
Article

Journal of Information Science

39(2) 238–255

� The Author(s) 2012

Reprints and permission: sagepub.

co.uk/journalsPermissions.nav

DOI: 10.1177/0165551512463650

jis.sagepub.com

Backward inference and pruning for RDF
change detection using RDBMS

Dong-Hyuk Im
School of Computer Science and Engineering, Seoul National University, Seoul, Korea

Sang-Won Lee
School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Korea

Hyoung-Joo Kim
School of Computer Science and Engineering, Seoul National University, Seoul, Korea

Abstract
Recent studies on change detection for RDF data have focused on minimizing the delta size and, as a way to exploit the semantics of
RDF models in reducing the delta size, the forward-chaining inferences have been widely employed. However, since the forward-
chaining inferences should pre-compute the entire closure of the RDF model, the existing approaches are not scalable to large RDF
data sets. In this paper, we propose a scalable change detection scheme for RDF data, which is based on backward-chaining inference
and pruning. Our scheme, instead of pre-computing the full closure, computes only the necessary closure on the fly, thus achieving fast
and scalable change detection. In addition, for any two RDF data input files to be compared, the delta obtained from our scheme is
always equivalent to the one from the existing forward-chaining inferences. In addition, in order to handle RDF data sets too large to
fit in the available RAM, we present an SQL-based implementation of our scheme. Our experimental results show that our scheme, in
comparison to the existing schemes, can reduce the number of inference triples for RDF change detection by 10–60%.

Keywords
backward-chaining inference; change detection; ontology; pruning; RDF

1. Introduction

RDF (Resource Description Framework) is recommended by W3C (World Wide Web Consortium) as the language to

represent information about web resources in the semantic web. Many web sites publish their data in the RDF format, as

RDF has a simple data model, well-defined formal semantics and provable inference [1]. In addition, RDF is known to

be useful for integrated query processing because it can easily integrate information from diverse data sources.

Therefore, users can find meaningful information using the RDF query language (i.e. SPARQL), irrespective of the data

format.

RDF data can change over time for various reasons [2, 3]. First, as the information itself can change in the domain of

interest, RDF that models the knowledge of that domain should also change accordingly. Second, RDF data can change

according to the user’s needs. Since RDF data is, in general, created and evolved in a distributed environment, multiple

users can manage the RDF data in a collaborative manner. Changes made by a user should be propagated to the other

users of the domain to maintain consistency in the RDF data. Therefore, detecting and representing RDF changes (i.e.

RDF deltas) are crucial in evolution process [4], synchronization system [5] and versioning system [6–9] to trace the his-

tory of changes in an RDF data set to synchronize two or more versions correctly, and compare different versions.

Corresponding author:

Dong-Hyuk Im, School of Computer Science and Engineering, Seoul National University, Seoul 151-742, Korea.

Email: dhim@idb.snu.ac.kr

The main role of change detection tools is to determine what has been changed between two models. The change

detection between RDF data is similar to that in flat files or structured data (e.g. HTML and XML). For example, the

GNU Diff utility is a popular tool to detect changes in program source files and text files. Several change detection algo-

rithms based on the tree model have been proposed for structured documents such as XML [10, 11]. However, these tra-

ditional algorithms cannot be generalized to handle the RDF model, because they do not fully utilize the semantic

information in RDF data. Therefore, Tim Berners-Lee emphasizes that it is necessary and important to develop efficient

change detection schemes for RDF graphs to exchange and distribute RDF deltas [12]. In addition, as RDF deltas would

be actively used in the synchronization system and versioning system, it is necessary to minimize the delta size for the

fast exchange over the network, as well as storage efficiency [5, 7, 13, 14]. Thus, several approaches have been proposed

to minimize the size of RDF deltas by exploiting the semantics of the RDF model [9, 15, 16].

Figure 1 illustrates an example of change in the RDF model. In Figure 1, we represent each RDF model (K and K#) as

the set of triples, and detect changes between two RDF triple sets using the set-difference operation. RDF change detec-

tion, such as Delta [12], has taken this approach, since it is very simple to compute RDF deltas using set-difference oper-

ation. However, by applying the RDF inference rules under the RDFS (RDF Schema) specification to the triple set [17],

we can derive new triples from the existing ones; that is, the closure of the RDF model (the RDF closure). This result of

the closure enables us to reduce the size of the differences between two RDF triple sets. For example, when we compute

the differences between K and K#, even if a triple (TA subClassOf Univ_Person) is deleted from K in Figure 1, we can

infer the triple (TA subClassOf Univ_Person) by computing the transitive closure of the triples in K#. That is, although

this triple is explicitly deleted from one set (syntactic level), there is no semantic difference between two sets if we can

infer the deleted triple in the other set (semantic level). Therefore, this semantic property of the RDF delta allows us to

minimize the size of differences by exploiting the semantics of the RDF model.

