
Information Processing Letters 83 (2002) 115–123

An efficient algorithm for hyperspherical range query
processing in high-dimensional data space

Dong-Ho Leea,∗, Shin Heub, Hyoung-Joo Kima

a Department of Computer Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 151-742 Republic of Korea
b Department of Computer Science, Hanyang University, Seoul, Republic of Korea

Received 7 January 2000; received in revised form 25 August 2001
Communicated by F.Y.L. Chin

Keywords:Algorithms; Similarity search; Range query; High-dimensional index structure

1. Introduction

Recently, similarity search on high-dimensional
feature vectors has become an important search par-
adigm for various multimedia retrieval applications.
The technique used is to map the data items as points
into a high-dimensional feature space. The feature
space is usually indexed using a multi-dimensional in-
dex structure. Similarity search then corresponds to
the hyperspherical range query that returns all objects
within a threshold level of similarity to the query ob-
ject [1]. The hyperspherical range query for similarity
search can be defined as follows:

Definition 1 (Hyperspherical range query). Given a
query point (Q) and a threshold (ε) of similarity, find
the points in the database (DB) which have a distance
(D) smaller than or equal toε from Q. More formally:

HypersphericalRangeQuery(DB,Q, ε,D)

= {
P ∈DB |D(Q,P) � ε

}
.

* Corresponding author.
E-mail addresses:dhlee@oopsla.snu.ac.kr (D.-H. Lee),

shinheu@cse.hanyang.ac.kr (S. Heu), hjk@oopsla.snu.ac.kr
(H.-J. Kim).

One of the most popular applications using this
technique is a content-based image retrieval system [2]
(so-called CBIR system) which extracts several fea-
tures from images, indexes them based on those fea-
tures and supports similarity queries based on them.
Examples of feature spaces indexed in a CBIR sys-
tem include color histograms, color moments, texture
vectors, shape descriptions, etc. To support efficient
similarity search in such a system, robust techniques
to index high-dimensional feature spaces needs to be
developed because features used are usually high-
dimensional points.

However, basically none of the querying and index-
ing techniques which provide good results on low-
dimensional data also perform sufficiently well on
high-dimensional data [7,8]. Many researchers have
called this problem the “curse of dimensionality” [2]
and have tried to tackle it. As a result of these re-
search efforts, a variety of new index structures, such
as the TV-tree [3], X-tree [9], SS-tree [1] and SR-tree
[6], have been proposed. However, most of these in-
dex structures are extensions of multi-dimensional in-
dex structures adapted to the requirements of high-
dimensional indexing [8]. Thus, all of these index
structures are limited with respect to the data space

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00318-0

116 D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123

partitioning and suffer from the well-known draw-
backs of multi-dimensional index structures, such
as high costs for insert, delete and search opera-
tions [8].

To overcome these drawbacks, in this paper, we
propose a special partitioning strategy, the Spherical
Pyramid-Technique (so-called SPY-TEC), which di-
vides thed-dimensional data space first into 2d spher-
ical pyramids, and then cuts the single spherical pyra-
mid into several spherical slices. This partition pro-
vides a transformation ofd-dimensional data space
into 1-dimensional value. Therefore, we can use the
B+-tree to manage fast insert, update and delete oper-
ations on high-dimensional data. We also propose the
algorithm for processing hyperspherical range queries
on the space partitioned by this strategy.

2. The SPY-TEC

In [8], Berchtold et al. proposed a special parti-
tioning strategy, the Pyramid-Technique, which di-
vides thed-dimensional data space first into 2d pyra-
mids and then cuts the single pyramid into several
slices. They also proposed the algorithm for process-
ing hypercubic range queries on the space partitioned
by this strategy. However, the shape of queries used
in similarity search is not a hypercube, but a hy-
persphere [2]. Thus, when processing hyperspherical
range queries with the Pyramid-Technique, there is a
drawback which exists in all index structures based on
the bounding rectangle [2,4].

