
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.,29(5), 479–500 (1999)

Object Versioning in an ODMG-compliant Object
Database System

SANG-WON LEE∗AND HYOUNG-JOO KIM
Department of Computer Engineering, Seoul National University, Shilim-Dong Gwanak-Gu, Seoul 151-742,

Korea
(email: {swlee,hjk}@oopsla.snu.ac.kr)

SUMMARY

In this paper, we describe the design and implementation of the SOP Object Version System which is built
upon an object database system, called SOP (SNU ODBMS Platform). SOP is fully compliant with ODMG-
93, a standard for object databases proposed by the Object Database Management Group (ODMG). To
support object versioning in an ODMG C++ OML (Object Manipulation Language) environment, the SOP
Object Version System provides a set of APIs (Application Programming Interfaces) as a class library. One
important design goal of the SOP Object Version System was to achieve full compliance with ODMG-93
standard. That is, in designing the class library, we tried to utilize the ODMG-93 C++ OML interface
as much as possible, while preserving its semantics as defined in ODMG-93. Our object version model
follows the basic functionalities of mainstream object version models. Although this approach burdens
programmers with the management of the application-specific version policy, it helps users to apply the
SOP Object Version System to diverse application areas. Copyright 1999 John Wiley & Sons, Ltd.

KEY WORDS: object version; object database systems; ODMG-93 data model

INTRODUCTION

An object in a database represents a real world entity which the database is to model, and
many database applications require database objects to model the various aspects of real world
entities, such as the temporal history of an entity and its alternative designs.

With the advent of the object-oriented data model in the mid 1980s, the object versioning
concept† has received much attention from new database application areas including
CAD/CAM, CASE and temporal database areas [3–8]. Hence, almost every object database
system (ODBMS), for example, Exodus, Itasca, ObjectStore, Objectivity, O2 and Ode,
support versioning concepts of their own [9–15]. Recently, the necessity of object versions
has been strongly re-motivated in several new object database application areas including
Repository [8,16] and WWW [17,18].

∗Correspondence to: S.-W. Lee, Department of Computer Engineering, Seoul National University, Shilim-Dong Gwanak-Gu,
Seoul 151-742, Korea.
Contract/grant sponsor: Research Institute of Engineering Science.
Contract/grant sponsor: STEPI, ‘A Development on Object-Oriented Component Technology for a Web Transaction Server’;
Contract/grant number: 97-058.
†Strictly speaking, the version concept discussed in this paper is aboutuser-levelversions.System-levelversion concepts, such
as for concurrency control [1] and long duration transaction [2] is beyond the scope of this paper.

CCC 0038–0644/99/050479–22$17.50 Received 18 May 1998
Copyright 1999 John Wiley & Sons, Ltd. Revised 28 September 1998

Accepted 7 January 1999

480 S.-W. LEE AND H.-J. KIM

Version System

Class Library

Database

Linker

The SOP Object

Application

and Version API

in ODMG C++ OML

C++ Compiler

Application Source

Binary

Metadata

DB Access

Declaration in

Schema
Manager

Application
Running

SOP Runtime

Storage System)
(Soprano Object

and Version API

ODMG C++ ODL

Figure 1. Using the SOP system and its object version system

This paper deals with the design and implementation of version facilities of the SOP Object
Version System, which extends the SOP (SNU ODBMS Platform) system [19], which was
developed from scratch at Seoul National University and is fully compliant with ODMG-
93, thede factoobject database standard proposed by the Object Data Management Group
(ODMG) [20].

In the early 1990s, ODBMS vendors recognized that the lack of a standard for object
databases was a major limitation to their products’ wide acceptance in the market. They
learned that much of the relational database’s success was attributable to its standard, SQL.
Hence, they organized the ODMG in the summer of 1991 so as to make an object database
standard allowing source code portability and interoperability between different ODBMS
products. Since the publication of release 1.0, ODMG-93 [21] in the late 1993, the ODMG
made several enhancements to the standard, release 1.1, 1.2 and 2.0 (as of 1997). The
main components of the standards include (1) Object Model, the common data model to be
supported by ODBMSs, (2) Object Definition Language (ODL), the specification languages
for ODBMSs, (3) Object Query Language (OQL), a declarative language for querying and
updating database objects, and (4) Object Manipulation Languages (OMLs), the bindings of
ODBMSs to the popular object oriented languages C++, Smalltalk and Java (new in release
2.0 [22]). We assume in this paper that readers are familiar with the ODMG-93 standard,
especially ODMG C++ OML and the C++ programming language [23].

The SOP system supports ODL, OQL and C++ ODL/OML binding of the ODMG-93
standard (currently based on release 1.2 [20]). SOP consists of several main modules,
including an object storage systemSoprano[24,25], a cost-based query processor and
optimizer Sopoqles, a schema manager module, and a C++ ODL/OML preprocessor
LOD∗ [26,27].

Application programmers can use the version mechanism of SOP (which we refer to as
the SOP Object Version System) in the ODMG C++ ODL/OML bindings [20]. Figure 1
illustrates the use of the SOP ODBMS and its Object Version System. The SOP Object
Version System is provided to users as a class library, and an application program using the

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 481

version functionality is then compiled together with the class library and then linked with the
SOP runtime module, theSopranoobject storage system, to produce the running application.
The software architecture in Figure1 follows the approach proposed by the ODMG.

The SOP Object Version System, as in the form of a class library, is loosely coupled with
the SOP runtime module, and is thus easily portable to other ODMG-compliant ODBMSs.
Currently, the ODMG standard does not include any specifications about object versioning.
We believe that the approach to object versioning taken by the SOP Object Version System
is a natural extension of the ODMG standard, and thus we hope that our approach can be a
candidate for object versioning in the ODMG standard.

The rest of this paper describes the versioning functionality of the SOP Object Version
System. The following sections deal with its design goals, the SOP object version model, a set
of API (Application Program Interface) calls and its usage example, implementation details,
comparisons with other version mechanisms, and conclusion. Note that the focus of this paper
is on object versioning. Many ODBMS applications also require the functionality of schema
versioning which tracks the evolution of the definition of classes and class hierarchy. Although
object versioning is somewhat related to schema versioning [28], this topic is beyond of the
scope of this paper (see elsewhere [28–30] for the details about schema versioning).

SOP OBJECT VERSION SYSTEM: DESIGN PRINCIPLES

In the design of the SOP Object Version System, we followed the guiding principles listed
below. In this section, we briefly discuss these design principles.

1. Compliance with ODMG object database standards.
2. Minimal impacts onSopranoobject storage system.
3. General version mechanism, instead of a specific version policy.