Existing work, such as SemVersion [9], pre-computes the complete closures of both the RDF models and then per-

forms the set-difference operation between two closures. In this respect, we term this approach the forward-chaining

inference strategy. However, it is very time-consuming to compute and store the entire closures of both the RDF models

in advance. In addition, forward-chaining inference-based change detections must cover all derived triples in computing

the differences between two sets of triples. To make it worse, in general only a small fraction of the entire data in RDF

applications changes. (The result reported in PromptDiff [8] shows that 97.9% of the data in each version remains

unchanged.) Thus, it should compute the redundant closures of more than 90% of the entire data that are irrelevant to

the result of changes. On the other hand, Delta function [15, 16] computes the closure on-the-fly using a labelling

scheme (e.g. interval-labelling scheme [18]). Thus, it efficiently checks the transitive closure without computing all the

derived triples. In Delta function, the label information itself should be constructed by performing two plain traversals

Figure 1. An example of change in the RDF model.

Im et al. 239

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

of the explicit graph by the subClassOf and subPropertyOf relations. However, since we assume the DRAM memory is

not large enough to keep the two RDF triple sets, it requires additional overhead (e.g. construction time for the labels

and additional space to store the label information). Thus, the existing change detection approaches are neither efficient

nor scalable.

These observations lead us to develop scalable solutions to compute differences between the large data efficiently.

This issue is critical in terms of incremental maintenance. For example, when a large RDF data set changes frequently,

we need a change detection tool that can efficiently find the differences between two consecutive versions to update from

the old version to the new one. In this paper, we propose a scalable change detection technique for RDF data. It com-

putes only the relevant closure of the RDF model using a backward-chaining inference strategy. In addition, we propose

a new pruning method, which skips unnecessary backward-chaining inference, to improve the performance of change

detection using the backward-chaining inference. While previous work on RDF change detection mainly focused on

minimizing the delta size, our backward-chaining inference strategy, in combination with the pruning method, can drasti-

cally improve change detection performance, as well as minimizing the delta size. Figure 2 shows the generic compari-

sons of our scheme to existing ones.

The contributions of this paper can be summarized as follows:

• Pruning method based on backward-chaining inference. We propose a change detection technique using the

backward-chaining inference strategy and pruning method. When we detect RDF changes using the inference

scheme, we can compute a small part of the RDF closure, not the entire closure. Although some studies have

dealt with inference issues in RDF query processing [19–21], no work has tried to detect RDF changes efficiently.

Our pruning scheme-based change detection is faster than change detection using forward-chaining inference [9]

by a factor of 10–80 and faster than any existing change detection technique using only backward-chaining infer-

ence for real data sets [20, 21] by a factor of 1.5–4.

• Correctness of change detection. We show that our change detection generates the same result of RDF deltas as

that produced by the forward-chaining inference strategy.

• Change detection based on relational database. We propose the change detection for RDF data using relational

databases. Memory-based change detection is not suitable for large RDF data sets, as it requires much memory to

retain two RDF triple sets. In contrast, in our implementation, we store large RDF data sets in a relational data-

base and compute the delta using SQL queries against the database, which embodied our backward-chaining

inference and pruning scheme. As far as we know, this is the first implementation of backward inference-based

RDF change detection using relational database.

The remainder of this paper is organized as follows. Section 2 reviews the RDF data model, background concepts on

RDF inference and five well-known change detections for RDF. Section 3 proposes a new RDF change detection based

on the backward-chaining inference and pruning method. Section 4 explains how we implement our change detection in

a relational database. Section 5 presents the experimental results. Section 6 concludes the paper.

Figure 2. Classification of RDF change detection techniques.

Im et al. 240

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

2. Background

In this section, we explain the RDF data model and the basic concept of inference used throughout this paper. In addition,

we describe two RDF inference strategies (forward-chaining and backward-chaining). We then review five existing RDF

change detection techniques and explain their limitations.

2.1. RDF preliminaries

RDF is a language to represent metadata about resources in the World Wide Web [1]. RDF data is modelled as a directed

labelled graph, where each node and each arc represent a resource and a relationship between two resources, respectively.

In general, an RDF graph is represented as a set of triples that represent binary relationships between two resources, and

can be formally defined as follows:

Definition 1. An RDF model K consists of a set of RDF triples whose every triple represents a statement of the form (subject

property object), denoted by t(S P O) ∈ K.

The RDF inference (i.e. RDF closure calculation) is based on the RDFS entailment rules provided by the RDFS seman-

tics specification [17]. However, we do not consider all of RDFS entailment rules when computing the inferential clo-

sure of an RDF Schema model. That is, we ignore some of entailment rules because they do not affect minimizing the

delta size. For example, although we apply the rules (U A Y) A rdf:type rdf:Property) and (U A Y) U rdf:type

rdfs:Resource) from the RDFS entailment rules to RDF data, we cannot reduce RDF deltas. The closure rules for our

change detection among the RDFS entailment rules are defined as follows. These closure rules play crucial roles in lim-

iting the coverage of inference in our change detection method.

