 Resource may be replaced by document, (web) page, object, or item. Tag may be replaced by annotation. User may be replaced by

tagger or person.

4 CiteULike. http://www.citeulike.org/

5 NoSQL. http://nosql-database.org/

6 The DataPortability Project. http://dataportability.org/

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF), grant-funded by the Korea government (MEST) (No.

20110017480).

References

[1] Vossen G and Hagemann S. Unleashing Web 2.0: from concepts to creativity. Burlington, MA: Morgan Kaufmann Publishers,

2007.

[2] Hotho A, Jäschke R, Schmitz C, Stumme G. Information retrieval in folksonomies: search and ranking. In: Proceedings of the

3rd European Semantic Web Conference: Research and Applications. Budna, Montenegro, 2006, pp. 411–426.

[3] Fu W-T, Kannampallil T, Kang R, He J. Semantic imitation in social tagging. ACM Transactions on Computer-Human

Interactions 2010; 17(3): 1–37.

[4] Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging. In: Proceedings of the 16th International

Conference on World Wide Web. Banff, Alberta, Canada, 8–12 May 2007, pp. 211–220.

[5] Golder S, Huberman BA. Usage patterns of collaborative tagging systems. Journal of Information Science 2006; 32(2): 198–

208.

[6] Mika P. Ontologies are us: a unified model of social networks and semantics. Journal of Web Semantics 2007; 5(1): 5–15.

[7] Wal TV. Folksonomy coinage and definition’ http://www.vanderwal.net/folksonomy.html (2007, accessed 25 April 2011).

[8] Dmitriev PA, Eiron N, Fontoura M, Shekita E. Using annotations in enterprise search. In: Proceedings of the 15th International

World Wide Web Conference. Edinburgh, UK, 2006, pp. 811–817.

[9] Bao S, Xue G, Wu X, Yu Y, Fei B, Su Z. Optimizing web search using social annotations. In: Proceedings of the 16th

International World Wide Web Conference. Banff, Alberta, Canada, 8–12 May 2007, pp. 501–510.

[10] Yanbe Y, Jatowt A, Nakamura S, Tanaka K. Can social bookmarking enhance search in the web? In: Proceedings of the 7th

ACM/IEEE-CS Joint Conference on Digital Libraries. Vancouver, Canada, 17–22 June 2007, pp. 107–116.

[11] Zhou D, Bian J, Zheng S, Zha H, Giles CL. Exploring social annotations for information retrieval. In: Proceedings of the 17th

International World Wide Web Conference. Beijing, China, 21–25 April 2008, pp. 715–724.

[12] Carmel D, Roitman H, Yom-Tov E. Social bookmark weighting for search and recommendation. The VLDB Journal 2010;

19(6): 761–775.

[13] Heymann P, Koutrika G, Garcia-Molina H. Can social bookmarking improve web search? In: Proceedings of the 1st ACM

International Conference on Web Search and Data Mining. Stanford, CA, USA, 11–12 February 2008, pp. 195–206.

[14] Bischoff K, Firan CS, Nejdl W, Paiu R. Can all tags be used for search? In: Proceedings of the 17th ACM Conference on

Information and Knowledge Management. New York, NY, USA, 2008, pp. 203–212.

[15] Chi EH, Mytkowicz T. Understanding the efficiency of social tagging systems using information theory. In: Proceedings of the

19th ACM Conference on Hypertext and Hypermedia. Pittsburgh, PA, USA, June 2008, pp. 81–88.

[16] Carman MJ, Baillie M, Gwadera R, Crestani F. A statistical comparison of tag and query logs. In: Proceedings of the 32nd

International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston, MA, USA, 19–23 July

2009, pp. 123–130.

[17] Yahia SA, Benedikt M, Lakshmanan LVS, Stoyanovich J. Efficient network aware search in collaborative tagging sites.

Proceedings of the VLDB Endowment 2008; 1(1): 710–721.

[18] Schenkel R, Crecelius T, Kacimi M, et al. Efficient top-k querying over social-tagging networks. In: Proceedings of the 31st

International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA, 2008, pp.

523–530.

[19] Zanardi V, Capra L. Social ranking: uncovering relevant content using tag-based recommender systems. In: Proceedings of the

2nd ACM Conference on Recommender Systems. Lausanne, Switzerland, 2008, pp. 51–58.