ODMG compliance

ODMG C++ OML is used for accessing and manipulating persistent objects in the
database [20]. Since versioned objects are also persistent objects, all of the ODMG C++ OML
interfaces for persistent objects should be valid for the versioned objects. For instance, the
references to persistent objects in ODMG C++ OML are based on a smart pointer,Ref , which
behaves like a normal C++ pointer but provides additional mechanisms for guaranteeing the
integrity of references to non-memory resident persistent objects. This smart pointer, we
think, could also refer to versioned objects. In addition, we tried to use the ODMG C++
OML interfaces as much as possible when implementing the SOP object version model.
For example, to prohibit the modification of versions of a particular type, we extended the
interfacemark modified() of ODMG C++ OML, which is used to notify the database
runtime that the state of an object will change. The main reason why we tried to achieve
maximal ODMG-compliance in designing the SOP Object Version System is to alleviate the
user from the burden of learning new interfaces for object versioning.

Minimal impacts on Sopranoobject storage system

The next design goal of the SOP Object Version System is to minimize the performance
overhead for non-versioned objects. The goal of ODMG-compliance is achieved at
the expense of a performance degradation in accessing non-versioned objects, but this

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

482 S.-W. LEE AND H.-J. KIM

performance degradation is negligible. Also, we tried to minimize changes in theSoprano
object storage system so that the SOP Object Version System could be independent of any
particular storage system, as far as possible. In fact, only two member functions of the
Sopranoobject storage system are changed, and one member function is newly added to
Soprano. Except for these member functions, all other components of the SOP Object Version
System are completely independent of the object storage system. Thus, the SOP Object
Version System is easily portable to other ODMG-compliant ODBMSs.

General version mechanism

Instead of providing a specific version policy required in some applications, the SOP Object
Version System supports general version mechanisms. Although this burdens the user with
managing the semantics of the versions for some applications, we believe that it allows the
SOP Object Version System to be applicable to wider application areas. Moreover, in future
we will relieve users of the burden of managing version semantics by adding the functionality
of customizing version semantics, as in Objectivity [31] and Itasca [13].

SOP OBJECT VERSION MODEL

In this section, we describe each component of the SOP object version model, including the
creation of versioned objects, the derivation of new versions, deletion of versions, version
status, static/dynamic binding to versions, and traversal of versioned objects. To illustrate the
SOP object version model, the versioned object example shown in Figure2 is used throughout
this section.

Versioned objects and versionable classes

A versioned object in the SOP Object Version System is also conceptually a persistent
object. We use the termconceptuallybecause it represents an entity in the real world, even
though the versioned object consists of ageneric versionand one or morespecific versions, all
of which are also persistent objects and thus have their own unique object identifiers (OIDs).
Both generic versions and specific versions are visible to users. Thus, users can access a
versioned object via either its generic version or a specific version. With regard to access
via the generic version, one of the specific versions is, at a point of time, designated as the
default versionof the versioned object, and then all the references to the generic version are
forwarded to the default version. In addition, a specific version of a versioned object can
reference its generic version and even itself, as well as other non-versioned and versioned
objects.

To clarify these concepts, let us see the example in Figure2. The dotted box represents a
versioned object which consists of a generic versionvg and six specific versionsvi , where
specific versions represent the history of the evolution of the versioned object. Versionv7 is
currently designated as the default version, and thus all the requests from objecto1 through
vg are forwarded tov7. Note that the generic version points to the current default version.
Finally, though not depicted in Figure2, a specific version (e.g.v5) may reference another
version, sayv6.

The SOP object version model, as in the Orion version model [32], distinguishes
versionable classes and non-versionable classes. An instance object of a versionable class
is called a versioned object, while a non-versionable class is a non-versioned object. In this

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 483

O2

: derived-from
: dynamic binding
: static binding

Vg

V1

V2 V4

V5 V6V7

generic

specific

a versioned object

O1

default
version

versions

version

Figure 2. A version example

sense, a persistent class in the ODMG data model, which inherits from root classPObject ,
is a non-versionable class, and its instance objects are non-versioned objects. To make a class
versionable in the SOP Object Version System, the class should inherit (directly or indirectly)
from classVersion of the SOP Object Version System, and its instance objects are then
versioned objects. Although we distinguish versionable and non-versionable classes in our
version model, all of the ODMG interfaces for accessing and manipulating persistent objects
can be applied to an object, irrespective of whether it is a versioned object or not, as well as a
persistent or transient object.‡

In many ODBMS applications such as CAD and CASE, which necessitate long-duration
transactions, object versioning, in combination with the check-out and check-in of objects,
can be used to avoid the problem of long-duration-waits [32]. Therefore, it might be desirable
for ODBMSs to support type-orthogonal version capability. However, versioning in type-
orthogonal version systems also incurs both processing and storage overhead to maintain such
a generic object, and the overhead is not less than that of other version systems distinguishing
versionable and non-versionable classes, such as the SOP Object Version System. Moreover,
the problem of long-duration-waits for the checked-out objects can be solved in several
ways other than using versioning, such as group transaction techniques and soft locks, and
we think that not all of the usage patterns of the objects in databases has to be based on
check-out/in. In this respect, it is a reasonable approach to distinguish versionable and non-
versionable classes, although the user has the burden of statically deciding which class should
be declared as versionable/non-versionable. Moreover, this inflexibility can also be overcome
by the functionality of the schema evolution found in Kim [32]; to change a class from
non-versionable to versionable classes, andvice versa.

Creation of version objects

In the SOP Object Version System, as in the ODMG-93 standard, application programs can
create a versioned object only through the operatornew() of ODMG C++ OML binding.
When an instance object of a versionable class is created, the first specific version of the
versioned object, in addition to its generic version, is created.

‡We would like to remind readers that in the ODMG data model, a classT inheriting fromPObject is persistent-capable, in
that it does not make all its instance objects automatically persistent. The persistency of an object of a persistent-cable class is
determined at its creation time by the user. Thus, the lifetime of an object ODMG is either persistent or transient. The same is
true for the versionable classes in the SOP Object Version System, since they also inherit fromPObject class.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

484 S.-W. LEE AND H.-J. KIM

Derivation of new versions

The SOP object version model allows the derivation of a new versionv j (child) from an
existing versionvi (parent). Note that new versions are manually derived from an existing
version by the applications, not automatically by the modifications to the version. The most
recently derived version is automatically set to be the default version, but users can explicitly
change the default version to other specific versions later.