The main idea of the SPY-TEC is based on the ob-
servation that spherical splits will be better than right-
angled splits of the Pyramid-Technique for similar-
ity search. This observation is due to the fact that
the shape of the queries used in similarity search is
not a hypercube, but a hypersphere. The SPY-TEC
is to transform thed-dimensional data points into 1-
dimensional values and then store ad-dimensional
point plus the corresponding 1-dimensional key as a
record in the leaf nodes of theB+-tree. The transfor-
mation itself is based on a specific partitioning of the
SPY-TEC. To define the transformation, we first ex-
plain the data space partitioning strategy of the SPY-
TEC.

2.1. Data space partitioning

The SPY-TEC partitions the data space in two
steps: In the first step, we split thed-dimensional data
space into 2d spherical pyramids having the center
point of the data space(0.5,0.5, . . . ,0.5) as their
top and a(d − 1)-dimensional spherical surface of
the data space as their bases. The second step is to
divide each of the 2d spherical pyramids into several
spherical slices with a single slice corresponding to
one data page of theB+-tree. Fig. 1 shows the data
space partitioning of the SPY-TEC in a 2-dimensional
example. First, the 2-dimensional data space has been
divided into 4 spherical pyramids. In the second step,
each of these 4 spherical pyramids is split again
into several data pages which are shaped like the
annual rings of a tree. Given ad-dimensional space
instead of the 2-dimensional space, the base of the
spherical pyramid is not a 1-dimensional curved line,
but a (d − 1)-dimensional spherical surface. As a
sphere of dimensiond has 2d (d − 1)-dimensional
spherical surface, we obviously obtain 2d spherical
pyramids [8].

Numbering the spherical pyramids is the same as in
the Pyramid-Technique. Given a pointv, we have to
find the dimensioni having the maximum deviation
|0.5− vi | from the center to determine the spherical
pyramid containing the pointv. If vi is greater or equal
to 0.5, then the spherical pyramid containing the point
v is sp(i+d). If it is smaller than 0.5, the spherical
pyramid containing the pointv is spi . As depicted in
Fig. 2(I), the value of|0.5− v1| of a 2-dimensional
pointv is greater than the value of|0.5−v0|. Thus, the
dimension having the maximum deviation|0.5− vi |
from the center isd1 and the value ofv1 is smaller than
0.5. Therefore, the pointv belongs to the spherical

Fig. 1. Partitioning strategy of the SPY-TEC.

D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123 117

Fig. 2. The SPY-TEC.

pyramid sp1. For example, consider another point
v′ = (0.8,0.4). The dimension having the maximum
deviation from the center for each dimension ofv′
is d0 (0.3= |0.5− v′0| > |0.5− v′1| = 0.1). And, the
value ofv′0 is greater than 0.5. Therefore, the pointv′
belongs to the spherical pyramidsp(0+2). Although the
formal expression about this processing is the same as
[8], we redefine it formally to help understanding the
partitioning strategy of the SPY-TEC.

Definition 2 (Spherical pyramid of a pointv). A d-di-
mensional pointv is defined to be located in spherical
pyramidspi .

i =
{

jmax if vjmax < 0.5,

jmax+ d if vjmax � 0.5,

jmax =
(
j | (∀k,0 � (j, k) < d, j 	= k:

|0.5− vj |� |0.5− vk|
))

.

In Definition 2, jmax is the dimension having the
maximum deviation|0.5 − vi | from the center for
each dimension of ad-dimensional pointv and i

is the number of the spherical pyramid containing
v. In order to transformd-dimensional data into
a 1-dimensional value, we have to determine the
location of a pointv within its spherical pyramid. By
Definition 3, we can determine the location of a point
(refer to Fig. 2(II)).

Definition 3 (Distance of a pointv). Given a d-
dimensional pointv, the distancedv of the pointv is
defined as

dv =
√√√√d−1∑

i=0

(0.5− vi)2.

According to Definitions 2 and 3, we are able to
transform ad-dimensional pointv into a 1-dimensional
value (i · �√d + dv). More formally:

Definition 4 (Spherical pyramid value of a pointv).
Given ad-dimensional pointv, let spi be the spherical
pyramid containingv according to Definition 2, anddv

be the distance ofv according to Definition 3. Then,
the spherical pyramid valuespvv of v is defined as

spvv =
(
i · �√d + dv

)
.