Definition 2 (Closure Rule). The definitions of closure rules for change detection are as follows:

Rule 1. (U rdfs:subPropertyOf V) ^ (V rdfs:subPropertyOf X)) (U rdfs:subPropertyOf X).

Rule 2. (U A Y) ^ (A rdfs:subPropertyOf B)) (U B Y).

Rule 3. (V rdf:type U) ^ (U rdfs:subClassOf X)) (V rdf:type X).

Rule 4. (U rdfs:subClassOf V) ^ (V rdfs:subClassOf X)) (U rdfs:subClassOf X).

Definition 3. Given an RDF model K, the closure of K, denoted by C(K), is defined by recursively applying the closure rules to K

and adding the derived triples to K.

New triples can be inferred from existing ones using the closure rules in Definition 2. For example, we can obtain

C(K) by adding the derived triples (John type Univ_Person, Rule 3), (Sam type Univ_Person, Rule 3) and (Tom type

Univ_Person, Rule 3) to K. Likewise, we compute C(K#) by adding the inferred triples (TA subClassOf Univ_Person,

Rule 4), (John type Univ_Person, Rule 3), (John type Staff, Rule 3), (Alice type Staff, Rule 3) and (Alice type

Univ_Person, Rule 3) to K#.

2.2. RDF inference strategy

In this section, we provide background on RDF inference strategy and show how RDF inference is used. Existing RDF

inference strategies can be classified into two approaches based on the direction of inference: forward-chaining inference

strategy and backward-chaining inference strategy [19]. Forward-chaining inference derives all new triples from the

existing ones with the closure rules, until no more triples can be derived. This forward-chaining is preferred when data

are uploaded (load-time inference), but it can often result in a long load time and excessive space overhead. However,

its main advantage is that it can boost query processing time using the pre-computed triples in query processing, instead

of computing the triples on the fly. In contrast, the backward-chaining approach computes the relevant triples among all

the closures on the fly during query processing (run-time inference) [21]. Therefore, it can quickly load data and requires

little storage overhead, but it can increase the query response time. Since the query performance is of more concern than

storage overhead, most RDF storage systems choose the forward-chaining strategy. For example, Sesame [22] uses the

exhaustive forward-chaining algorithm to pre-compute the closure and stores all derived triples in the database. In addi-

tion, Broekstra and Kampman [19] present how to maintain consistency in RDF storage: if we need to insert (or delete)

a triple in forward-based system, we should also insert (or delete) the triples derived by inference. Conversely, Shen and

Qu [20] and Stuckenschmidt and Broekstra [21] propose a flexible inference strategy (combining forward-chaining and

Im et al. 241

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

backward-chaining) in RDF management systems to mitigate excessive space overhead. For ease of presentation, we

may use forward-chaining inference strategy and forward inference interchangeably (respectively, backward-chaining

inference strategy and backward inference).

2.3. Change detection techniques for RDF data

In this section, we overview the syntax and semantics of existing change detection techniques for RDF data. We term

them �E, �C, �D, �DC and �ED, respectively [9, 12, 15, 16]. We model the change operations in the RDF data only

with triple insertions and triple deletions [23]. A triple update is assumed to be modelled as a triple deletion-then-inser-

tion. In general, these change operations are common in the RDF change detection field. Given two RDF triple sets K

and K#, let C(K) and C(K#) denote the closure of K and K#, respectively. Given a triple t(S P O), let Del(t(S P O)) denote

triple deletion, and Ins(t(S P O)) denote triple insertion.

The first method, �E (Explicit Delta), computes the differences using set arithmetic for triple sets. Since this method

is intuitive and simple, many change detection tools [12, 24–26] choose this approach, and we categorize �E as the syn-

tactic level. In �E, Del denotes K − K# and Ins denotes K# − K.

�E = Ins t S P Oð Þð Þ jt S P Oð Þ∈K 0 � Kf g∪ fDel t S P Oð Þð Þ jt S P Oð Þ∈K � K 0g

The second method, �C (Closure Delta), exploits the semantics of the RDF model. It uses the RDF schema entailment

rules on K and K#. It first calculates C(K) and C(K#) by applying the closure rules to K and K#, and then calculates the

differences between C(K) and C(K#). Consider an example where a triple t in K is not in K#. Even though the triple t is

not in K#, it might not be included in �C where t ∈ C(K#). This means that, when computing differences, we can remove

the triples that can be inferred in the other set from the deltas. Although �C is different from �E, we can obtain the same

C(K#) if we compute the RDF closure after applying each RDF delta (�E, �C) to K. Some RDF management systems

store RDF triple set and the inferred triples together, and support query processing using the closure of the RDF model.