The derived-from relationships between pairs of specific versions of a versioned object
give rise to a Version Derivation Hierarchy (VDH) for the given versioned object. This VDH
information is maintained in a generic version. More than one child version can be derived
from one version. The versions derived from the same parent version are calledsibling
versions. However, the SOP Object Version System does not support version merging, which
derives a new version by merging two or more existing versions. Thus, in the SOP Object
Version System, a VDH results in a tree, not a DAG (Directed Acyclic Graph).

The functionality of version merging might be useful for collaborative works, for example,
to combine independently bug-fixed versions of a software module into a new version. And
with version merging, the semantics that a version evolved from two or more parents can be
directly expressed in VDH. In spite of these advantages, automatic version merging is nearly
impossible to achieve in practice, and thus the logic for resolving the differences among parent
versions must be left to the applications.

References to version objects

The SOP object version model supports both static and dynamic bindings to a versioned
object. With dynamic binding, an object refers to the versioned object via its generic version,
and at runtime, the referencing object is automatically bound to its default version. In the SOP
Object Version System, when the operatornew() completes the creation of a new versioned
object, it returns the OID of its generic version. Using this OID, other objects can refer to
the versioned object dynamically. With static binding, an object directly refers to a specific
version via its OID. An object could get a reference to a specific version in several ways,
as we describe below. Note that, in the SOP object version model, applications see that both
generic versions and specific versions of a versionable class have the same type, and thus a
referencing variable for classT can point to either generic versions or specific versions of
classT.

To illustrate the concepts of static and dynamic binding, let us see the example in Figure2.
In this figure, objecto1has dynamic binding to versionv7 via generic versionvg (we assume
that versionv7 is the current default version), while objecto2 is statically bound to versionv2.
Later, if another version (e.g.v6) becomes the new default version,o1, at the next traversal to
the versioned object viavg, is dynamically bound tov6. However, the same is not true with
the reference fromo2 to v2.

Version status

In the SOP object version model, each specific version could have either aFROZENor
WORKINGstatus at a point of time, based on its updatability. A version in theWORKING
status is updatable, while updates to aFROZENversion are prohibited. The effect of the
status of a version is confined to the version itself, that is, the effect does not propagate either
to its child version or to other objects connected to it.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 485

A new version can be derived from either theWORKINGor FROZENversion, and a new
version, when it is created or derived from an existing version, has aWORKINGstatus. To
change the status of a version, a user should explicitly promote aFROZENversion to a
WORKINGversion, orvice versa. A version may be deleted regardless of its status.

We believe that to fulfill various application requirements, it is necessary for ODBMSs
to unbundle policies of managing the versions’ status from their version models. Thus, the
SOP object version model does not provide any built-in policies governing version status.
Currently, the logic for managing version status is left to the applications. In this respect, the
SOP version model is similar to the Orion model [32], except that the Orion model supports
three types of version status: transient, working and released.

Deletion of versions

In the literature on object versioning, the version deletion semantics are rarely discussed,
except for the Orion model [32] and the EXTRA-V/EXCESS-V model [6]. In the Orion
model, a specific version can be deleted even if it is not a leaf node in the VDH. Also,
if the only specific version of a versioned object is deleted, the versioned object itself is
deleted, i.e. both the generic version and the only specific version are deleted together. In the
case of generic version deletion, the Orion version model deletes all of its specific versions,
along with itself. Similarly, in the EXTRA-V/EXCESS-V model, Scoire [6] proposes two
commands for version deletion,deleteanddelete version. Thedeletecommand removes a
versioned object, including all of its versions, while thedelete versioncommand deletes only
a specific version.

With respect to version deletion, the SOP object version model is exactly the same as the
Orion model, except in the case of the deletion of non-leaf versions from the VDH. The Orion
keeps the information of already deleted non-leaf versions in the VDH, so as to maintain the
history of derived-from relationships. In contrast, the SOP Object Version System removes
derived-from relationships involving the version from the VDH, as well as the version itself.
Thus, when a version is removed from the VDH, its parent version becomes the new parent
version of each of its child versions (if any). In particular, when a root version is deleted, the
VDH results in a forest. For instance, when versionv1 in Figure2 is deleted, both versionv2
andv3 become new roots of different trees.

VDH traversal

The SOP object version model provides users with several ways to traverse the VDH, as
follows:

(a) Traversal to parent version: allows users to traverse from a specific version to its parent.
In the case of a root version, this returnsnull.

(b) Traversal to sibling versions: allows users to traverse from a specific version to its
elder/younger sibling versions. In the case of the eldest version, traversal to elder
siblings returnsnull. Similarly, in the case of the youngest version, traversal to younger
siblings returnsnull.

(c) Traversal to the eldest child version: allows traversal from a specific version to its
eldest child version. When applied to a leaf version in the VDH, this returnsnull. This
traversal, in combination with traversal to sibling versions, allows users to traverse all
the children of a specific version.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

486 S.-W. LEE AND H.-J. KIM

(d) Traversal to the default (generic) version: allows traversal to the default (generic)
version of a versioned object.

(e) Historical traversal: allows traversal of all the versions in the VDH in order of creation.
We provide interfaces for the oldest version, latest version and next/previous of a
specific version.

(f) When each of the above traversals is directed to the generic version, it returns the same
result when applied to the current default version.

SOP OBJECT VERSION SYSTEM: API AND ITS USAGE

In this section, the API of the SOP Object Version System is explained, and then its usage is
illustrated using an example.

SOP object version system: APIs

Figure 3 shows these APIs, each of which is a member function of template class
Version . The way in which these member functions work internally, that is, implementation
details of the SOP Object Version System, is given in next section.

As noted above, to create a versionable class in the SOP Object Version System, users
should declare it as a subclass of the classVersion . As shown in Figure3, the class
Version is a direct subclass of the persistent root classPObject in the ODMG model (that
is, a versioned objectis a persistent object). Also, note that the classVersion is declared
using a C++ template [23]. The parameter classT is used in defining the classVersion ,
i.e. in declaring its members and implementing its member functions. The parameterT is the
versionable class itself being declared as a subclass of classVersion .

The constructor of the classVersion is responsible for creating a versioned object, and
the destructor implements the version deletion semantics of the SOP object version model.
This is related to ourODMG-compliance design principle, in that we exploit ODMG
interfaces for the creation and deletion of versioned objects, instead of introducing new
interfaces. Like non-versioned objects, a versioned object is created via calling the ODMG
C++ OML new() interface, which then calls theVersion class constructor. Similarly, a
version is deleted using the ODMGRef::delete object() , which calls theVersion
class destructor.