If we consider the same example pointv′ = (0.8,

04), the distance ofv′ is
√

0.1 by Definition 3.
Therefore, the spherical pyramid value of the pointv′
is (2 · �√2 +√0.1) according to Definition 4.

Note that i is an integer in the range[0,2d], dv

is a real number in the range[0,0.5
√

d] and �√d
is the smallest integer not less than or equal to

√
d .

Therefore, every point within a spherical pyramid
spi has a value in the interval of[i · �√d , (i · �√d +
0.5
√

d)]. In order to make the sets of spherical
pyramid values covered by any two spherical pyramids
spi and spj to be disjunct, we multiplyi by �√d .
If we would not multiply i by �√d , there may
be intersections in the sets of spherical pyramid
values covered by any two spherical pyramidsspi
and spj when the dimension is higher than 4. For
example, in 16-dimensional data space, the interval of

118 D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123

every point within a spherical pyramidsp1 is [1,3],
and the interval of every point withinsp2 is [2,4].
Therefore, these two intervals have an intersection.
This intersection may cause the key values of theB+-
tree to be redundant. The redundancy of the key values
degrades the performance of theB+-tree. In order to
avoid this effect, we do multiply the spherical pyramid
numberi by �√d .

2.2. Index creation

It is a very simple task to build an index using the
SPY-TEC. Given ad-dimensional pointv, we first
determine the spherical pyramid valuespvv of the
point and then insert the point into aB+-tree using
spvv as a key. Finally, we store the pointv andspvv
in the according data page of theB+-tree. Update and
delete operations can be done similarly.

3. Query processing

The geometric correspondence of hyperspherical
range queries for similarity search is a hypersphere
having the query point as the center point andε as
the radius of the query circle as depicted in a 2-
dimensional example of Fig. 3.

We process a hyperspherical range query in two
main steps: In the first step, we have to determine
which spherical pyramids intersect the query circle,
and then in the second step, we have to determine
the ranges inside the spherical pyramids. In Fig. 3,
the query circle intersectssp0 andsp1. Therefore, we
have to determine the range[dlow, dhigh] insidesp0 and
sp1, respectively. Points lying betweendlow anddhigh
are candidates for a further investigation. Some of the

Fig. 3. Two-dimensional example of hypersphere range queries.

candidates are hits, others are false hits. Thus, in the
refinement step, we have to investigate whether a point
is inside the query circle or not.

The following Lemma 1 corresponds to the first
step. For the sake of simplicity, we focus on the de-
scription of the algorithm only on spherical pyramids
spi wherei < d . However, our algorithm can be ex-
tended to all spherical pyramids in a straightforward
manner.

Lemma 1 (Intersection of a spherical pyramid and a
query circle).Given a query point(Q = [q0, q1, . . . ,

qd−1]) and ε as the radius of the query circle, let
j (j < d) be the number of a spherical pyramid
containing a query point, andi be the number of
a spherical pyramid which will be tested for an
intersection. The intersection of a query circle and a
spherical pyramid spi is defined as
(1) (i = j): In this case, the spherical pyramid spi

always intersects the query circle because spj is a
spherical pyramid into which the query point falls.

(2) (|i − j | = d): In this case, the spherical pyramid
spi is in the opposite side of spj . Let β be the
distance from the query point to the center of the
data space.

β − ε � 0.

(3) (i < d):

|qj − qi |√
2

� ε.

(4) (i � d):

|qj + qi − 1|√
2

� ε.

Proof. Due to lack of space, we only show each case
by using a 2-dimensional example of Fig. 4 instead
of the formal proof. First, the spherical pyramidsp0
intersects the query circle because the query point
falls into sp0 (case (1)). And,sp1 also intersects the
query circle because the distance (α) from the query
point to the closest side plane ofsp1 is smaller than
ε (case (3)).sp2 does not intersect the query circle
becauseε is smaller than the distance (β) from the
query point to the center of the data space (case (2)).
Finally, sp3 also does not intersect the query circle
because the distance (α) from the query point to the

D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123 119

Fig. 4. Intersection of a spherical pyramid and a query circle.

closest side plane ofsp3 is greater thanε (case (4)).
For the formal proof, you can refer to [4].✷

The following Lemma 2 corresponds to the second
step. The basic idea of Lemma 2 is to determine the in-
terval[dlow, dhigh], in which the query circle intersects
the spherical pyramids, using thePythagoras Theo-
rem [5].