Since the same RDF closure can be generated by �C and �E, �C is useful for managing and exchanging the deltas [9,

15, 16]. �C is computed as follows:

�C = Ins t S P Oð Þð Þ jt S P Oð Þ∈C K 0ð Þ � C Kð Þf g∪ fDel t S P Oð Þð Þ jt S P Oð Þ∈C Kð Þ � C K 0ð Þg

However, since �C computes the closure of both sets and then performs a set-difference between two closures, �C is

not necessarily smaller than �E. In fact, the delta size of �C could be larger than that of �E, in case one set has many

inferred triples in one set that are not inferred in the other set and thus belong to �C.

To cope with this problem, Delta Function proposes �D (Dense Delta), �DC (Dense&Closure Delta) and �ED

(Explicit&Dense Delta) [15, 16]. They also exploit the semantics of the RDF model for change detection like �C.

However, these differ from �C, in that they do not perform the set-difference between both closures. Although �D gen-

erates the smallest delta of the change detection techniques using RDF inference, �D is not always correct. Thus, only

�DC and �ED can be used for synchronization in the general case. In most practical cases, �ED produces smaller del-

tas than �DC [16]. �D, �DC and �ED are computed as follows:

�D= Ins t S P Oð Þð Þ jt S P Oð Þ∈K 0 � C Kð Þf g∪ fDel t S P Oð Þð Þ jt S P Oð Þ∈K � C K 0ð Þg

�DC = Ins t S P Oð Þð Þ jt S P Oð Þ∈K 0 � C Kð Þf g∪ fDel t S P Oð Þð Þ jt S P Oð Þ∈C(K)� C K 0ð Þg

�ED= Ins t S P Oð Þð Þ jt S P Oð Þ∈K 0 � Kf g∪ fDel t S P Oð Þð Þ jt S P Oð Þ∈K � C K 0ð Þg

By applying the above five different change detection schemes against the example in Figure 1, we can obtain the follow-

ing results of change detections.

�E = fDel TA subClassOf Univ Personð Þ, Del Sam type TAð Þ, Del Tom type Staffð Þ, Del John type Staffð Þ,
Ins TA subClassOf Staffð Þ, Ins John type TAð Þ, Ins Tom type Univ Personð Þ, Ins Alice type TAð Þg

�C = Del Sam type TAð Þ, Del Tom type Staffð Þ, Del Sam type Univ Personð Þ,f
Ins John type TAð Þ, Ins Alice type TAð Þ, Ins Alice type Staffð Þ, Ins Alice type Univ Personð Þg

�D= Del Sam type TAð Þ, Del Tom type Staffð Þ, Ins TA SubClassOf Staffð Þ,f
Ins John type TAð Þ, Ins Alice type TAð Þg

Im et al. 242

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

�DC = Del Sam type TAð Þ, Del Tom type Staffð Þ, Del Sam type Univ Personð Þ,f
Ins TA subClassOf Staffð Þ, Ins John type TAð Þ, Ins Alice type TAð Þg

�ED= Del Sam type TAð Þ, Del Tom type Staffð Þ,f
Ins TA subClass Of Staffð Þ, Ins John type TAð Þ, Ins Tom type Univ Personð Þ, Ins Alice type TAð Þg

In summary, conventional change detection tools have developed to minimize the delta size by exploiting the seman-

tics of the RDF model. In this paper, we consider only inference-based change detection. In particular, we focus on the

change detection which produces the smaller deltas and the correct deltas (i.e. �ED). Other issues on executing the RDF

deltas, such as the order of change operations and the execution semantics of change operations [15, 16], are beyond the

scope of this paper.

2.4. Limitations of existing change detection methods

As explained above, the basic operations in RDF change detection are the set-difference operation and the inference

operation. In particular, since all the inferable triples from an RDF data set are collected by applying the deduction rules

recursively, the overhead of the inference operation is large. Let us consider the inference strategy in existing change

detection. SemVersion [9] uses forward inference for change detection. SemVersion materializes the complete closure in

advance and then performs set-difference. Consider the change detection that produces the smaller size changes �ED

using forward inference. Given two RDF triple sets K and K#, the change detection is computed as follows. First, the clo-

sure of K#, denoted as C(K#), is computed and stored. Then, the delta �ED is computed using two set-difference opera-

tions, (K − C(K#)) and (K# − K). However, it is too costly to compute the entire closure. Moreover, the set-difference

operations are performed by comparing sets that contain all derived triples, as well as the existing triples. Therefore, it is

desirable to reduce the time required for these two steps in the case of large RDF data sets. Note that we do not consider

a labelling scheme because the label information itself should be pre-computed, just like in forward inference.