The APIs for deriving new versions, setting default version, traversing VDH, obtaining a
reference to the generic/default version and checking version status are provided as public
member functions of the classVersion . Many of these member functions return, as the
result, a smart pointerRef<T> to a specific or generic version. Recall that object references
in the ODMG C++ OML are based on this smart pointerRef . When a persistent object
referred to by aRef is dereferenced using the operator-> , the object, if not memory-resident,
is automatically fetched into the memory from the disk, and its virtual memory address is
returned as the result of the dereference.

The member functionderiveVer() is used to derive a new version from the current
version, and returns theRef<T> of the newly derived version. A version can be explicitly set
as the default version using the member functionsetDefault() . The member functions
for traversing the VDH are self-explanatory; each of them returns the target version as its
result, as defined in the previous section. Note that the member functiongenericObj()
returnsRef<T> to a generic version, while other APIs returnRef<T> to a specific version.
The member functiongenericObj() is thus used to get the reference for dynamic binding.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 487

. file version.h .

enum version_flag { WORKING, FROZEN, DUMMY }; // version status

template<class T> // template class ’Version’
class Version: public PObject {
public:

// Constructor and destructor.
Version(void);
Version(T*);
˜Version();

Ref<T> deriveVer(); // derive new version
void setDefault(); // set this version as default version

// VDH traversals
Ref<T> parentVer(); // parent version
Ref<T> childVer(); // eldest child version
Ref<T> prevSibVer(); // elder sibling version
Ref<T> nextSibVer(); // younger sibling version
Ref<T> oldestVer(); // oldest version
Ref<T> latestVer(); // latest version
Ref<T> prevVer(); // temporal previous version
Ref<T> nextVer(); // temporal next version
Ref<T> defaultVer(); // default version
Ref<T> genericObj(); // generic version

// version status manipulations
void freeze(); // WORKING to FROZEN
void unfreeze(); // FROZEN to WORKING
version_flag ver_status(); // current version status

private:
int ver_num; // version number
Ref<GenericVersion<T>> gen_ver;// reference to generic version

};

Figure 3.Version class and its API

The member functionfreeze() (unfreeze()) sets the version status of the current
version toFROZEN(WORKING). The member functionver status() is used to check the
current version status of a specific version.

In this section, we comment on two private members of classVersion , ver num and
Ref<GenericVersion<T>> gen ver , though they are not APIs of the SOP Object
Version System. The memberver num represents the version number of the version. In
practice, the SOP object version model itself does not support the concept of a version
number. However, to support historical traversal of the VDH, the SOP Object Version System
assigns a version number to each specific version. The membergen ver is used to refer to
its generic version.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

488 S.-W. LEE AND H.-J. KIM

SOP object version system: Usage example

Figure4 shows an example of how to use the SOP Object Version System in an ODMG
C++ OML environment. A versionable classEmpin Figure4 is defined as a subclass of the
classVersion . In contrast, the non-versionable classDept is declared as a subclass of the
persistent root classPObject , and has a membermgr of type Ref<Emp>, to refer to a
versioned object of classEmp. It should be noted that a smart pointerRef of ODMG C++
OML is used to refer to versioned objects. We also stress that, when declaring theEmpclass,
the example givesEmpitself as the argument of the superclassVersion , because the class
Version is defined using the C++ template. For simplicity of presentation, from the example
we omit the codes for starting theSopranoobject storage system and shutting it down.

In the example in Figure4, a versioned object of the classEmpcalled ‘root’ is created and
then a (non-versioned) object of the classDept referring to the versioned object. The variable
emp1 refers to the employee version dynamically via its generic version. The example shows
how to derive three more versions. The firstcout statement prints the name of a specific
versionver4 , because at this point of time, according to our version model semantics, the
current default version isver4 and the variableemp1 is dynamically bound tover4 .

The example continues showing how to traverse the VDH using such interfaces as
defaultVer() andparentVer() . For example, at the end of the example, we show
the usage of the dynamic binding functionality of the SOP Object Version System; 1) to get
Ref of the generic version usinggenericObj() , and 2) to traverse the default version via
this Ref . Note that before this,ver3 is set as the default version using the member function
setDefault() . The result of the sample program is as follows.

emp1: ver4
default: ver4
parent_emp4: ver2
generic: ver3

IMPLEMENTATION DETAILS

In this section, we describe the implementation details of the SOP Object Version System,
i.e. the way in which each API works internally. One major implementational aspect of the
SOP Object Version System is to implement the classesVersion andGenericVersion .
Another is the extension of theSopranoobject storage system to support version functionality.

For ease of understanding, for each concept of the SOP object version model, we explain
how the corresponding API function of the classVersion implements its semantics, in
cooperation with other functions of the classGenericVersion . Also, we show how we
take advantage of the ODMG C++ OML interfaces to implement the SOP Object Version
System, and when necessary, we touch upon the impact of the SOP Object Version System
on theSopranoobject storage system.

The SOP Object Version System is developed on the Sun Sparc Solaris V2.5.1 Unix
platform, and is based on ODMG-93 release 1.2 [20]. Before proceeding with implementation
details of each API, in the next two subsections, we give the overall architecture of the SOP
Object Version System and introduce the classGenericVersion<T> .

SOP object version system: Architecture

The overall architecture of the SOP Object Version System is shown in Figure5. The dotted
rectangle represents a conceptual versioned object of classT. The dotted circle corresponds

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 489

OBase obase; // Object Base of Soprano
:

class Emp: public Version<Emp> { // Versionable class ’Emp’
public:

char name[20];
Emp(char* Name): Version<Emp>() { strcpy(name,Name); }
void setname(char* Name);

:
};

class Dept: public PObject { // Non-versionable class ’Dept’
public:

Ref<Emp> mgr;
Dept(Ref<Emp> Mgr) { mgr = Mgr; }

:
};

void main() {
// Soprano Start-Up!!