[20] Amitay E, Carmel D, Har’El N, et al. Social search and discovery using a unified approach. In: Proceedings of the 20th ACM

Conference on Hypertext and Hypermedia. Torino, Italy, 2009, pp. 199–208.

[21] Noll MG, Meinel C. Web search personalization via social bookmarking and tagging. In: Proceedings of the 6th International

Conference on The Semantic Web, LNCS 4825. 2007, pp. 367–380.

[22] Xu S, Bao S, Fei B, Su Z, Yu Y. Exploring folksonomy for personalized search. In: Proceedings of the 31st International ACM

SIGIR Conference on Research and Development in Information Retrieval. Singapore, 20–24 July 2008, pp. 155–162.

[23] Carmel D, Zwerdling N, Guy I, et al. Personalized social search based on the user’s social network. In: Proceedings of the 18th

ACM Conference on Information and Knowledge Management. Hong Kong, China, 2–6 November 2009, pp. 1227–1236.

Lee et al. 331

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

[24] Lew MS, Sebe N, Djeraba C, Jain R. Content-based multimedia information retrieval: state of the art and challenges. ACM

Transactions on Multimedia Computing, Communications and Applications 2006; 2(1): 1–19.

[25] Aurnhammer M, Hanappe P, Steels L. Integrating collaborative tagging and emergent semantics for image retrieval. In:

Proceedings of the Collaborative Web Tagging Workshop (WWW ’06), 2006.

[26] Levy M, Sandler M. Music information retrieval using social tags and audio. IEEE Transactions on Multimedia 2009; 11(3):

383–395.

[27] Bischoff K, Firan CS, Nejdl W, Paiu R. Bridging the gap between tagging and querying vocabularies: analyses and applications

for enhancing multimedia IR. Journal of Web Semantics 2010; 8(2–3): 97–109.

[28] Furnas GW, Landauer TK, Gomez LM, Dumais ST. The vocabulary problem in human–system communication.

Communications of the ACM 1987; 30(11): 964–971.

[29] Persin M, Zobel J, Sacks-Davis R. Filtered document retrieval with frequency-sorted indexes. Journal of the American Society

for Information Science 1996; 47(10): 749–764.

[30] Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. Journal of the

American Society for Information Science 1990; 41(6): 391–407.

[31] Moffat A, Zobel J. Self-indexing inverted files for fast text retrieval. ACM Transactions on Information Systems 1996; 14(4):

349–379.

[32] Zobel J, Moffat A. Inverted files for text search engines. ACM Computing Surveys 2006; 38(2): 1–56.

[33] Benz D, Hotho A, Jäschke R, et al. The social bookmark and publication management system BibSonomy. The VLDB Journal

2010; 19(6): 849–875.

[34] Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for semantic web data management. Proceedings of the VLDB

Endowment 2008; 1(1): 1008–1019.

[35] Huo W, Tsotras VJ. Temporal top-k search in social tagging sites using multiple social networks. In: Proceedings of Database

Systems for Advanced Applications (DASFAA 2010). Tsukuba, Japan, 1–4 April 2010, LNCS 5981, pp,.498–504.

[36] Zheng N, Li Q. A recommender system based on tag and time information for social tagging systems. Expert Systems with

Applications 2011; 38(4): 4575–4587.

[37] Sigurbjörnsson B, Zwol Rv. Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th

International World Wide Web Conference. Beijing, China, 21–25 April 2008, pp. 327–336.

[38] Wartena C, Brussee R, Wibbels M. Using tag co-occurrence for recommendation. In: Proceedings of the 9th International

Conference on Intelligent Systems Design and Applications. Pisa, Italy, November 2009, pp. 273–278.

[39] Kim HH. Toward video semantic search based on a structured folksonomy. Journal of the American Society for Information

Science and Technology 2011; 62(3): 478–492.

[40] Markines B, Cattuto C, Menczer F, Benz D, Hotho A, Stumme G. Evaluating similarity measures for emergent semantics of

social tagging. In: Proceedings of the 18th International World Wide Web Conference. Madrid, Spain, 20–24 April 2009, pp.

641–650.

[41] Ahn Y-Y, Han S, Kwak H, Moon S, Jeong H. Analysis of topological characteristics of huge online social networking services.