Lemma 2 (Interval of intersection of query and spher-
ical pyramid).Given the numberj of a spherical pyra-

mid containing the query point, and the numberi of a
spherical pyramid which intersects the query region,
the intersection interval[dlow, dhigh] is defined as fol-
lows:
(1) The case in which the center point of the data

space is inside the query region.
(1.1) (i = j): This case corresponds to(a) of

Fig. 5(I). Let β be the distance from the
center point to the query point andε be the
radius of the query circle.

dlow = 0, dhigh= β + ε.

(1.2) (|i − j | = d): This case corresponds to(c)
of Fig. 5(I). Let α be the maximum value
of the distances from the query point to the
closest side plane of all adjacent spherical
pyramids andδ be the length of the base line
in a right-angled triangle which consists of
two sides,α andβ . Also, letγ be the length
of the base line in a right-angled triangle
which consists of two sides,α andε.

dlow = 0,

dhigh= γ − δ =
√

ε2− α2−
√

β2− α2.

Fig. 5. Interval of intersection of query and spherical pyramid.

120 D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123

(1.3) (otherwise):This case corresponds to(b)
or (d) of Fig.5(I). Letα be the distance from
the query point to the closest side plane of
an adjacent spherical pyramid andδ, γ be
the same as in(1.2).

dlow = 0,

dhigh= γ + δ =
√

ε2− α2+
√

β2− α2.

(2) The case in which the center point of the data
space is not inside the query region.
(2.1) (i = j): This case corresponds to(a) of

Fig. 5(II).

dlow = β − ε, dhigh= β + ε.

(2.2) (i 	= j): This case corresponds to(b) of
Fig. 5(II).

dlow = δ− γ, dhigh= δ+ γ.

Proof. Due to lack of space, we would prove only
(1.1). Subcase (1.1) corresponds to (a) of Fig. 5(I).
Let v be the point which lies inside the query region
and an intersected spherical pyramidspi . Then, 0�
dv � β + ε. Therefore,dlow = 0� dv � dhigh= β+ ε.
The rest of the cases of Lemma 2 can be proved
analogously. For the formal proof, you can refer to [4],
too. ✷

With Lemmas 1 and 2, we can process the hyper-
spherical range query by Algorithm 1. In line 5 of Al-
gorithm 1, we test that a spherical pyramidspi inter-
sects the query circle havingqpas the query point and
ε as the radius of the query circle. Ifspi intersects the
query circle, we determine the interval[dlow, dhigh] in
line 6. Using this interval, we perform 1-dimensional
interval query on theB+-tree in line 7. Points ly-
ing betweendlow and dhigh are candidates. Some of
the candidates are hits, others are false hits. Thus, in
the refinement step, we have to investigate whether a
point is inside the query circle or not. However, in or-
der to investigate whether or not a point is inside the
query circle, we have to calculate the distances from
the query point to all of the points of the candidates.
Through our experiments, we found that this task con-
sumes a lot of CPU time. Thus, before starting the
refinement step, we perform the filtering step, which
tests whether or not theith coordinate of a point is in
the interval [qi − ε, qi + ε]. This is a simple compari-
son operation so that its CPU time is less than that of
the arithmetic operation. Therefore, we can eliminate
a large amount of false hits before the refinement step
and can save a lot of CPU time. In line 9, the func-
tion namedInside_DiameterOfCirclecorresponds to
the filtering step. And, in line 10, the function named
Point_In_Circlecorresponds to the refinement step.