Ref<Emp> emp1 = new(obase) Emp("root"); // create an ’Emp’ object
Ref<Dept> dept = new(obase) Dept(emp1); // create a ’Dept’ object

// derivation of new versions ’ver2’, ‘ver3’ and ‘ver4’
Ref<Emp> emp2 = emp1->deriveVer();
emp2->setname("ver2");
Ref<Emp> emp3 = emp2->deriveVer();
emp3->setname("ver3");
Ref<Emp> emp4 = emp2->deriveVer();
emp4->setname("ver4");

cout << "emp1: " << emp1->name << endl; // print ’ver4’

Ref<Emp> default_emp = emp2->defaultVer();
cout << "default: " << default_emp->name << endl;

Ref<Emp> parent_emp4 = emp4->parentVer();
cout << "parent_emp4: " << parent_emp4->name << endl;

emp3->setDefault(); // set ’ver3’ as default version

Ref<Emp> generic_emp = emp4->genericObj();
cout << "generic: " << generic_emp->name << endl;

// Soprano Shutdown!
}

Figure 4. SOP object version system: ODMG C++ OML usage example

to its generic version, and each specific version is depicted as a small rectangle. The dotted
arrow from areal generic version to a specific version represents the pointer to the default
version from the generic version. Other objects outside the versioned object can refer to either

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

490 S.-W. LEE AND H.-J. KIM

A conceptual version object of versionable class T

dummy

type GenericVersion<T>

conceptual

- VDH info.
- default version
- etc.

ptr_to_generic

ptr_to_default

dynamic

static
binding

binding

Ref<T> A

Ref<T> B

generic version

generic versionreal generic version of

specific
versionsof type T

Figure 5. SOP object version system: architecture

a specific version directly (that is, static binding), or the versioned object dynamically via the
generic version.

Figure 5 shows that a generic version consists of two objects, that is, adummy
generic version and areal generic version. Thereal generic version, of type
GenericVersion<T> , keeps all such information as the default version and the VDH
of the versioned object. Meanwhile, thedummygeneric version, of typeT, is introduced to
make it possible for other objects to dynamically bind the versioned object. Note that, because
ODMG C++ OML is strongly-typed, it is impossible for a variable ofRef<T> to refer to an
object ofGenericVersion<T> . Thus, dynamic binding in the SOP Object Version System
requires two in directions: (1) from thedummygeneric version to thereal one; and (2) from
thereal generic version to the default version, detailed below.

Another implementation strategy for generic versions is to move all the information of the
GenericVersion<T> to the classVersion<T> , and removeGenericVersion<T> ,
but this strategy has the serious drawback of storage overhead. With this approach, all
specific versions, as well as thedummygeneric version, come with the unnecessary portion
of GenericVersion<T> . This space overhead thus leads us to decompose the classes
Version andGenericVersion<T> , although the SOP Object Version System suffers
from runtime indirections for dynamic binding.

Finally, we would like to mention the role of arrowed lines from specific versions or the
dummygeneric version to thereal generic version. Within each specific version ordummy
generic version, the SOP Object Version System keeps a pointer to thereal generic version,
in order to get information such as the VDH from thereal generic version at runtime. For
instance, when a specific version is asked for its parent version, it redirects this request to the
real generic object.

GenericVersion<T>

Figure6 shows part of the definition of the template classGenericVersion<T> , whose
purpose is to definereal generic objects of typeT. The SOP Object Version System exploits
the template functionality of the C++ language, in the sense that, for each versionable classT,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 491

. file generic.h .
typedef unsigned VNUM; // type VNUM

// data structure for VDH(version derivation hierarchy)
struct VDHEdge {

VNUM parent; // parent version number
VNUM child; // child version number

};

template<class T> // template class GenericVersion<T>
class GenericVersion: public PObject {

Ref<T> _dummy; // dummy generic object
Ref<T> _default; // default version

Ref<T> versions[20]; // array of current specific versions

// VDH information
VDHEdge VDH[20]; // VDH
int edgenums; // number of derived-from relationships
VNUM VTH[20]; // temporal history of version creation
int vernums; // number of versions
VNUM nextvernum; // next-version number

// other member functions for the implementation of
// version functionality of SOP Object Version System

:
}

Figure 6. Definition ofGenericVersion<T>

its corresponding classGenericVersion<T> is defined. As shown in Figure6, members
of classGenericVersion include a reference to thedummygeneric object and a reference
to the default version. Also, although not listed in Figure6 for simplicity of presentation,
several member functions implementing the version functionality of the SOP Object Version
System are included in the classGenericVersion . A detailed explanation of each of these
member functions is given in the appropriate part of this section.

Implementation of version status

Version status encoding

The SOP Object Version System, as noted above, supports two states for a specific version,
i.e. WORKINGand FROZEN. The current status information of each specific version is
encoded in the version itself. For the encoding of status information, the SOP Object Version
System exploits the data structurePHeader § for persistent objects in theSopranoobject
storage system, which is invisible to application programmers.

The data structurePHeader was introduced inSopranofor the implementation of internal
functionalities of the object storage system.PHeader , as partially depicted in the following,

§This part locates the head part of the layout of every persistent objects physically stored in the database.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

492 S.-W. LEE AND H.-J. KIM

includesutags , which is reserved for supporting future user requirements. The SOP Object
Version System uses this field to encode the version status of the corresponding object:

struct PHeader {
:

ushort stags; // flag for internal use by Soprano
ushort utags; // flag reserved for future user requirements

};

As mentioned above, the type of thedummygeneric version of a versionable classT is also
T, as for its specific versions. We use the statusDUMMYfor this dummygeneric version,
to differentiate it from specific versions. This statusDUMMYis not visible to application
programs, and is used only for the purpose of implementing the SOP Object Version System.

Forbidding changes ofFROZENversion

The status of a specific version can be, as described above, changed explicitly by users with
two member functions,freeze() andunfreeze() , of the classVersion .

TheSopranoobject storage system provides a member functionmark modified() of
the classPObject , whose purpose is to communicate to the runtime ODBMS the fact that
the state of an object will change. This member function is included in the classPObject
because the ODBMS, in the default case, cannot automatically detect when an object is
modified. With the help of an optional C++ OML preprocessor, the programmer may omit
mark modified() calls; in this case, the preprocessor automatically detects when the
objects are changed. In any case, through this member function, updates to a persistent object
in the ODMG C++ OML environment are made visible to other users of the database after
the transaction performing the modifications commits.