Proceedings of the 16th International Conference on World Wide Web. Banff, Alberta, Canada, 8–12 May 2007, pp. 835–844.

[42] Wetzker R, Zimmermann C, Bauckhage C. Analyzing social bookmarking systems: a del.icio.us cookbook. In: Proceedings of

the ECAI 2008 Workshop on Mining Social Data. Patras, Greece, 21–25 July 2008, pp. 26–30.

[43] Plugge E, Hawkins T,d Membrey P. The definitive guide to MongoDB: The NoSQL database for cloud and desktop computing.

New York, NY, USA: Apress, 2010.

[44] Kim H, Breslin JG, Yang S, Song S, Kim H. int.ere.st: building a tag sharing service with the SCOT ontology. In: Proceedings

of the 23rd AAAI Conference on Artificial Intelligence. Chicago, IL, USA, July 2008.

Lee et al. 332

Journal of Information Science, 38 (4) 2012, pp. 313–332 � The Author(s), DOI: 10.1177/0165551512438357

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 266
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 266
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Coated v2 300% \050ECI\051)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020062A0645062706450627064B0020064506390020064506420627064A064A06330020005000440046002F0058002D00310061003A0032003000300031002006300648002006270644064506480627063506410627062A0020062706440642064A06270633064A0629002000490053004F00200644062A06280627062F064400200645062D062A0648064A0627062A00200627064406310633064806450627062A060C00200644064406250637064406270639002006390644064900200627064406450632064A062F002006450646002006270644064506390644064806450627062A0020062D0648064400200625064606340627062100200648062B06270626064200200050004400460020062706440645062A064806270641064206290020064506390020005000440046002F0058002D00310061060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200034002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043a043e04380442043e002004420440044f0431043204300020043404300020044104350020043f0440043e043204350440044f04320430044200200438043b0438002004420440044f04310432043000200434043000200441044a043e0442043204350442044104420432043004420020043d04300020005000440046002f0058002d00310061003a00320030003000310020002d002000490053004f0020044104420430043d04340430044004420020043704300020043e0431043c0435043d0020043d04300020043304400430044404380447043d04380020043c043004420435044004380430043b0438002e00200020041704300020043f043e043204350447043500200438043d0444043e0440043c043004460438044f0020043e0442043d043e0441043d043e00200441044a04370434043004320430043d04350442043e0020043d0430002000500044004600200434043e043a0443043c0435043d04420438002c00200441044a043e04420432043504420441044204320430044904380020043d04300020005000440046002f0058002d00310061002c002004320436002e00200420044a043a043e0432043e0434044104420432043e0442043e0020043704300020044004300431043e04420430002004410020004100630072006f006200610074002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200034002c00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006200750064006f00750020006b006f006e00740072006f006c006f0076006100740020006e00650062006f0020006d0075007300ed0020007600790068006f0076006f0076006100740020007300740061006e006400610072006400750020005000440046002f0058002d00310061003a0032003000300031002c0020007300740061006e00640061007200640075002000490053004f002000700072006f0020007001590065006400e1007600e1006e00ed0020006700720061006600690063006b00e90068006f0020006f00620073006100680075002e0020002000440061006c016100ed00200069006e0066006f0072006d0061006300650020006f0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f00200050004400460020007600790068006f00760075006a00ed006300ed006300680020005000440046002f0058002d003100610020006e0061006a00640065007400650020007600200050015900ed00720075010d0063006500200075017e00690076006100740065006c00650020004100630072006f0062006100740075002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200034002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d006900640061002000740075006c006500620020006b006f006e00740072006f006c006c0069006400610020007600f500690020006d006900730020007000650061007600610064002000760061007300740061006d00610020007300740061006e00640061007200640069006c00650020005000440046002f0058002d00310061003a00320030003000310020002800490053004f0020007300740061006e00640061007200640020006700720061006100660069006c00690073006500200073006900730075002000760061006800650074007500730065006b00730029002e00200020004c0069007300610074006500610076006500740020007300740061006e00640061007200640069006c00650020005000440046002f0058002d0031006100200076006100730074006100760061007400650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d0069007300650020006b006f0068007400610020006c006500690061007400650020004100630072006f00620061007400690020006b006100730075007400750073006a007500680