Incidentally, since change detection algorithms, unlike the query processing case, use only a small part of the closure,

it may not be necessary to compute the entire closure of RDF models. Therefore, from the perspective of change detec-

tion, forward inference, which computes all the closure in advance, could be quite inefficient, in that it pre-computes the

closures of triples that are irrelevant to the change detection. This observation leads us to apply the backward inference

to the change detection technique. Although Broekstra and Kampman [19], Shen and Qu [20] and Stuckenschmidt and

Broekstra [21] discuss the backward-inference strategy in RDF management (i.e. query processing, update processing),

no work uses backward inference (i.e. not a labelling scheme) in RDF change detection. Furthermore, we propose a new

pruning method that skips unnecessary backward inference for efficient change detection.

3. Change detection based on backward inference and pruning method

As mentioned earlier, the main idea of our method is based on the observation that inferring only relevant triples is criti-

cal to change detection performance. In this section, we first present a method that infers only the necessary triples for

change detection using a backward-chaining inference, instead of pre-computing all the triples in closures. This method

improves the time and space complexity in change detection. Note that backward-chaining begins with a goal and checks

if there are known facts that can satisfy the goal. That is, we need to check if the specific triple will be supported by some

triples without computing the entire closure of triples.

Even with this backward-inference, however, some triples might be unnecessarily computed; this is still a time-

consuming part of change detection. Therefore, we propose a pruning method in backward inference to avoid this

unnecessary inference. The proposed pruning method allows us to skip some irrelevant derived triples during change

detection. Then we check if each of the remaining triples can be inferred in the other set.

3.1. Outline of the proposed change detection technique

Figure 3 shows the overview of the three approaches (forward inference (case 1), backward inference (case 2) and prun-

ing and backward inference (case 3)). The change detections based on forward-chaining produce �ED by computing the

entire closure of all triples in K# first and calculating the set-differences. In this respect, we term this approach the infer-

ence-then-difference strategy. In contrast, backward-inference-based change detection computes ((K − K#) ∪ (K# − K),

�E) using set-difference operations between two sets of triples, and then checks if every triple t ∈ (K − K#) can be

included in the closure of the other set (i.e. delete t from (K − K#) if t ∈ C(K#)). In this sense, this approach takes the

Im et al. 243

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

difference-then-inference strategy. For example, triple (TA subClassOf Univ_Person) in Figure 1 is in (K − K#).

Therefore, we are able to use backward inference to check if (TA subClassOf Univ_Person) can be derived from the set

of triples in K#.

Moreover, prior to applying backward inference, our pruning method is employed to compute the closure of the rele-

vant triples, thus avoiding the inference paths from non-relevant triples. Note that this pruning technique is applicable

only to backward inference, not to forward inference. Since forward chaining calculates all the inferable triples from the

entire triples, we cannot determine which triples should be pruned in advance. However, the backward-chaining approach

takes the difference-then-inference strategy. Thus, we can apply the closure rules to only a small number of triples in

(K − K#) (only 2–3% of data changed explicitly). In summary, backward inference in combination with pruning optimi-

zation enables us to detect changes more efficiently.

3.2. Correctness of the proposed change detection

In this section, we deal with two theoretical topics of our change detection method. First, we show that the result of

change detection by backward inference is equivalent to that by forward inference. Then, we prove that some triples

need not be inferred for correct change detection and could be safely pruned in backward inference, and propose the

pruning condition to stop further inference.

Figure 3. Overview of our change detection and comparison to existing methods.

Im et al. 244

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

Unlike forward inference, backward inference does not compute the entire closure in advance. Instead, it computes

only the relevant closure at query time. Therefore, we must determine which triple is relevant to the delta. That is, we

check if the triples can be included in the closure of the other set by backward inference. Since Delta Function proved

that �ED is a subset of �E, we can get �ED from �E. The following Propositions show the correctness of backward

inference-based change detection [16]. Given two triple sets K and K#, let Del in �E denote (K − K#), Ins in �E denote

(K# − K), Del in �ED denote (K − C(K#)), and Ins in �ED denote (K# − K). Since the inserted sets in �ED and �E

are the same triple set, we consider the deleted set.

Proposition 1. Given an RDF triple set K and its closure C(K), the following condition holds: K5 C(K).

Proposition 2. Given two RDF sets K and K#, (K − C(K#)) is a subset of (K − K#):

K � C K 0ð Þð Þ ∩ K � K 0ð Þð Þ= K � C K 0ð Þð Þ

Proposition 2 guarantees that (K − C(K#)) is a subset of (K – K#). That is, (K − K#) contains all triples in (K − C(K#)),

and we can obtain the results (K − C(K#)) from (K − K#) by finding and deleting the triples in (K − K#) that are infer-

able from the other set. These inferable triples are defined as follows:

Definition 4. Given (K − K#), �I (Inferable) is a set of deleted triples from (K − K#) to (K − C(K#)) by the backward inference

process (�I = K ∩ (C(K#) − K#)).

Note that, although the triples in �I do not exist explicitly in the other triple set, they can be inferred in the compared

set. Therefore, the goal of our change detection is to find �I using backward inference. However, in addition to this

difference-then-inference approach, there is still another chance to avoid applying backward inference to all triples in

(K − K#). For this, we propose a pruning method that skips unnecessary inferences as early as possible in computing

the closure. The following Proposition and Theorem present some properties of �I to show the correctness of our prun-

ing method.