To prohibit the modification ofFROZENversions, the member functionPObject::
mark modified() of the Sopranoobject storage system is extended so as to check the
version status, before proceeding with its normal operations, as follows. In the case of the
FROZENversion, it notifies an error code to the users:

int PObject::mark_modified() {
if (utags == FROZEN)

return error;

// original mark_modified() code;
:

}

Creation of version objects and dynamic bindings

When a versioned object is created from any subclass of theVersion class through the
ODMG new() interface, the SOP Object Version System creates correspondingdummy
and real generic versions by calling each constructor of the classesVersion and
GenericVersion in sequence, as shown below:

template<class T> inline
Version<T>::Version(void) {

// mark this object as dummy generic version
markflag(DUMMY);

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 493

// create real generic version
gen_ver = new(obase) GenericVersion<T>(Ref<T>((T*)this));

}

template<class T> inline
GenericVersion<T>::GenericVersion(Ref<T>& dummy) {

// set reference to dummy generic version
_dummy = dummy;

// initialize default version reference to null
_default.clear();

// initialize other informations
edgenums = 0;
nextvernum = 1;

:
}

Readers should note that, in the above code, the constructor of the classVersion marks
the newly created version as adummygeneric version, not as a specific root version. For
example, the variableemp1 in Figure 4 refers to adummygeneric version of the newly
createdEmpobject. Thus, at the time point when thenew() operation completes,dummy
andreal generic versions exist, but the root version of the versioned object has not yet been
created. This is because in C++, it is impossible to create two instances of a class by calling
the constructor once. The root version is automatically created when the versioned object is
accessed for the first time after its creation, via a reference to itsdummygeneric version.

template<class T> inline
T* Ref<T>::operator ->(void) const {

// Soprano object storage system’s normal operations
// for object fixing and pointer swizzling, etc.

:
// In case that this Ref refers to a dummy generic version,
// return pointer to default version(that is, dynamic binding)
if (((PHeader*)memptr)[-1].utags == DUMMY) {

return (T*)(((PObject*)memptr)->defaultver()); // (1)
}
// In case of static binding, return pointer to specific version
else {

return (T*)memptr;
}

}

Figure 7. Extension ofRef<T>::operator-> for dynamic binding

For the implementation of dynamic bindings, we modified ODMG’s dereference operator
Ref<T>::operator -> , as shown in Figure7. When adummy generic version is
accessed through theoperator -> , it calls its member functiondefaultver() to
get the pointer to its default version. For statement (1) in Figure7 to be compiled, the

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

494 S.-W. LEE AND H.-J. KIM

classPObject should include the following virtual member function, because the class
Version<T> is a subclass of classPObject .

virtual PObject* defaultver(void) { return this; }

This member function is inherited by the classVersion , and is redefined to support
dynamic binding, as follows.

template<class T>
T* Version<T>::defaultver(void) {

T* _default;
if (usertags() == DUMMY) { // In case of dummy generic version,

markflag(WORKING); // mark this as WORKING temporarily,
_default = gen_ver->defaultver(); // forward to real generic version,
markflag(DUMMY); // reset to DUMMY

}
else { // In case of specific versions,

_default = gen_ver->defaultver(); // forward to real generic version
}

return _default;
}

This member function forwards the request for the memory pointer of the default version
of a versioned object to thereal generic version of the object. Note that, before calling
defaultver() of the classGenericVersion , in the case of thedummygeneric version,
Version<T>::defaultver() marks its status asWORKING. This is an implementation
trick, and a detailed explanation of this trick is given below.

The member functiondefaultver() of classGenericVersion is shown below.

template<class T>
T* GenericVersion<T>::defaultver(void) {

// If root version does not exist yet, create the root version
if (_default.isnull()) {

genroot(_dummy.operator->());
}

// return pointer to default version
return _default.operator->();

}

As stated above, when a versioned object is accessed for the first time after its creation via
dynamic reference to itsdummygeneric version, the root version (at the same time this root
version is the default version) does not yet exist. So, thereal generic version creates its root
version via calling its member functiongenroot() . This member functiongenroot()
requires a memory pointer of thedummygeneric version, i.e.dummy.operator->() ,
because thedummygeneric version needs to be bit-wisely copied to the default version. At
this point, readers should note that theoperator->() is recursively called and, if the
status of thedummygeneric version is stillDUMMY, this operator is repeated infinitely. To
avoid this infinite loop, the member functionVersion<T>::defaultver(void) , as
noted above, marks its status asWORKINGbefore callinggen ver->defaultver() in
the case of a dummy generic version. Only when the member functiongenroot of the class
GenericVersion<T> completes, a specific root version of the versioned object is finally
created.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 495

Before concluding this subsection, we comment on the performance overhead for non-
versioned objects, which is attributable to the SOP Object Version System. In ODMG C++
OML binding, the dereference operator-> is used to access members of the persistent object
addressed by a given object referenceRef<T> . To this operator, as shown in Figure7, the
SOP Object Version System added a routine for checking whether the given object is the
dummygeneric version or not. For this comparison routine, the SOP Object Version System
does not yield any other overhead for the performance of non-versioned objects. There may be
alternatives to this implementation, which do not degrade the performance of non-versioned
objects. One possible alternative is to introduce a new type of smart pointer, for example
VRef , for reference to versioned objects. In this case, all the non-versioned objects are
referenced viaRef , while references to versioned objects are done viaVRef . Thus, the
SOP Object Version System could yield no performance degradation. However, we discard
this alternative because it has a disadvantage, which we think is worse than the performance
degradation of the current SOP Object Version System; that is, application programmers have
to be aware that there are two different types of references available, and be cautious when
choosing the reference type for versioned objects and non-versioned objects.

Derivation of new versions

Figure 8 shows the member functionderiveVer() of the classVersion , which is
used to derive new versions from an existing version. If adummygeneric version receives
this message, it redirects the message to its default version via itsreal generic version, thus
deriving a new version from the default version. When a specific version receives the message
deriveVer() , it creates a new version by calling the copy constructor of its classT (default
copy constructor ifT has no copy constructor), and then updates the VDH information kept in
thereal generic version, and returns theRef<T> of the new version. The copy constructor
of the classVersion does a bit-wise shallow copy. Therefore, immediately after a new
version has been derived, its value is exactly the same as that of its parent, except for the
version number.

Traversals of VDH

As previously mentioned, thereal generic version of a versioned object maintains its
VDH information, and the SOP Object Version System then uses this information when
required to traverse the VDH of the versioned object. A specific version, when required to
traverse the VDH, calls the corresponding member function of thereal generic version
with its version number as an argument, and returns the result from thereal generic
version. Meanwhile, in the case of adummygeneric version, the request for VDH traversal is
forwarded to its default version via the dynamic binding mechanism, and the default version
returns the result to the caller.

Version deletion

The SOP Object Version System does not introduce any new interfaces for deleting
versions. Instead, in the SOP Object Version System, versions can be removed by
calling ODMG C++ OML interfaceRef<T>::delete object .¶ During execution, this

¶TheSopranoobject storage system implements this member function with the name ofdestroyobj .

