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Abstract Data analytics, in particular those involving heterogeneous data, often
require join operations on datasets collected from different sources. MapReduce, one
of the most popular frameworks for large-scale data processing, is not suited for join-
ing multiple datasets. This is because MapReduce often produces a large number of
redundant intermediate results, irrespective of the size of the joined records. Although
several existing approaches attempt to reduce the number of such redundant results
using Bloom filters, they may be inefficient if large portions of records are joined
or the number of distinct keys is large. To alleviate this problem, we propose a join
processing method with threshold-based filtering in MapReduce, called TMFR-Join,
which is an abbreviation for “Threshold-based Map-Filter-Reduce Join”. TMFR-Join
applies filters according to their performance, which is estimated in terms of false-
positive rates. It also provides a general framework for exploiting various filtering
techniques that support certain desired operations. The experimental results indicate
that the performance of TMFR-Join is close to that of the better of existing join
processing techniques, both with and without filters.
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1 Introduction

Large-scale data analysis plays an increasingly important role in business decision-
making activities. Facebook collects tens to hundreds of terabytes of user log data every
day, which it analyzes to provide a number of features, such as Facebook Insights for
advertisers and friend recommendations [1]. Telecom companies generate billions of
voice call data records per day, which are analyzed to enhance service quality [2].
Under certain circumstances, it is necessary to analyze heterogeneous datasets, which
are collected from different sources. For example, Samsung Electronics produces a
variety of devices, such as smartphones, tablet PCs, and televisions. Each device, or an
application installed on it, accumulates different types of log data. These data have to
be analyzed together to discover business insights. Consequently, the joining of large
heterogeneous datasets has become an important issue.

MapReduce [3] is a very useful framework for large-scale data analysis. It facilitates
the processing of tremendous amounts of data in a reasonable amount of time using a
large cluster of commodity machines. It does this by providing a simple programming
interface composed of map and reduce functions so that users can easily implement
their jobs. For further convenience, MapReduce supports automatic parallel and dis-
tributed processing of user programs with robust failure-handling mechanisms. It is
now more widely used with the emergence of Hadoop [4], an open-source implemen-
tation of the MapReduce framework.

MapReduce performs well on a single homogeneous dataset, but not for join oper-
ations on multiple heterogeneous datasets [5,6]. To join multiple datasets in MapRe-
duce, all input records have to be sent from map workers to reduce workers, regardless
of the size of the joined records, as shown in Fig. 1. This can produce a large number of
redundant intermediate results that incur disk I/O costs for sort and merge and network
I/O costs for communication with other cluster nodes [7].

A few researchers have tried to reduce the size of the redundant intermediate results
using Bloom filters [8] for join processing in MapReduce [9–12]. Their approaches
involve filtering out the intermediate results that are not joined, and perform efficiently
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Fig. 1 Basic join processing in MapReduce. Each dotted line box denotes a map/reduce worker
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if a small portion of input records is joined. However, they may perform worse than
join processing without filters if large portions of records are joined or the number
of distinct keys is large. Furthermore, if statistical information for input datasets is
not available or inaccurate, they may be inefficient because filter parameters like the
number of bits and the number of hash functions cannot be optimally adjusted. In such
cases, applying the filters increases overhead because of the computing of hash values
for each record and the merging of the filters.

To handle such cases, this paper proposes a join processing method with threshold-
based filtering, called TMFR-Join. TMFR-Join monitors the performance of filters
by means of false-positive rates (FPRs), and disables filters whose FPRs are greater
than a user-configured threshold. It also facilitates the application of various other
filtering techniques in addition to the Bloom filter. Any filters that support certain
desired properties can be used in TMFR-Join. Note that we focus on applying filters
based on a threshold for stable performance, not choosing the most efficient one that
will vary with the input datasets and join queries. The contributions made in this paper
are as follows:

– We propose TMFR-Join, a join processing method with threshold-based filtering,
which applies filters according to their FPRs. The FPRs can be computed when
it merges the filters that are created in all nodes. Because it is beneficial to detect
poor filter performance as early as possible, it estimates the FPRs of merged filters
with those of individual filters before they are merged.

– We extend the proposed approach to apply various filtering techniques that sat-
isfy certain desired properties. We clarify the properties and show example filters
including some Bloom filter variants [13], the Quotient filter [14], and the Interval
filter [15].

– We define the best FPR threshold value as an equilibrium FPR threshold, and
address how to compute it by analyzing the costs of join processing with and
without filters based on a cost model.

– We implement a working TMFR-Join prototype in Hadoop [4] and evaluate our
approach against existing join processing with and without filters. The experimen-
tal results show that our approach has performance that is close to the performance
of the better of them.

The remainder of this paper is organized as follows: Sect. 2 reviews the background
information and work related to this paper. Section 3 explains the design and imple-
mentation details of TMFR-Join. Section 4 addresses the computation of the best FPR
threshold value based on a cost model. Section 5 discusses our experimental results.
Finally, Sect. 6 concludes this paper.