1: INPUT:qp← query point,ε← range
2: OUTPUT: set of points satisfying the query (result)
3:
4: for i = 0 to 2d − 1
5: if Intersect(sp[i],qp, ε) then /* Using Lemma 1 */
6: Determine_Interval(sp[i],qp, ε, dlow, dhigh); /* Using Lemma 2 */
7: cs= Btree_Interval_Query(i · �√d + dlow, i · �√d + dhigh);
8: for c = cs.firstto cs.enddo
9: if Inside_DiameterOfCircle(c,qp, ε) then /* filtering step */

10: if Point_In_Circle(c,qp, ε) then /* refinement step */
11: result← c;
12: endif
13: endif
14: endfor
15: endif
16: endfor

Algorithm 1. Processing the hyperspherical range query.

D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123 121

4. Performance evaluation

To show the practical impact of the SPY-TEC, we
compared it to other index structures such as the
Pyramid-Technique, the R*-tree, the X-tree and the
sequential scan. We performed our experiments using
both real and synthetic data sets on the SUN SPARC
20 workstation with 128 MByte main memory and
10 GByte secondary storage. The page size is 4 KByte.
We used 100 query points which were selected from
the data set itself. Thus, the result was evaluated as the
average of 100 random trials.

In our first experiment, we measured the number
of page access, CPU time and the total elapsed time
absorbed in processing hyperspherical range queries
on uniformly distributed points while we varied the
data space dimension. For this experiment, we created
5 files with the dimensionalities 8, 12, 16, 20, and 24
and set the database size to 500,000 points.

Fig. 6 shows the result of our first experiment. For
a consistent condition of the experiment, we chose the
radii of query circles so that the average result set sizes
would be very similar (about 20) through preliminary
experiments. Fig. 6(d) show the radii of the query cir-
cles used in this experiment and their average result
set size for each dimension. We observed that the R*-
tree is more efficient than our technique, including
the Pyramid-Technique, and the sequential scan in 8-

dimensional data spaces, but rapidly decreases with
increasing dimension up to the 12-dimensional data
space. From this point, the page accesses are grow-
ing linearly with the index size. In the case of the
X-tree, a phenomenon analogous to that of the R*-
tree has appeared except that its efficiency rapidly de-
creases in 16-dimensional data space. However, the
SPY-TEC and the Pyramid-Technique have no rapid
deterioration of the performance even though their per-
formance decreases slowly with increasing dimension.
We also observed that the SPY-TEC clearly outper-
forms the Pyramid-Technique and the sequential scan
in all cases. The speed-up in CPU time is analogous
to the speed-up in page accesses, but is higher than it.
Finally, in total elapsed time, the SPY-TEC performs
hyperspherical range queries 1.23 times faster than the
Pyramid-Technique,3.18 times faster than the R*-tree,
2.69 times faster than the X-tree, and 1.32 times faster
than the sequential scan when the dimension is 24.

In our second experiment, we measured the perfor-
mance behavior of the query processing on real data
sets. For this experiment, we extracted feature vec-
tors from 56,230 images using the wavelet transform.
Thus, our real data sets contain 56,230 points in 16-
dimensional data space and each point is composed of
normalized wavelet coefficients. We varied the radii of
the query circles from 0.1 to 0.5 and measured the av-
erage result set size, the number of page access, CPU

(a) (b) (c)

Dimension (radius) 8 (0.26) 12 (0.48) 16 (0.69) 20 (0.89) 24 (1.07)

Average result set size 20.91 20.84 21.00 19.78 21.75

(d)

Fig. 6. Performance behavior on uniformly distributed data. (a) Page accesses, (b) CPU time (sec), (c) total time (sec), (d) average result set
size.

122 D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123

(a) (b) (c)

Radius (ε) 0.1 0.2 0.3 0.4 0.5

Average result set size 10.21 10.43 11.32 23.97 183.69

(d)

Fig. 7. Performance behavior on real data. (a) Page accesses, (b) CPU time (sec), (c) total time (sec), (d) average result set size.

time and the total elapsed time absorbed in processing
hyperspherical range queries.