Proposition 3. Given �I, the following relationships hold:

If Del t S P Oð Þð Þ∈�I , then t S P Oð Þ∈C K 0ð Þ

Theorem 1. Let A and B denote rdf:Property and T# denote rdf:Resource. Given a triple t(S P O), the following conditions hold:

(1) If Del(t(S subClassOf O)) ∈ �I, then t(S subClassOf T#) ∈ K# and t(T# subClassOf O) ∈ K#.

(2) If Del(t(S subPropertyOf O)) ∈ �I, then t(S subPropertyOf T#) ∈ K# and t(T# subPropertyOf O) ∈ K#.

(3) If Del(t(S B O)) ∈ �I, then t(S A O) ∈ K# and t(A subPropertyOf B) ∈ K#.

(4) If Del(t(S type O)) ∈ �I, then t(S type T#) ∈ K# and t(T# subClassOf O) ∈ K#.

Proof. First, we prove condition (1). If Del(t(S subClassOf O)) ∈ �I, then t(S subClassOf O) ∈ K and t(S subClassOf

O) ∈� K#. According to Proposition 3, obviously t(S subClassOf O) ∈ C(K#). If t(S subClassOf O) ∈ C(K#) and t(S

subClassOf O) ∈� K#, then t(S subClassOf O) is a derived triple in K# by the closure rules in Definition 2. Therefore, there

exist triples that satisfy both t(S subClassOf T#) and t(T# subClassOf O) in K#. Likewise, we can prove conditions (2)–(4).

Based on Theorem 1, given the triple of �I where t(S P O) ∈� K# and t(S P O) ∈ K, the triple t(S P O) can be created in

C(K#) by inferring the triples that contain t(S * *) ∈ K# and t(* * O) ∈ K# (* is a wildcard that matches any resource).

However, it is difficult to choose the exact triples for �I, because we cannot determine which triples can be inferred in the

other set, until computing the closures of triples using backward inference. That is, not all the triples whose subject and

object exist in the other set are necessarily included in �I. Instead, we propose a pruning method that removes the triples

unrelated to �I from �E. The following Theorem describes our pruning method under the backward-inference process.

Theorem 2. Given a triple t(S P O) in (K − K#), the following conditions hold:

(1) When Del(t(S subClassOf O)): if (t(S subClassOf T#)∈� K# or t(T# subClassOf O)∈� K#), then Del(t(S subClassOf O)) ∈ �ED.

(2) When Del(t(S subPropertyOf O)): if (t(S subPropertyOf T#)∈� K# or t(T# subPropertyOf O)∈� K#), then Del(t(S subPropertyOf O))

∈ �ED.

Im et al. 245

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

(3) When Del(t(S B O)): If (t(S A O)∈� K# or t(A subPropertyOf B)∈� K#), then Del(t(S subClassOf O => S B O)) ∈ �ED.

(4) When Del(t(S type O)): If (t(S type T#)∈� K# or t(T# subClassOf O)∈� K#), then Del(t(S type O)) ∈ �ED.

Proof. Theorem 2 is proved by Definition 4 and the contraposition of Theorem 1. For a given triple t(S P O) where t(S P

O) ∈ K − K#, if the subject or the object of triple does not exist in K#, then Del(t(S P O)) ∈� �I. Thus, by �I = �E −
�ED, Del(t(S P O)) ∈ �ED. Since each of conditions (2)–(4) can be similar way, we omit its proof here.

Theorem 2 is the key point of our pruning method. Since the goal of the backward inference is to generate �I from

�E, the triples whose subject or object does not appear in the other set can be safely pruned from the backward-inference

process. That is, these triples must be included in �ED irrespective of using backward inference. Meanwhile, each of the

remaining triples in �E that pass the pruning step needs to check if it is included in �I using backward inference.

Our pruning method considerably reduces the number of triples to be checked, in case they cannot be inferred in the

other set. As mentioned in the Introduction, RDF describes information (e.g. class and instance) about resources in a spe-

cific domain. Therefore, the existing concepts in a released version might disappear in a subsequent version, or new con-

cepts can be introduced. Since those concepts are also represented as the subject or the object in a triple, we can prune a

number of triples in (K − K#).

4. Change detection using relational database

As the size of the RDF data set grows exponentially, scalable change detection algorithms are required. However, exist-

ing main-memory-based change detections are not scalable. That is, all the sets of triples in RDF models should be

memory-resident to compute the differences between RDF models using those schemes. Therefore, for large-scale RDF

data, the memory should be sufficiently large to keep the two RDF triple sets. To make matters worse, in change detec-

tion based on forward-chaining, the number of triples inferred by the closure rules increases exponentially and thus the

temporary RAM does too. To solve this excessive RAM requirement in the existing approaches, we designed and imple-

mented our change detection scheme using relational databases. Thus, as the change detection for the large XML data

set in [27] uses a relational database, we present a relational approach to detect the changes in RDF data using the prun-

ing method. Moreover, change detection based on relational database would be reliable, as well as scalable, because the

technology of commercial DBMSs has been developed for more than 30 years. In addition, we need not parse the RDF

document repeatedly whenever we need to compare it with another RDF model, since these two RDF triple sets are

already stored in a database.