2 Background and related work

2.1 Join processing in MapReduce

Join algorithms in MapReduce are roughly classified into two categories: map-side
joins and reduce-side joins [16]. Map-side joins produce final join results in the map
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phase, and do not use the reduce phase. Because they do not need to pass interme-
diate results from map workers to reduce workers, map-side joins are more efficient
than reduce-side joins; however, they can only be used in particular circumstances.
Hadoop’s map-side join [17], called the Map-Merge join [16], merges two input
datasets that are partitioned and sorted on the join keys in advance, similar to merge
join in traditional DBMS. However, all input datasets must be divided into the same
number of partitions and must be sorted by the same key; otherwise, an additional job
is required to bring the datasets under the condition. A broadcast join [5] distributes
one of the input datasets to all map workers. It is efficient only if the size of the one
dataset is small enough to be loaded into memory, or it may perform poorly because
it has to read and process the dataset repeatedly.

Reduce-side joins can be used in more general cases, but are inefficient because large
intermediate records are sent from map workers to reduce workers. Figure 1 illustrates
the process followed by the basic reduce-side join algorithm, called the repartition
join [5], with an example of a join between R(a,b) and S(a,c). In this example, all of the
input records are sent to reduce workers to find records with the same join key, including
redundant records marked with strikethrough text. Semijoin [5] in MapReduce works
similarly to semijoin in traditional DBMS. It uses a three-step process: First, it finds
unique join keys from an input dataset, say R. Second, it finds joined records in the
other dataset, say S, with the unique join keys from the first step. Third, it produces
final join results from the join between R and the joined records of S from the second
step. Semijoin may reduce the size of intermediate results, but introduces additional
I/O overhead because it runs each step in an independent MapReduce job. The results
of its first two jobs are written to the underlying distributed file system and read in
the next job. Our proposed approach operates in one MapReduce job. Map-Reduce-
Merge [6] adds a merge phase after the reduce phase to support operations on multiple
heterogeneous datasets; however, it does not reduce the size of the intermediate results.

Researchers have proposed approaches to optimize multi-way joins in MapRe-
duce [18,19]. These approaches use a similar idea of minimizing the size of the repli-
cated records that are sent to the reduce workers. We address only two-way joins in
this paper, but our approach can be extended to multi-way joins by combining it with
these approaches.

2.2 Join processing with bloom filters

A Bloom filter [8] is a probabilistic data structure that is used to test whether an element
is a member of a set. It consists of an array of m bits and k independent hash functions.
All the bits are initially set to zero. When an element is inserted, it hashes the element
k times with k hash functions, and sets the positions in the array corresponding to the
hash values to one. In a similar fashion, it checks whether an element is in the filter by
hashing the element k times as in the insert operation, and checking whether all bits
of the k hash positions are one.

Bloom filters have been used in join processing for the following reasons: (1)
they may yield false positives, but do not yield false negatives. (2) They are space-
efficient because of a fixed size, regardless of the number of inserted elements. A
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join algorithm using the Bloom filter, called Bloomjoin [20], was proposed in the
distributed database area. Bloomjoin creates a Bloom filter with the join keys of one
relation, and filters out tuples of the other relation that are not matched by the Bloom
filters. Bloomjoin can be combined with a group-by operation and extended to multi-
way joins [21]. Some researchers optimize complex distributed multi-way joins using
Bloom filters by determining the optimal join order and caching the filters [22,23].
However, they assume that the join relations are not split and not distributed to other
nodes dynamically, unlike in a MapReduce environment.

Several recent studies have tried to adapt this algorithm to the MapReduce frame-
work. A reduce-side join with a Bloom filter [11] was proposed, but it has a disadvan-
tage in that input datasets have to be processed multiple times because it creates the
filter via an independent MapReduce job. Zhang et al. [12] extended this approach to
multi-way joins, but their work has the same disadvantage. Koutris [9] theoretically
investigated join techniques using Bloom filters within a single MapReduce job, but
did not provide specific technical details. Lee et al. [10] addressed implementation
issues and provided a framework for join processing using Bloom filters within a sin-
gle MapReduce job. Though these approaches apply Bloom filters in slightly different
ways, they all apply the filters without regard to performance. We use the filters based
on a threshold for stable performance according to their FPRs.

3 TMFR-Join

This section explains our join processing method with threshold-based filtering in
MapReduce, TMFR-Join. As we have implemented it into Hadoop [4], an open-source
implementation of MapReduce, we will use Hadoop terminology in the remainder
of this paper. A Hadoop cluster is composed of one jobtracker node and a number
of tasktracker nodes. The jobtracker checks the statuses and controls the actions of
tasktrackers through heartbeat messages. Tasktrackers run one or more mapper and
reducer processes, which execute map and reduce tasks, respectively, according to the
configuration.

Note that this is an extension of our previous work, which applies Bloom filters to
Hadoop regardless of performance [10]. In the previous work, two major changes were
made to Hadoop for application of filters. First, map tasks are scheduled according
to the processing order of the input datasets. Within an input dataset, map tasks are
scheduled in the order of the input split size, as in the original Hadoop. Second, filters
are constructed dynamically in a single MapReduce job. We add the filter estimation
phase for application of filters based on a user-configured threshold to this work.