065006e0064006900730074002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200034002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003c003c103cc03ba03b503b903c403b103b9002003bd03b1002003b503bb03b503b303c703b803bf03cd03bd002003ae002003c003bf03c5002003c003c103ad03c003b503b9002003bd03b1002003c303c503bc03bc03bf03c103c603ce03bd03bf03bd03c403b103b9002003bc03b5002003c403bf002003c003c103cc03c403c503c003bf0020005000440046002f0058002d00310061003a0032003000300031002c002003ad03bd03b1002003c003c103cc03c403c503c003bf002000490053004f002003b303b903b1002003b103bd03c403b103bb03bb03b103b303ae002003c003b503c103b903b503c703bf03bc03ad03bd03bf03c5002003b303c103b103c603b903ba03ce03bd002e00200020039303b903b1002003c003b503c103b903c303c303cc03c403b503c103b503c2002003c003bb03b703c103bf03c603bf03c103af03b503c2002003c303c703b503c403b903ba03ac002003bc03b5002003c403b7002003b403b703bc03b903bf03c503c103b303af03b1002003b503b303b303c103ac03c603c903bd0020005000440046002003c303c503bc03b203b103c403ce03bd002003bc03b5002003c403bf0020005000440046002f0058002d00310061002c002003b103bd03b103c403c103ad03be03c403b5002003c303c403bf03bd0020039f03b403b703b303cc002003a703c103ae03c303c403b7002003c403bf03c50020004100630072006f006200610074002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200034002c0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D905D505E205D305D905DD002005DC05D105D305D905E705D4002005D005D5002005E905D705D905D905D105D905DD002005DC05D405EA05D005D905DD002005DC002D005000440046002F0058002D00310061003A0032003000300031002C002005EA05E705DF002000490053004F002005E205D105D505E8002005D405E205D105E805EA002005EA05D505DB05DF002005D205E805E405D9002E002005DC05E705D105DC05EA002005DE05D905D305E2002005E005D505E105E3002005D005D505D305D505EA002005D905E605D905E805EA002005DE05E105DE05DB05D90020005000440046002005D405EA05D505D005DE05D905DD002005DC002D005000440046002F0058002D00310061002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200034002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020006b006f006a00690020007300650020006d006f00720061006a0075002000700072006f0076006a0065007200690074006900200069006c00690020007000720069006c00610067006f00640069007400690020005000440046002f0058002d00310061003a0032003000300031002c002000490053004f0020007300740061006e006400610072006400750020007a0061002000720061007a006d006a0065006e0075002000670072006100660069010d006b0069006800200073006100640072017e0061006a0061002c0020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005a00610020007600690161006500200069006e0066006f0072006d006100630069006a00610020006f0020007300740076006100720061006e006a0075002000500044004600200064006f006b0075006d0065006e006100740061002000730075006b006c00610064006e006900680020007300200066006f0072006d00610074006f006d0020005000440046002f0058002d0031006100200070006f0067006c006500640061006a007400650020004100630072006f0062006100740020006b006f007200690073006e0069010d006b0069002000700072006900720075010d006e0069006b002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200034002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a007a00610020006c00e900740072006500200061007a006f006b0061007400200061007a002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002c00200061006d0065006c00790065006b0065007400200065006c006c0065006e01510072007a00e900730072006500200073007a00e1006e002c0020007600610067007900200061006d0065006c00790065006b006e0065006b0020006d006500670020006b0065006c006c002000660065006c0065006c006e0069006500200061002000670072006100660069006b00750073002000740061007200740061006c006f006d0020006300730065007200650066006f007200670061006c006f006d007200610020006b006900660065006a006c00650073007a0074006500740074002000490053004f00200073007a00610062007600e1006e00790020005000440046002f0058002d00310061003a003200300030003100200066006f0072006d00e100740075006d006e0061006b002e0020002000410020005000440046002f0058002d0031006100200066006f0072006d00e100740075006d006e0061006b0020006d0065006700660065006c0065006c0151002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0020006c00e90074007200650068006f007a00e1007300e10072006100200076006f006e00610074006b006f007a00f300200074006f007600e10062006200690020007400750064006e006900760061006c00f3006b00200061007a0020004100630072006f006200610074002000660065006c006800610073007a006e00e1006c00f300690020006b00e9007a0069006b00f6006e0079007600e900620065006e0020006f006c00760061007300680061007400f3006b002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200034002e003000200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b0069007200740069002000740069006b00720069006e00740069002000610072002000700072006900760061006c006f002000610074006900740069006b007400690020005000440046002f0058002d00310061003a0032003000300031002000670072006100660069006e