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

496 S.-W. LEE AND H.-J. KIM

template<class T>
Ref<T> Version<T>::deriveVer(void) {

Ref<T> newver;

// In case of dummy generic version,
// forward the request to real generic version
if (usertags() == DUMMY) {

newver = gen_ver->deriveVer();
return newver;

}

// Create new version via calling the (default) copy constructor
newver = new(obase) T(*(T*)this);

// Set ver_num of new version
VNUM newvernum = gen_ver->nextvernum;
newver->ver_num = newvernum;

// Update VDH information in real generic version
gen_ver->mark_modified();
gen_ver->nextvernum++;
gen_ver->add(newver);

:

return newver; // return new version’s Ref
}

Figure 8. Member functionderiveVer()

delete object operator calls the destructor of the versionable class. Based on this fact,
the SOP Object Version System implements the semantics of version deletion using the
destructor of classVersion , as follows.

template<class T>
Version<T>::˜Version(void) {

if (usertags() == DUMMY) {
// In case of dummy generic version,
// delete all specific versions and dummy/real generic version
gen_ver->deleteAllVers();
gen_ver.destroyobj();

}
else {

// In case of specific versions,
// remove the version information from real generic version
gen_ver->deleteVer(ver_num);

// If this version is the only one of the versioned object,
// delete dummy/real generic version also
if (gen_ver->vernums == 0)

gen_ver.destroyobj();
}

}

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 497

Table I. Comparisons of the version models of various ODBMSs

VDH Dynamic binding Type orthogonality

SOP Object Version System Tree yes no
ITASCA [13] Tree yes no
O2 [33] DAG yes yes
Objectivity/DB [15] Tree yes no
ObjectStore [14] DAG yes yes
Ode [9] Tree yes no
Versant [34] DAG yes yes

RELATED WORKS

In this section, the SOP Object Version System is compared to the version mechanisms of
other object database systems with respect to version model and implementation techniques.

Comparisons: version models

TableI compares a variety of ODBMSs on the basis of their support for VDH and dynamic
binding. The fourth column in TableI indicates whether a specific ODBMS supports type
orthogonality for version functionality, i.e. it can create both versioned and non-versioned
objects of the same class, regardless of its type. As far as we know, with every ODBMSs
supporting version merging, users have to take responsibility for merging the versions.

Many new database applications require the various version semantics which are specific to
each application, but the basic version functionalities of contemporary ODBMSs do not seem
to be able to satisfy these requirements [6]. That is, current ODBMSs support their own hard-
coded version semantics. In this respect, a more generic approach to version mechanisms
is necessary; Sciore [6] proposes a high level version model extending the Exodus/Extra
data model, and both Itasca and Objectivity/DB allow users to customize their own version
semantics according to the requirements of the applications.

Besides, current ODBMSs, with regard to version modeling power, lack support for
configuration management, i.e. how to consistently maintain a collection of component
versions of a complex object. The importance of configuration management has been
widely recognized in several ODBMS application areas, including CAD [5] and CASE [4].
However, with almost every ODBMS, including the SOP Object Version Systems, application
programmers themselves should manage configurations using the basic functionalities of
versions and dynamic binding. It is time, we think, to push the functionality of configuration
management into ODBMSs, so that they can suit the needs of target applications, and thus be
more widely accepted in the marketplace.

Comparisons: implementation techniques

To the best of our knowledge, the SOP Object Version System is the only system
which provides version functionality by extending the ODMG standard, specifically ODMG
C++ OML. Some commercial ODBMSs, such as O2 and Objectivity, support version
mechanisms within the particular database programming language environments of their own.
For example, the O2 system supports version functionality only through the O2C language.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

498 S.-W. LEE AND H.-J. KIM

To compare the SOP Object Version System and the version mechanisms of these commercial
ODBMSs with respect to implementation details, we tried to find related literature, but failed.
So in this subsection the SOP Object Version System is compared with only two prototype
ODBMSs; Orion [32] and Ode [9].

The Orion system provides version functionality within the extended Lisp environ-
ment [32], and thus this interpreter-based language environment seems to be easier to
implement version mechanism in than the compile-based language environment, such as
ODMG C++ OML. In the Lisp environment in particular a variable can refer to objects of any
type. This makes the implementation of dynamic binding mechanism easier, because a pointer
can refer to a specific version and a generic version, which have different types. In contrast,
to avoid type problems of dynamic binding, the SOP Object Version System introduced two
types of generic versions,dummyand real generic versions, for a versionable class, as
described above.

The Ode ODBMS provides version functionality within its own O++ database
programming language, which extends the C++ language to integrate the database and
programming language [9]. This O++ language is based on the O++ preprocessor, which
translates O++ programs into C++ programs. For object versioning, O++ provides a class
library, similar to the SOP Object Version System. However, for its implementation, the O++
version class library needed template functionality, which no C++ compiler supported at
the time at which the O++ was being developed. So, they simulated a template using the
define macros, and we think this is one main reason why the Ode system was based on
the O++ preprocessor. In contrast, contemporary C++ compilers allow us to implement the
SOP Object Version System with the classesVersion<T> andGenericVersion<T> ,
which fully exploits their template facility. Hence, the SOP Object Version System needs no
preprocessors like the O++ preprocessor.

Meanwhile, Agrawalet al. [9] report that the Ode system supports dynamic binding, but
they do not give either usage example of the dynamic binding or its implementation details,
but in this paper we present the dynamic binding mechanism of the SOP Object Version
System in depth, including its semantics, usage and implementation details.

CONCLUSION

In this paper, we have described the design and implementation of the SOP Object Version
System, which extends ODMG-93 C++ OML to provide version functionality. We gave
several design principles when designing the SOP Object Version System, such as compliance
with the ODMG-93 standard and minimization of performance overhead on theSoprano
object storage system. After explaining the version model and application program interfaces
of the SOP Object Version System, we presented its use for creating and managing versioned
objects, with an illustrative example. Finally, we discussed implementation details of the SOP
Object Version System.

To the best of our knowledge, the SOP Object Version System is the only system providing
object version facility in the ODMG standard. Another major contribution of the SOP Object
Version System is that it gives a solution for dynamic binding in strongly typed languages
like C++. We plan four future directions. First, we are going to upgrade the SOP Object
Version System to ODMG release 2.0, although it seems to be somewhat trivial. Next, we will
extend the current SOP Object Version System to support both the customization of version
semantics and configuration management. Thirdly, we will extend both our OQL processor
Sopoqlesand schema manager module to understand the version concept of the SOP Object

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

OBJECT VERSIONING IN AN ODMG-COMPLIANT OBJECT DATABASE SYSTEM 499

Version System. Finally, we would like to integrate the SOP Object Version System with our
schema version model [29], and the integrated object/schema version model will provide a
powerful environment for the development of many complex database applications.

ACKNOWLEDGEMENTS

We are indebted to the anonymous referees for their helpful comments.