3.1 Execution overview

Let us first look at the overall flow of execution of TMFR-Join. Figure 2 depicts an
example of a join between two datasets, R and S, in TMFR-Join. In this example, we
suppose that R is chosen to be processed first; that is, filters are built on R. When a
user runs a MapReduce program, the following sequence of actions is performed.
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1. Job submission. On submission of a MapReduce job, map and reduce tasks are
created. Assume that m1 map tasks for R, m2 map tasks for S, and r reduce tasks
are created. A task includes all the necessary information to run on a tasktracker,
such as job configuration and location of the corresponding input/output files. The
job configuration includes additional filter information such as parameter types
and values for the filter to use.

2. First map phase. The jobtracker assigns the m1 map tasks for R or the reduce tasks
to those tasktrackers that have idle mappers or reducers. A mapper reads the input
split for the task, converts it to key/value pairs, and then executes the map function
for the input pairs.

3. Local filter construction. The intermediate pairs produced from mappers are
divided into r partitions, which are sent to their corresponding reducers. For each
partition, a specified type of filter is created by inserting the keys of its intermediate
pairs. These filters are called local filters, because they are built for the interme-
diate results in a single tasktracker. Each tasktracker merges the individual filters
from each map task and maintains only r filters, until all m1 map tasks for the first
input dataset R are completed.

4. Global filter merging. When all the m1 map tasks have been completed, the job-
tracker stops assigning map tasks and requests that all tasktrackers send it their
local filters via heartbeat responses. The jobtracker then merges all the local fil-
ters to construct the global filters for R, which contain all the join keys that are
processed in all the tasktrackers.

5. Filter performance estimation. The jobtracker estimates the performance of the
merged global filters by estimating their FPRs. The estimation method depends
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on the filtering techniques that are applied; we describe this issue in Sect. 3.2.
Assuming that the FPRs can be estimated, filters with FPRs exceeding the given
threshold τ are disabled. The jobtracker then sends the global filters to all the
tasktrackers.

6. Second map phase. The jobtracker assigns the m2 map tasks for S or the remaining
reduce tasks to the tasktrackers. Mappers run the assigned tasks with the received
global filters, and intermediate pairs with keys that are not contained in the global
filters are filtered out.

7. Reduce phase. This step is the same as the reduce phase in Hadoop. Reducers read
the corresponding intermediate pairs from all mappers using remote procedure
calls. Each reducer then sorts the intermediate pairs and runs the reduce function.
Final output results are then written to the given output path.

3.2 Filtering techniques applicable to TMFR-Join

Efficient filtering techniques for joins depend on the distribution of the join keys and
the number of records joined. For this reason, we designed our framework to apply
various types of filters. Any filtering techniques can be plugged into TMFR-Join as
long as they support the following operations:

– insert(key): insertion of the specified key into the filter.
– contains(key): returning whether it contains the specified key or not.
– merge(filter): merging with another filter of the same type.
– estimateFPR(): computation of filter’s FPR.

The insert and contains operations are the basic operations for testing (approx-
imate) membership. TMFR-Join additionally requires merge and estimateFPR
operations for the filters.

Some filtering techniques, such as Bloom filter [8] and its variants [13], Interval
filter [15], and Quotient filter [14], already support the operations. Table 1 shows
merge and estimateFPR operations for the example filters. The operations will be
naturally different for each filtering technique. The Bloom filter operates as described
in Sect. 2.2. Its variants that generate no false negatives can also be used. The Interval
filter uses an array of m bits, and its lower bound lb and upper bound ub should be
set. Without loss of generality, suppose that the elements to be inserted into the filter
are integers. Then, the range [lb, ub] is split into m intervals, and each interval has a
length itv of (ub − lb)/m. Each bit in the array represents an interval, and the interval
bit for an element with value v is the bit of the position (v − lb)/itv. The filter inserts an

Table 1 Merge and
estimateFPR operations for
some example filters

merge estimateFPR

Bloom filter Bitwise OR

(
1 −

(
1 − 1

m

)kn
)k

Interval filter Bitwise OR
(

1 −
(

1 − 1
m

)n)

Quotient filter Similar to merge sort
in DBMS

(
1 −

(
1 − 1

2(q+r)

)n)
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Table 2 Global filter merging
time

Number of tasktrackers 3 5 7 10

Merging time (s) 22.137 26.735 25.012 28.887

element by setting the value of its interval bit to one, and checks whether an element
is in the filter by checking its interval bit. The Quotient filter stores a p-bit fingerprint
for each element. It consists of an array of size 2q of (r + 3) items, where p = q + r .
(We here omit the details of its insert and contains operations. See the algorithms in
the original paper [14].)

To compute the FPRs of the example filters, we need to know the number of inserted
elements n in the merged filters. However, keeping track of all the distinct values
inserted into each local filter to compute n is impractical. We only know the number
of true bits, not that of inserted elements, in the merged filters. Therefore, we estimate
the number of inserted elements with the expected number of true bits in the filters
after n elements are inserted [24]. Let p0 be the probability of a bit being false after
n elements are inserted for a filtering technique. For example, p0 is

(
1 − 1

m

)n
for the

Interval filter and
(
1 − 1

m

)kn
for the Bloom filter because it uses k hash functions.