0069006f00200074007500720069006e0069006f0020006b0065006900740069006d006f00730069002000490053004f0020007300740061006e00640061007200740105002e00200020004400610075006700690061007500200069006e0066006f0072006d006100630069006a006f0073002000610070006900650020005000440046002f0058002d003100610020007300740061006e00640061007200740105002000610074006900740069006e006b0061006e010d00690173002000500044004600200064006f006b0075006d0065006e007401730020006b016b00720069006d01050020006900650161006b006f006b0069007400650020004100630072006f00620061007400200076006100720074006f0074006f006a006f0020007600610064006f00760065002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200034002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b0075007200690020006900720020006a01010070010100720062006100750064006100200076006100690020006b0075007200690065006d0020006900720020006a01010061007400620069006c007300740020005000440046002f0058002d00310061003a0032003000300031002c002000490053004f0020007300740061006e00640061007200740061006d002000610070006d006100690146006100690020006100720020006700720061006600690073006b006f0020007300610074007500720075002e00200050006c006101610101006b007500200069006e0066006f0072006d010100630069006a007500200070006100720020005000440046002f0058002d00310061002000730061006400650072012b00670075002000500044004600200064006f006b0075006d0065006e0074007500200069007a00760065006900640069002c0020006c016b0064007a0075002c00200073006b006100740069006500740020004100630072006f0062006100740020006c006900650074006f00740101006a006100200072006f006b00610073006700720101006d006100740101002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200034002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002c0020006b007400f300720065002000620119006401050020007300700072006100770064007a006f006e00650020006c007500620020007301050020007a0067006f0064006e00650020007a0020005000440046002f0058002d00310061003a0032003000300031002c0020007300740061006e0064006100720064002000490053004f00200064006c0061002000770079006d00690061006e00790020007a00610077006100720074006f015b006300690020006700720061006600690063007a006e0065006a002e0020002000570069011900630065006a00200069006e0066006f0072006d00610063006a00690020006e0061002000740065006d00610074002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a0067006f0064006e0079006300680020007a0020005000440046002f0058002d003100610020007a006e0061006a00640075006a006500200073006901190020007700200070006f0064007201190063007a006e0069006b007500200075017c00790074006b006f0077006e0069006b0061002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200034002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f00620065002000500044004600200063006100720065002000750072006d00650061007a010300200073010300200066006900650020007600650072006900660069006300610074006500200073006100750020007400720065006200750069006500200073010300200063006f00720065007300700075006e006401030020007300740061006e00640061007200640075006c007500690020005000440046002f0058002d00310061003a0032003000300031002c00200075006e0020007300740061006e0064006100720064002000490053004f002000700065006e00740072007500200073006300680069006d00620075006c00200064006500200063006f006e01630069006e0075007400200067007200610066006900630020002000500065006e00740072007500200069006e0066006f0072006d00610163006900690020007300750070006c0069006d0065006e007400610072006500200064006500730070007200650020006300720065006100720065006100200064006f00630075006d0065006e00740065006c006f0072002000500044004600200063006f006e0066006f0072006d00650020006300750020007300740061006e00640061007200640075006c0020005000440046002f0058002d00310061002c00200063006f006e00730075006c0074006101630069002000470068006900640075006c0020007500740069006c0069007a00610074006f00720075006c00750069002000700065006e0074007200750020004100630072006f006200610074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200034002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043a043e0442043e0440044b04350020043f043e0434043b04350436043004420020043f0440043e043204350440043a043500200438043b043800200434043e043b0436043d044b00200441043e043e0442043204350442044104420432043e043204300442044c0020005000440046002f0058002d00310061003a0032003000300031002c0020044104420430043d04340430044004420443002000490053004f00200434043b044f0020043e0431043c0435043d0430002004330440043004440438044704350441043a0438043c00200441043e04340435044004360430043d04380435043c002e002000200411043e043b043504350020043f043e04340440043e0431043d0430044f00200438043d0444043e0440043c043004460438044f0020043f043e00200441043e043704340430043d0438044e0020005000440046002d0434043e043a0443043c0435043d0442043e0432002c00200441043e0432043c0435044104420438043c044b0445002004410020005000440046002f0058002d00310061002c0020043f0440043504340441044204300