REFERENCES

1. R. Rastogi, S. Seshadri, P. Bohannon, D. W. Leinbaugh, A. Silberschatz and S. Sudarshan, ‘Logical and
physical versioning in main memory databases’,Proceedings of the International Conference on Very Large
Data Bases, Athens, Greece, 1997, pp. 86–95.

2. W. Kim, Modern Database Systems – The Object Model, Interoperability, and Beyond, ACM Press, 1995.
3. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier and S. Zdonik, ‘The object-oriented database

system manifesto’,Proceedings of the First International Conference on Deductive and Object-Oriented
Databases, Kyoto, Japan, 1989, pp. 223–240.

4. R. Conradi and B. Westfechtel, ‘Version models for software configuration’,ACM Computing Surveys, 30(2),
232–282 (1998).

5. R. H. Katz, ‘Towards a unified framework for version modeling in engineering databases’,ACM Computing
Surveys, 22(4), 375–408 (1990).

6. E. Sciore, ‘Versioning and configuration management in an object-oriented data model’,VLDB Journal, 3(1),
77–106 (1994).

7. A. Silberschartz, M. Stonebraker and J. Ullman, ‘Database systems: Achievements and opportunities’,
Communications of the ACM, 34(10), 110–120 (1991).

8. A. Silberschartz, M. Stonebraker and J. Ullman, ‘Database research: Achievements and opportunities into
the 21st century’,ACM SIGMOID Record, 25(1), 52–63 (1996).

9. R. Agrawal, S. J. Buroff, N. Gehani and D. Shasha, ‘Object versioning in Ode’,Proceedings of the
International Conference on Data Engineering, Kobe, Japan, 1991, pp. 446–455.

10. J.-H. Ahn, S.-W. Lee, H.-J. Song and H.-J. Kim, ‘A survey of performance-related features of contemporary
object storage systems’,Journal of System Architecture, 45(5), 363–386 (1998).

11. Ardent Software, Inc., ‘O2 Version: The O2 Version Manager’. Available:
http://www.ardentsoftware.com/object/papers/O2Version.html, 1998. (White paper.)

12. EXODUS Project Group, ‘EXODUS Storage Manager Architectural Overview’, November 1991.
13. IBEX Object Systems, Inc., ‘ITASCA Technical Summary Release 2.3’, 1995.
14. Object Design, Inc., ‘ObjectStore Release 4.0 Online Documents’, 1995.
15. Objectivity, Inc., ‘Objectivity/DB Version 3: Getting Started with C++’, 1994.
16. P. A. Bernstein, ‘Repositories and object oriented databases’,ACM SIGMOD Record, 27(1), 88–96 (1998).
17. A. Bapat, J. Waesch, K. Aberer and J. M. Haake, ‘HyperStorM: An extensible object-oriented hypremedia

engine’,The Seventh ACM Conference on Hypertext, Washington, DC, 1996, pp. 203–214.
18. E. J. Whitehead, Jr., ‘World Wide Web: Authoring, versioning, and other topics’,Standard View: ACM

Perspectives on Standardization, 5(1), 3–8 (1997).
19. SOP Team, ‘SNU ODBMS PLATFORM: SOP Implementation Document (in Korean)’, OOPSLA

Laboratory, Department of Computer Engineering, Seoul National University, February 1998.
20. R. G. G. Cattel, editor,The Object Database Standard: ODMG-93 Release 1.2, Morgan Kaufmann, 1996.
21. R. G. G. Cattel, editor,The Object Database Standard: ODMG-93 Release 1.0, Morgan Kaufmann, 1993.
22. R. G. G. Cattel and D. K. Barry, editors,The Object Database Standard: ODMG 2.0, Morgan Kaufmann,

1997.
23. B. Stroustrup,The C++ Programming Language, Addison-Wesley, 1991.
24. J.-H. Ahn and H.-J. Kim, ‘SEOF: an adaptable object prefetch policy for object-oriented database systems’,

Proceedings of the Interbnational Conference on Data Engineering, Birmingham, UK, April 1997, pp. 4–13.
25. J.-H. Ahn, K.-W. Lee, H.-J. Song and H.-J. Kim, ‘SOPRANO: Design and implementation of object storage

system (in Korean)’,Journal of KISS (C), 2(3), 243–255 (1996).

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

500 S.-W. LEE AND H.-J. KIM

26. E.-S. Cho, S.-Y. Han and H.-J. Kim, ‘A new data abstraction layer required for OODBMS’,Proceedings
of the International Database Engineering and Applications Symposium (IDEAS), Montreal, Canada, 1997,
pp. 144–150.

27. E.-S. Cho, S.-Y. Han and H.-J. Kim, ‘LOD∗: An ODMG based C++ database programming language with
class-separation support’, submitted 1998.

28. W. Kim and H. T. Chou, ‘Versions of schema for object-oriented databases’,Proceedings of the International
Conference on Very Large Data Bases, Los Angeles, California, 1988, pp. 148–159.

29. S.-W. Lee and H.-J. Kim, ‘A model of schema versions for object-oriented databases based on the concept
of rich base schema’,Information and Software Technology, 40(3), 157–173 (1998).

30. S. Monk and I. Sommerville, ‘Schema evolution in OODB using class versioning’,ACM SIGMOD Record,
22(3), 16–22 (1993).

31. Objectivity, Inc., ‘Objectivity/DB Technical Overview, Version 3’, 1995.
32. W. Kim, Introduction to Object-Oriented Databases, MIT press, 1990.
33. O2 Technology,A Technical Overview of the O2 System, 1994.
34. Versant Object Technology Corp., ‘Versant ODBMS Release 4’, 1996.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(5), 479–500 (1999)

	INTRODUCTION
	SOP OBJECT VERSION SYSTEM: DESIGN PRINCIPLES
	ODMG compliance
	Minimal impacts on Soprano object storage system
	General version mechanism

	SOP OBJECT VERSION MODEL
	Versioned objects and versionable classes
	Creation of version objects
	Derivation of new versions
	References to version objects
	Version status
	Deletion of versions
	VDH traversal

	SOP OBJECT VERSION SYSTEM: API AND ITS USAGE
	SOP object version system: APIs
	SOP object version system: Usage example

	IMPLEMENTATION DETAILS
	SOP object version system: Architecture
	GenericVersion<T>
	Implementation of version status
	Version status encoding
	Forbidding changes of FROZEN version

	Creation of version objects and dynamic bindings
	Derivation of new versions
	Traversals of VDH
	Version deletion

	RELATED WORKS
	Comparisons: version models
	Comparisons: implementation techniques

	CONCLUSION