Thus, the probability of a bit being true is (1 − p0). Therefore, the expected number
of true bits can be computed by multiplying it by the total number of bits for a filter.

Global filters are constructed by performing the merge operation repeatedly. It
should be noted that the global filter construction is expected to take a long time if
the number of reduce tasks or tasktrackers is large, because it is currently performed
by the jobtracker alone. Table 2 shows the time elapsed for the global filter merging
with 4 Mb Bloom filters on an 11-node cluster, varying the number of tasktrackers.
The details of the experimental environment can be found in Sect. 5.1. The time for
merging filters tends to increase as the number of nodes becomes larger, and it also
depends on the difference between the time that the first node finishes its assigned
map tasks for the build input, and the time that the last node finishes its corresponding
map tasks. This overhead could be distributed by merging local filters hierarchically,
although this has not yet been implemented.

3.3 Early detection of FPR threshold being exceeded

The execution flow described in Sect. 3.1 estimates the FPR after the merging of all
local filters into global filters. Before the estimation, all mappers insert the join keys of
the first input dataset into the filters, which incurs CPU overhead. Furthermore, during
the global filter merging, network I/O costs associated with communicating the filters
between the jobtracker and tasktrackers are incurred. These costs can be reduced if
we find that the FPRs of global filters are greater than the given threshold in advance.
The earlier the situation is detected, the more costs can be reduced.

Before merging local filters into global filters, only the FPRs of the individual
local filters in each tasktracker can be computed. However, if the FPRs of the global
filters can be estimated along with them, then the situation could be detected much
earlier. Consequently, we add an optional operation, estimateUnionFPR, to the
filtering techniques. If this operation is supported, the jobtracker can estimate the
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FPRs of the global filters as follows: in the first map phase, each tasktracker sends the
jobtracker only the FPR values of its local filters, not the whole local filters themselves,
via heartbeat messages when a map task is complete and its FPRs are changed. The
jobtracker then estimates the FPRs of the global filters using the operation.

The FPRs of the global filters can be estimated with those of the individual local
filters using methods similar to those used by Michael et al. [22]. Let the FPRs of
two local filters be P(A) and P(B). The FPR of the merged filter P(A ∪ B) can be
computed as P(A) + P(B) − P(A ∩ B). Assuming that the distribution of data is
independent, P(A ∩ B) = P(A) · P(B), we can estimate P(A ∩ B) with individual
FPRs P(A) and P(B).

We designed the signature of the operation asestimateUnionFPR(FPRsglobal,
FPRslocal_prev, FPRslocal_cur). Note that both the previous and current FPRs of the
local filters are required. The jobtracker should repeatedly merge the local filters from
a tasktracker with their updated FPRs. However, estimating the FPRs of the merged
filters may not be idempotent. If it merges the same local filters multiple times, its
FPRs will be changed. In this case, the estimateUnionFPR operation must first
compute the FPRs of the global filters, excluding the previous FPRs of the local filters,
and then estimate the new FPRs of the global filters by merging the current FPRs of
the local filters. For example, suppose that the current estimated FPRs of a local filter
and the corresponding global filter are 0.4 and 0.2, respectively. If the next FPR of the
local filter is 0.3, the FPR of the global filter with the exception of the previous FPR
is estimated to be 0.25 by calculating the expression 0.4 = P(G) + 0.2 − 0.2 · P(G).
Then, the current FPR of the global filter, including the new FPR of the local filter, is
estimated to be 0.475, which is 0.25+0.3−0.25·0.3 This is possible if the operation is
commutative. The order in which the filters are merged does not affect the estimation
results.

4 Cost and FPR threshold analysis

This section addresses how to choose an FPR threshold value. We first define the
notion of an equilibrium FPR threshold, and explain how to compute it using a cost
model, which is a variant of Herodotou’s Hadoop performance model [25].

4.1 Equilibrium FPR threshold

The aim of TMFR-Join is to guarantee join performance that is close to the better of
the existing join processing techniques, both with and without filters, by disabling the
filters whose estimated FPRs are greater than a user-configured threshold. Hence, the
best FPR threshold value must be the FPR when the costs in both cases are the same,
because the filters should be applied only if they are beneficial. We define the value as
equilibrium FPR threshold τeq. If an FPR threshold is set as a value larger than τeq, it
may result in the filters being used in cases where intermediate records are not filtered
out enough to improve the execution time. Conversely, if the threshold is set as a value
smaller than τeq, it may result in the filters being disabled in cases where intermediate
records are filtered out enough.
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To compute the equilibrium FPR threshold, we need to compute the join costs with
and without filters. Let Tjob be the total cost of a MapReduce job, Tmap be the cost
of all map tasks for the job, Tfilter be the cost of merging filters locally and globally,
and Treduce be the cost of all reduce tasks for the job. Consequently, the total cost of a
MapReduce job Tjob can be expressed as Tmap +Tfilter +Treduce. When execution costs
with and without filters are different from each other, we use superscripts f and h to
denote the costs of join processing with and without them, respectively. Accordingly,
the total cost of a MapReduce job in both of them can be expressed as follows:

T f
job = T f

map + Tfilter + T f
reduce

T h
job = T h

map + T h
reduce

Let Djob denote the difference of the total cost between join processing with and
without filters. Then, τeq can be obtained by finding the FPR value to make Djob to
zero.