432043b0435043d043000200432002004200443043a043e0432043e043404410442043204350020043f043e043b044c0437043e0432043004420435043b044f0020004100630072006f006200610074002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200034002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e9002000730061002000620075006400fa0020006b006f006e00740072006f006c006f00760061016500200061006c00650062006f0020006d00750073006900610020007600790068006f0076006f0076006101650020016100740061006e006400610072006400750020005000440046002f0058002d00310061003a0032003000300031002c0020016100740061006e00640061007200640075002000490053004f0020006e00610020007000720065006400e100760061006e006900650020006700720061006600690063006b00e90068006f0020006f00620073006100680075002e0020010e0061006c01610069006500200069006e0066006f0072006d00e10063006900650020006f0020007600790074007600e100720061006e00ed00200064006f006b0075006d0065006e0074006f007600200050004400460020007600790068006f00760075006a00fa00630069006300680020005000440046002f0058002d003100610020006e00e1006a00640065007400650020007600200050007200ed00720075010d006b006500200075017e00ed0076006100740065013e0061002000610070006c0069006b00e10063006900650020004100630072006f006200610074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200034002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b00690020006a006900680020006a0065002000740072006500620061002000700072006500760065007200690074006900200061006c00690020006d006f00720061006a006f002000620069007400690020007600200073006b006c006100640075002000730020005000440046002f0058002d00310061003a0032003000300031002c0020007300740061006e0064006100720064006f006d002000490053004f0020007a006100200069007a006d0065006e006a00610076006f002000670072006100660069010d006e0065002000760073006500620069006e0065002e00200020005a006100200064006f006400610074006e006500200069006e0066006f0072006d006100630069006a00650020006f0020007500730074007600610072006a0061006e006a007500200064006f006b0075006d0065006e0074006f00760020005000440046002c00200073006b006c00610064006e00690068002000730020005000440046002f0058002d00310061002c0020007300690020006f0067006c0065006a00740065002000750070006f007200610062006e00690161006b006900200070007200690072006f010d006e0069006b0020004100630072006f006200610074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200034002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004b006f006e00740072006f006c0020006500640069006c006500630065006b00200076006500790061002000670072006100660069006b0020006900e7006500720069006b002000740061006b0061007301310020006900e70069006e0020006200690072002000490053004f0020007300740061006e006400610072006401310020006f006c0061006e0020005000440046002f0058002d00310061003a003200300030003120190065002000750079006d00610073013100200067006500720065006b0065006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020005000440046002f0058002d003100610020007500790075006d006c00750020005000440046002000620065006c00670065006c006500720069006e0069006e0020006f006c0075015f0074007500720075006c006d00610073013100200069006c006500200069006c00670069006c006900200064006100680061002000660061007a006c0061002000620069006c006700690020006900e70069006e0020006c00fc007400660065006e0020004100630072006f0062006100740020004b0075006c006c0061006e0131006d0020004b0131006c006100760075007a0075006e0061002000620061006b0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200034002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456002004310443043404430442044c0020043f043504400435043204560440044f044204380441044f002004300431043e0020043f043e04320438043d043d04560020043204560434043f043e0432045604340430044204380020044104420430043d043404300440044204430020005000440046002f0058002d00310061003a0032003000300031002c002000490053004f00200434043b044f0020043e0431043c0456043d04430020043304400430044404560447043d0438043c0438002004340430043d0438043c0438002e002000200414043e043404300442043a043e043204560020043204560434043e043c043e0441044204560020043f0440043e0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d0442045604320020005000440046002c0020044f043a04560020043204560434043f043e0432045604340430044e0442044c0020044104420430043d043404300440044204430020005000440046002f0425002d0031002c0020043404380432002e002004430020043f043e044104560431043d0438043a04430020043a043e0440043804410442044304320430044704300020004100630072006f006200610074002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200034002c0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000470072006f00750070002e000d0043006f006e006600690067007500720065006400200066006f0072002000410064006f006200650020004100630072006f006200610074002000440069007300740069006c006c00650072002000760038002e0078002000300032002d00320038002d00300038002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