4.1. Relational schema for change detection

In order to detect changes in efficient and scalable way, we store RDF data in a relational database. Several approaches

have recently been proposed for storing RDF data in relational databases [22, 28, 29]. In this paper, we use a triple store

method (subject, property and object) [25], popularly used in RDF storage. In particular, we partition the triple store into

several separate tables, so that change detection can be computed by examining only the small tables. Figure 4 shows the

relational schema used in this paper for RDF change detection. The principle in designing the relational schema com-

posed of four tables (SubClass, SubProperty, Type and Triple) in Figure 4 is to model the type of property in closure rules

in a natural way. For example, we store the triple whose property is a ‘subClassOf’ to the SubClass table. Likewise, all

the triples whose properties are ‘type’ and ‘subProperty’ are stored in the Type table and the SubProperty table, respec-

tively. The remaining triples (except subClassOf, subProperty and type property) are stored in the Triple table.

This storage scheme has two advantages. First, this scheme makes it easier to compute the set-difference using SQL

operators. Second, when computing the closure through backward inference, we need to access only those tables that cor-

respond to the closure rules. For example, when computing the set-difference between ‘subClassOf’ relationships, we

Triple (Sub, Prop, Obj) Ins (Sub, Prop, Obj)

SubClass (Sub, Prop, Obj) Del (Sub, Prop, Obj)

SubProperty (Sub, Prop, Obj)

Type (Sub, Prop, Obj)

Figure 4. Relational schemas for change detection.

Im et al. 246

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

need to access only two SubClass tables from the two triple sets being compared. Similarly, the class subsumption hierar-

chies can be computed by accessing only the SubClass tables. In addition, since the unit of change operation is a triple,

the results of change detection can be represented as the triple representation (Del table and Ins table).

4.2. Relational implementation of change detection

In this section, we present the implementation details of our change detection algorithm using a commercial relational

DBMS. We then give an illustrative example for its execution.

Algorithm 1 shows the change detection algorithm using the pruning method in Section 3. Suppose we have two ver-

sions of the RDF triple sets, K and K#. First, the algorithm starts to compute the differences at the syntactic level

between K and K# using the set-difference. Each result (i.e. (K − K#), (K# − K)) is stored in the Del table and the Ins

table respectively (lines 5 and 6). Note that, for each property in closure rules, the set-difference operation is executed

against the two tables corresponding to the property. Next, for every triple in the Del table, the algorithm checks if it is

inferable from the other set using backward inference. However, the algorithm uses the pruning method, which is based

on Theorem 2 in Section 3.2 (lines 9–11) to reduce the number of the triples to check whether if they are inferable from

other set (i.e. check if they are included in �I). This process prunes unnecessary triples using the conditions in Theorem

2 and returns the set of the triples that participate in backward inference (we denote these inferable triples Ik#). Next, the

algorithm applies the closure rules to every triple in Ik#. The function Backward_Infer(t, K#) returns a true value if the

triple t ∈C(K#) using backward inference (lines 13 and 14). We need not use all closure rules in the function

Backward_Infer. If the triple has the ‘subProperty’ property, rule 1 in Definition 2 is applied to only the subProperty

table and checks if this triple can be inferred within the subProperty table. Likewise, we can apply each closure rule to

its corresponding tables (e.g. rule 2 is applied to both the Triples table and the subProperty table, and rule 3 is applied to

both the subClass and the Type tables (rule 3 uses two properties ‘type’ and ‘subClassOf’)). Then, if the function

Backward_Infer returns the true value for a triple, we remove the triple from the Del table (line 16). This process is

repeated until all the triples in Ik# have been checked. Finally, the remaining triples in the Del table and the Ins table are

the delta (�ED).

Figure 5 illustrates how Algorithm 1 works for ‘subClassOf’ closure rule. We first compute differences between the

K.Subclass table and the K#.Subclass table using the following queries (step 1 in Figure 5) based on the algorithm.