Djob = T f
job − T h

job = (T f
map − T h

map) + Tfilter + (T f
reduce − T h

reduce) (1)

We examine the cost differences in detail in the following subsection.

4.2 Cost model

Herodotou’s Hadoop performance model [25] was chosen to compute an FPR threshold
value because it describes the execution of a MapReduce job on Hadoop in detail. It
was slightly adjusted to include features for filtering. Figure 3 shows the process
of execution of a map and reduce task in TMFR-Join, illustrating the shuffle phase
in detail. Note that we use the term shuffle phase for the whole process, from the
point where map tasks produce intermediate records to the point where reduce tasks
consume them, as described by Tom White [17]. This process is virtually the same as
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Fig. 3 Shuffle phase in MapReduce
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Table 3 System parameters
Parameter Definition

cr_dfs I/O cost of reading from distributed file system per byte

cw_dfs I/O cost of writing to distributed file system per byte

cr_loc I/O cost of reading from local disk per byte

cw_loc I/O cost of writing to local disk per byte

ctr Network cost of transferring data per byte

cc_map CPU cost of executing map function per record

cc_red CPU cost of executing reduce function per record

cc_part CPU cost of partitioning and (de)serializing per record

cc_sort CPU cost of sorting per record

cc_merge CPU cost of merging sorted data per record

cc_fltr CPU cost of inserting an element into filters or checking
that an element is in the filters per record

cc_union CPU cost of merging a filter

Table 4 Hadoop parameters
Parameter Definition

#nodes Number of tasktracker nodes

#map Number of map tasks for a job
(i.e., #map = #mapr + #maps )

#reduce Number of reduce tasks for a job

#map/node Maximum number of map tasks that can be
simultaneously run by a tasktracker

Table 5 Data parameters
Parameter Definition

br , bs Size in bytes of input datasets R and S, respectively

lr , ls Length of a record in input datasets R and S, respectively

nr , ns Number of records in input datasets R and S,
respectively (i.e., nr = br/ lr , ns = bs/ ls)

bf Size in bytes of a filter

that in the original Hadoop except that the operations for filtering are carried out in
the collect stage in map tasks. It should be noted that the filter merging processes are
not included because it is from the point of view of a single map task. It is included
when we consider the execution of all the map tasks.

We assume that we have a MapReduce job for a join on datasets R and S, and
that the parameters in Tables 3, 4 and 5 are given. Note that the parameters were
simplified in comparison with the original model, and only cc_fltr, cc_union, and bf
were added to consider the cost of filtering. The system parameters in Table 3, which
relate to I/O and CPU cost, can be defined in terms of time per byte according to the
hardware configuration. The parameters in Table 4 can be obtained from the Hadoop
configuration. We believe that the data parameters in Table 5 can be defined depending
on the application, which knows the properties of data to analyze. Otherwise, these
parameters may be given by users.
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We also assume that the combiner and compression features are not used, for sim-
plicity. Since Herodotou’s cost model [25] considers these features, our cost model can
be extended as in the original. Next, we examine the execution costs stage by stage,
focusing on the cost differences between join processing with and without filters.

4.2.1 Map task

The execution of a map task can be divided into five stages, as shown in Fig. 3. The
total cost of all map tasks Tmap can be computed as the sum of the costs during the
five stages.

Tmap = Cread + Cmap + Ccollect + Cspill + Csort

Read and map stages Each map task reads the corresponding input split and con-
verts each record to a key/value pair. It then executes the map function and produces
intermediate map output records. Hence, the costs during read and map stages can be
computed as follows:

Cread = (br + bs) · cr_dfs

Cmap = (nr + ns) · cc_map

The costs are the same in both join processing with and without filters, so these
stages do not need to be considered in determining an FPR threshold.

Collect stage All the map output records are partitioned, and processed with an
insert or contains operation if filters are used. The map output records from
the first input dataset, say R, are inserted into local filters; or, those from the second
input dataset, say S, are checked to determine whether they are in the global filters.
The map output records that are not filtered out are collected into a memory buffer.

The costs of the collect stage in join processing with and without filters are

C f
collect = (nr + ns) · (cc_part + cc_fltr)

Ch
collect = (nr + ns) · cc_part

Note that the additional CPU cost of executing filter operations results from applying
the filters.

The number of intermediate map output records ninter will differ as well.

nf
inter = nr + ns · σs_r + ns · (1 − σs_r) · p

nh
inter = nr + ns

where σs_r is the ratio of the joined records of S with R, and p is the actual FPR of the
global filters. nr signifies the number of first input dataset records that are not filtered
out and used to create filters. ns · σs_r signifies the number of second input dataset
records that are joined, and ns · (1−σs_r)· signifies the number of second input dataset
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records that are not joined but passed to reducers as false positives. Without filters,
ninter is equal to nr + ns because input records are not filtered out at all.