Fig. 7(d) shows the radii of the queries used in the
experiment on real data and the average result set size.
As depicted in Fig. 7, the SPY-TEC clearly outper-
forms the other index structures for any radius of query
circles used in this experiment. The sequential scan
take about 3.2 sec to process queries regardless of the
radius of query circles. This result is deserved because
the sequential scan has to access all pages and all ob-
jects stored in database regardless of the radius. We
found out that index-based query processing such as
the R*-tree and the X-tree outperforms the sequential
scan on real data sets. When the radius of query cir-
cle is 0.1, the SPY-TEC performs hyperspherical range
queries 1.92 times faster than the Pyramid-Technique,
1.59 times faster than the R*-tree, 1.45 times faster
than the X-tree, and 31.5 times faster than the sequen-
tial scan. And, when the radius of query circle is 0.5,
the SPY-TEC performs hyperspherical range queries
1.20 times faster than the Pyramid-Technique, 1.87
times faster than the R*-tree, 1.78 times faster than the
X-tree, and 2.85 times faster than the sequential scan.

Range query processing on aB+-tree can be per-
formed much more efficiently than on index struc-
tures based on the R*-tree because large parts of the
tree can be traversed efficiently by following the side
links in the data pages, and long-distance seek opera-
tions including expensive disk head movements have a
lower probability due to better disk clustering possibil-

ities [8]. Through the experiments on real data sets, we
could observe that the SPY-TEC clearly outperforms
other related index structures for the reasonable radii
of query circles when processing hyperspherical range
queries.

5. Conclusions

In this paper, we proposed the SPY-TEC, a new in-
dexing technique for similarity search which is very
frequently used in applications such as content-based
multimedia retrieval. We also showed that the SPY-
TEC outperforms other related techniques including
the Pyramid-Technique when processing hyperspheri-
cal range queries in high-dimensional data space.

For highly skewed data distributions or queries, the
SPY-TEC may perform worse than other index struc-
tures. However, none of the index structure proposed
so far can handle highly skewed data or queries effi-
ciently [8]. We plan to address the problem of han-
dling highly skewed data or queries in our future work.
We also plan to develop an efficient algorithm for
another similarity query, i.e., thek-nearest neighbor
query with the SPY-TEC in our future work.

Acknowledgements

We are thankful to Dr. Stefan Berchtold in AT&T
Bell Laboratory for providing the X-tree code, the

D.-H. Lee et al. / Information Processing Letters 83 (2002) 115–123 123

Pyramid-Technique code and helpful comments. This
research was partially supported by the 1999 BK21 IT
area grant of Korea.

References

[1] D.A. White, R. Jain, Similarity indexing with the SS-tree, in:
Proc. 12th Internat. Conf. on Data Engineering, 1996, pp. 516–
523.

[2] C. Faloutsos, Fast searching by content in multimedia data-
bases, Data Engrg. Bull. 18 (4) (1995) 31–40.

[3] K.-I. Lin, H.V. Jagadish, C. Faloutsos, The TV-tree: An index
structure for high-dimensional data, VLDB J. 3 (4) (1994) 517–
542.

[4] D.-H. Lee, H.-J. Kim, SPY-TEC: An efficient indexing method
for similarity search in high-dimensional data spaces, SNU
OOPSLA Technical Report, Seoul, 1999;
http://oopsla.snu.ac.kr/~dhlee/spy-tec.ps.

[5] G.E. Martin, The Foundations of Geometry and the Non-
Euclidean Plane, Springer, Berlin, 1996.

[6] N. Katayama, S. Satoh, The SR-tree: An index structure for
high-dimensional nearest neighbor queries, in: Proc. ACM
SIGMOD Internat. Conf. on Data Management of Data, May
1997, pp. 517–542.

[7] S. Berchtold, C. Böhm, D.A. Keim, H.-P. Kriegel, A cost model
for nearest neighbor search in high-dimensional data space, in:
ACM Symposium on Principles of Database Systems, 1997,
pp. 78–86.

[8] S. Berchtold, C. Böhm, H.-P. Kriegel, The Pyramid-Technique:
Towards breaking the curse of dimensionality, in: Proc. ACM
SIGMOD Internat. Conf. on Management of Data, 1998,
pp. 142–153.

[9] S. Berchtold, D.A. Keim, H.-P. Kriegel, The X-tree: An index-
ing structure for high-dimensional data, in: Proc. 22nd Internat.
Conf. on Very Large Database, September 1996, pp. 28–39.