Spill stage When the data size in the buffer reaches a given threshold, the data parti-
tions are sorted and written to local disk. The cost of the spill stage depends on the num-
ber of spills, and is determined according to the size of the spill buffer, which is config-
ured via Hadoop parameters such as io.sort.mb, io.sort.spill.percent,
and io.sort.record.percent. Let bbuf be the buffer size in bytes, and let the
length of an intermediate record linter be (lr + ls), assuming both the records from R
and S are joined without projection. Accordingly, the number of records that can be
included in buffer nbuf can be expressed as bbuf/ linter. Then, the number of spills that
are performed in all map tasks #spill can be estimated as follows:

#spill =
⌈

ninter · linter

bbuf

⌉
=

⌈
ninter

nbuf

⌉

With the estimate, the cost of the spill stage is computed as follows:

Cspill = #spill ·
(

nbuf · log2

(
nbuf

#reduce

)
· cc_sort + bbuf · cw_loc

)
(2)

where nbuf · log2

(
nbuf

#reduce

)
represents the CPU cost of sorting each partition on average,

and bbuf · cw_loc represents the I/O cost of writing the data in the buffer to local
disk. Although Eq. (2) can be used to compute the costs of the spill stage in both
join processing with and without filters, the costs may vary because the numbers of
intermediate records ninter may be different in each case.

Sort stage In the sort stage, the spilled partitions are merged into a single file. This
stage performs an external merge sort similar to the merge stage in a reduce task. The
merging process may be performed in multiple merge passes according to the number
of spills. The total number of merge passes depends on the number of spills and the
number of spills to merge at once, which is configured by io.sort.factor and
denoted as nf. We compute the number of spills in all map tasks #spill in the spill
stage, but each map task only merges its own spills. Assuming that each map task
merges the same number of spills, the number of spills that are merged in each map
task can be calculated using #spill/#map, and the number of merge passes #merge can be
expressed as

⌈
lognf (#spill/#map)

⌉
. Let us suppose that Hadoop reads all the spills and

writes their intermediate merge output in each merge pass, although Hadoop does not
always need to merge all spills. Then, the cost of the sort stage can be computed as
follows:

Csort = #merge · #map ·
(

#spill

#map
· bbuf · (cr_loc + cw_loc) + #spill

#map
· nbuf · cc_merge

)

= #merge · #spill · (bbuf · (cr_loc + cw_loc) + nbuf · cc_merge)

As in the spill stage, the cost of the sort stage in join processing with and without
filters may vary according to the number of intermediate records.
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4.2.2 Filter merging

Additional costs arise during the filter merging process. When tasktrackers process
a map task for the first input dataset, one filter is created per partition, that is, per
reducer. The number of filters that are created in each map task is equal to the number
of reducers #reduce. Each tasktracker locally merges the filters from its own map tasks,
so it maintains only #reduce filters. The filters are merged globally after all map tasks
for the first input dataset have been completed. During this process, tasktrackers wait
for the merged filters and do not run other map tasks. This loss must also be taken into
account.

Consequently, the total cost for merging filters Tfilter can be divided into three parts:
the cost of merging locally in each tasktracker Cfilter_local, the cost of merging globally
in the jobtracker Cfilter_global, and the cost of waiting for the global filters (without
tasktrackers running other map tasks) Cfilter_wait. Tfilter can be computed as follows:

Tfilter = Cfilter_local + Cfilter_global + Cfilter_wait

where

Cfilter_local = #map · #reduce · cc_union

Cfilter_global = #nodes · #reduce · (2 · ctr + cc_union)

Cfilter_wait = #nodes · #map/node · Tmap

#map

#reduce signifies the number of filters, and Cfilter_local signifies the CPU cost for merg-
ing filters for all map tasks. 2 · ctr signifies the network cost of communicating the
filters between a tasktracker and the jobtracker. Cfilter_global includes the network and
CPU cost incurred by the jobtracker merging filters from all the tasktrackers. The
waiting cost during the global filter merging Cfilter_wait cannot be measured consis-
tently, because it is affected by straggler nodes, input data skew, node capability, and
so on. We approximate it as the cost for running the maximum number of map tasks
simultaneously on all tasktrackers, assuming the difference between the completion
times of the first and last nodes that finish their map tasks is smaller than the time to
run a map task.

4.2.3 Reduce task

The execution of a reduce task can be divided into the four stages shown in Fig. 3.
Note that we renamed the first stage of the reduce tasks to Fetch, whose original name
was Shuffle in [25], because we use the term shuffle phase in a broad sense. The total
cost of reduce tasks Treduce can be computed as the sum of the costs during the four
stages of the reduce task.

Treduce = Cfetch + Cmerge + Creduce + Cwrite
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Fetch stage In the fetch stage, the intermediate records produced from map tasks
are copied from mappers to reducers. Suppose that no merging process occurs in this
stage. Then, the total cost of the fetch stage is

Cfetch = ninter · linter · ctr

Merge stage This stage merges the sorted partitions that are fetched from mappers.
It works similar to the sort stage in map task but the number of merge passes #merge is
switched to �logf (#map)�, because each reduce task merges #map partitions that came
from mappers. Suppose that all the partitions reside on disk. Then, the total cost of
the merge phase can be computed as follows:

Cmerge = #merge · ninter · (linter · (cr_loc + cw_loc) + cc_merge)

Reduce stage The merged data are processed with a given reduce function. The
total cost of the reduce stage is

Creduce = ninter · (linter · cr_loc + cc_red)

It is clear that the costs of the above three stages depend on the number of intermediate
records. Therefore, the costs during each stage in join processing with and without
filters may be different.

Write stage The final results of the job are written to the distributed file system. Let
bout be the size (in bytes) of the final results. Then, the costs of the reduce and write
stages can be computed as follows:

Cwrite = bout · cw_dfs

Although we may not know the size of the final results in advance, the cost of the
write stage is the same regardless of join techniques as long as they produce correct
join results. Therefore, we can omit the write stage from cost estimation.

4.3 Determining FPR threshold

The equilibrium FPR threshold τeq can be computed based on the cost model, which
we examined step by step in Sect. 4.2. Recall that the difference of the total cost
between join processing with and without filters Djob can be computed as the sum of
the cost differences in each phase. Equation (1) can be rewritten as follows:

Djob = T f
job − T h

job = (T f
map − T h

map) + Tfilter + (T f
reduce − T h

reduce)

= (Dcollect + Dspill + Dsort) + Tfilter + (Dfetch + Dmerge + Dreduce)

where Dstage represents the cost difference in the corresponding stage.
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The cost difference in the collect stage Dcollect can be computed as follows:

Dcollect = C f
collect − Ch

collect = (nr + ns) · cc_fltr

The difference of the intermediate records dinter after the collect phase is given as
follows:

dinter = nf
inter − nh

inter

= (nr + ns · σs_r + ns · (1 − σs_r) · p) − (nr + ns)

= −ns(1 − σs_r)(1 − p) (3)

Since 0 ≤ σs_r ≤ 1 and 0 ≤ p ≤ 1, unless σs_r is equal to one, the number of
intermediate records ninter may be reduced according to the FPR p, at the cost of
applying filter operations. Accordingly, the difference in the number of spills d#spill in
the spill and sort stage is

d#spill = #f
spill − #h

spill =
⌈

nf
inter

nbuf

⌉
−

⌈
nh

inter

nbuf

⌉

=
⌈

(nr + ns · σs_r + ns · (1 − σs_r) · p)

nbuf

⌉
−

⌈
nr + ns

nbuf

⌉

=

⎧⎪⎪⎨
⎪⎪⎩

−
⌈

ns(1−σs_r)(1−p)

nbuf

⌉
, if ns(1 − σs_r)(1 − p) mod nbuf

> (nr + ns) mod nbuf

−
⌊

ns(1−σs_r)(1−p)

nbuf

⌋
, otherwise

Hence, the cost differences in the spill and sort stage can be expressed as follows,
assuming that the numbers of merge passes for both join processing with and without
filters are the same.

Dspill = d#spill ·
(

nbuf · log2

(
nbuf

#reduce

)
· cc_sort + bbuf · cw_loc

)

Dsort = d#spill · #merge · (bbuf · (cr_loc + cw_loc) + nbuf · cc_merge)

Both stages’ cost differences are affected by the number of intermediate records.
The cost differences of the fetch, merge, and reduce stage in the reduce tasks are

Dfetch = dinter · linter · ctr

Dmerge = dinter · #merge · (linter · (cr_loc + cw_loc) + cc_merge)

Dreduce = dinter · (linter · cr_loc + cc_red)

These costs also depend on the number of intermediate records.
Consequently, all of the cost factors depend on the number of intermediate results.

According to Eq. (3), we can further infer that the total cost is eventually determined
by two factors: the ratio of the joined records and the FPRs of the filters. The other
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parameters can be regarded as constants. Thus, τeq can be precomputed if the ratio of
the joined records is known.

If the ratio of the joined records is not known in advance, the FPR threshold can be
configured not as τeq but as the FPR value computed with the maximum ratio of the
joined records, which is known or given by users. We suggest choosing the maximum
ratio of the joined records as a large enough value, in case the filters are not beneficial.
The FPR threshold value corresponding to the ratio would then be small enough. If
the FPR threshold is small, the opportunity to improve performance with filters is
reduced. For example, filters may not be applied if the join ratio is much smaller than
the maximum ratio and the actual FPRs are slightly larger than the threshold value.
Despite this, we believe that an ample maximum ratio should be used to prevent join
performance degradation.

5 Performance evaluation

This section presents our experimental results. We implemented the proposed frame-
work on Hadoop 0.20.2. In addition, we implemented three example filtering tech-
niques, the Bloom filter [8], Interval filter [15], and Quotient filter [14], to show that
our method works with various filtering techniques.

5.1 Experimental setup

All the experiments were run on a cluster of 11 machines consisting of one jobtracker
and 10 tasktrackers. Each machine comprised a 3.1 GHz quad-core CPU, 4 GB RAM,
and a 2 TB hard disk. The operating system was 32-bit Ubuntu 10.10, and the Java
version used was 1.6.0_26.

We configured Hadoop based on the real-world cluster configuration parameters in
the Hadoop official documentation [26]. We set the HDFS block size to 128 MB and
the replication factor to three. Each tasktracker could simultaneously run three map
tasks and three reduce tasks. The I/O buffer was set to 128 KB, and the memory for
sorting data was set to 200 MB.

We used TPC-H benchmark [27] datasets, which are widely accepted in the industry,
with scale factor 100. The scale factor is the total size of the dataset in gigabytes.
We performed a join between the two largest tables in the database, lineitem
and orders. The orderkey column of the lineitem table is a foreign key to
the orderkey column of the orders table. Therefore, we added some selection
predicates to control the ratio of joined records. Our test query can be expressed in
SQL-like syntax as follows:

SELECT substr(l.*, 0, llinei tem), substr(o.*, 0, lorders)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
AND o.custkey < ‘?’

We ran the query, changing the ‘?’ in the predicate to set the ratio of joined records
of orders with lineitem (σL) to between 0.001 and 0.8. We also set the query
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Fig. 4 Execution times with various filtering techniques. a MFR-Join (with no threshold), b TMFR-Join
(τ = 0.5)

results as substrings of the joined records in each table. llineitem and lorders are the
lengths of the substrings, so the length of an intermediate record is llineitem + lorders.
As the length increased, so did the filtering performance. We set the lengths for both
tables to 10, assuming the case of a projection query. The Hadoop program for the
test query was hand-coded, and we chose orders as the first input and lineitem
as the second input.

5.2 Experimental results

We compared the performance of our method to that of the existing repartition join [5],
which does not use filters, and join processing with filters (MFR-Join) [10]. Three
types of filters, Bloom filter (BF), Interval filter (ITV), and Quotient filter (QF), were
applied, and the parameters for each filter were adjusted to set the size of a filter to
4 Mb.

First, we ran the test query while varying the ratio of the joined records. The
FPR threshold for TMFR-Join was set to 0.5, which shows the best results in our
experiments. Figure 4 shows the execution times of the test query using each join
technique. With the repartition join (N/A) as a baseline, Fig. 4a and b shows the results
of join processing using filters without and with threshold-based filtering, respectively.
As shown in Fig. 4a, the performance of the existing MFR-Join with no threshold
decreases as more records participate in the join, because the number of redundant
records that can be filtered out is reduced. On the other hand, in Fig. 4b, TMFR-Join
exhibits stable performance close to that of the repartition join (N/A) even when σL
is greater than 0.3, regardless of the filtering technique used. Note that joins with
Quotient filters did not finish when σL was greater than or equal to 0.01, because they
cannot contain more than their size of elements, and their merge operations have a
time complexity on the order of the number of inserted elements.
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Fig. 5 Intermediate result sizes with various filtering techniques.a MFR-Join (with no threshold), b TMFR-
Join (τ = 0.5)
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Fig. 6 Execution times of TMFR-Join with bloom filters varying FPR thresholds. a σL = 0.3, b σL = 0.5,
c σL = 0.8

Figure 5 shows the intermediate result sizes in each case. In Fig. 5a, the repartition
join is the largest in size because it emits all input records as intermediate results.
When σL is small, a large number of redundant records are filtered out; whereas,
when σL is large, the sizes of the intermediate result increase, which leads to longer
execution times in Fig. 4a. This results from the large FPRs corresponding to the
increased number of join keys that are inserted into the filters. In TMFR-Join, as
shown in Fig. 5b, the intermediate result size increases when σL is greater than or
equal to 0.5. As σL is larger than the given FPR threshold, the filters are disabled and
the join is executed like the repartition join. Although the size of the intermediate
results increases, TMFR-Join exhibits better performance than the existing MFR-Join
because the costs of creating, merging, and checking the filters are saved.

Figures 6 and 7 show the execution times of TMFR-Join with Bloom filters and
Interval filters, respectively, with varying FPR thresholds. It can be seen that filters are
advantageous when σL is 0.3, while they are disadvantageous when σL is 0.5 or 0.8.
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Fig. 7 Execution times of TMFR-Join with interval filters varying FPR thresholds. a σL = 0.3, b σL = 0.5,
c σL = 0.8

If the FPR threshold is too small, as with τ of 0.2 in Figs. 6a and 7a, the filters may
be disabled despite being beneficial to performance. Conversely, if the FPR threshold
is too large, as with τ of 0.9 in Figs. 6c and 7c, the filters may not be disabled
despite being detrimental to performance. Although it cannot be seen clearly due to
the experimental error in Figs. 6b and 7b, low FPR threshold values lead to better
performance by disabling filters. Consequently, it is important to set the appropriate
FPR threshold for each query, as stated in Sect. 4.3, so that it exhibits performance
that is close to that exhibited by the better join processing techniques.

6 Conclusions and future work

In this paper, we presented a join processing method with threshold-based filtering,
called TMFR-Join. TMFR-Join estimates the performance of filters by means of FPRs,
and disables those filters whose FPRs are greater than a user-configured threshold. It
also enables the application of various filtering techniques so long as they support
certain operations. The experimental results show that our techniques have stable
performance close to that of the better of the existing join algorithms, both with
and without filters. For future work, we plan to integrate our framework with large-
scale data warehouse systems or join-based applications like a graph pattern matching
framework.
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