INSERT INTO Del ((SELECT * FROM K.SubClass) MINUS (SELECT * FROM K#.SubClass))

INSERT INTO Ins ((SELECT * FROM K#.SubClass) MINUS (SELECT * FROM K.SubClass))

Then, we prune unnecessary triples that cannot be inferred in the Del table before the inference process begins. For

example, consider step 2 of Figure 5, subject C, subject D, object A and object B in the Del table appear in the

Algorithm 1. Change detection technique using pruning method

01: Input: K = Set of triples in source table
02: K# = Set of triples in target table
03: Output: Set of change operations (�ED: Del table & Ins table)
04: //Step 1: compute differences between K and K#
05: Del = Set-Difference(K − K#)
06: Ins = Set-Difference(K# − K)
07: //Step 2: Prune unnecessary triples for backward inference
08: // Ik#: triples that take part in the backward-inference process (inferable triples)
09: For every triple x ∈ Del
10: if ((x.subject is in K#.subject) && (x.object is in K#.object)) then
11: put x into Ik’

12: //Step 3: Backward-chaining inference
13: For every triple x ∈ Ik’

14: if (Backward_Infer(x, K#))
15: //Step 4: if x can be inferred in K#, delete x from Del
16: remove x from Del

Im et al. 247

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

K#.SubClass table. However, subject F and object E in the Del table do not exist in the K#.SubClass table. Therefore, we

prune a triple (F subClassOf E) from Del, because it cannot be inferred in K#.SubClass. In order to remove unnecessary

inference from Del, we use the following SQL queries before the inference process begins.

SELECT * FROM Del t1

WHERE t1.sub IN (SELECT sub FROM K#.SubClass) AND t.obj IN (SELECT obj FROM K#.SubClass)

In step 3, we temporarily store the resultant triples (Ik#) from step 2 (e.g. ResultSet) and apply the function

Backward_Infer to the inferable triples directly. Unlike Sesame, which uses the repetitive self-joins of the triple table for

backward inference [4], we use the recursive query feature of the standard SQL language [30, 31]. Although self-join

operations would work for backward inference, this is expensive in terms of both program development and query pro-

cessing, because we have to write a recursive procedure. More importantly, we do not know in advance how many self-

join operations would be required for inference processing. Conversely, we can use the recursive WITH clause in the

ANSI SQL standard for the recursive query; this allows us to query by specifying what we want, rather than how to per-

form the recursive procedure. Several commercial DBMSs, including IBM DB2 and Oracle, support recursive query

processing (e.g. In case of Oracle RDBMS, its own proprietary syntax, based on START WITH and CONNECT BY

clauses, has been supported, but its recent version Oracle 11gR2 has started to support the ANSI Standard Recursive

WITH clause). For example, the following SQL computes if a triple (C subClassOf A) in the Del table can be inferred in

the K#SubClass table by backward inference (rule 4 in Definition 2). If it is inferable from the K#.SubClass, the function

Backward_Infer returns the true value. In the case of the example in Figure 5, since there exist (C subClassOf B) and (B

subClassOf A) in the K#.SubClass table, the inference result of a triple (C subClassOf A) is true.

Figure 5. Execution process of change detection.

Im et al. 248

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

WITH temp (sub, obj) AS

(SELECT sub, obj FROM K#.SubClass WHERE sub=‘C’ UNION ALL

SELECT t1.sub, t1.obj FROM K#SubClass t1, temp t2 WHERE t1.sub=t2.obj)

SELECT * FROM temp WHERE obj=‘A’

This SQL statement constructs an initial result set with the first query (e.g. select the triples whose subject are ‘C’ as

in above example), and then adds rows to the previous result set with the second query (e.g. select the triples where sub-

jects and objects are connected (subject–object join)). Next, we know that the triple (C subClassOf A) is inferable by

selecting the triple satisfying the specific conditions (e.g. the triple whose object is ‘A’) among the result set obtained.

Finally, using the inference result, we remove the corresponding triples from the Del table (step 4 in Figure 5). For exam-

ple, since a triple (C subClassOf A) in Figure 5 is included in the inference result, it is deleted from the Del table. Similarly,

a triple (D subClassOf B) is removed from the Del table, because it is inferable from the K#.Subclass table. Thus, we obtain

the smaller RDF deltas from the Del table. In addition, although only the transitive closure of the subclass relationships in

the class hierarchy (rule 4 in Definition 2) is exemplified in Figure 5, all the other types of rules can be handled using the

SQL language. For example, suppose that e is an instance of class E (i.e. e type E) in triple set K and this triple is stored in

the K.Type table, the result inference of a triple (e type A) can be computed using the following SQL statement.

WITH temp (sub, obj) AS

(SELECT sub, obj FROM K#.SubClass WHERE sub=(SELECT obj FROM K.TYPE WHERE SUBJ=‘e’) UNION ALL

SELECT t1.sub, t1.obj FROM K#SubClass t1, temp t2 WHERE t1.sub=t2.obj)

SELECT * FROM temp WHERE obj=‘A’

Complexity analysis. Let N1 and N2 be the numbers of triples in K and K#. For the brevity of discussion, we assume that

all K and K# are already stored in a repository and there are no labels for the transitive RDFS relations. Since the forward

inference takes O(n2) time, the forward-inference-based change detection runs in time O(N2
2). Conversely, let O(μ) be

the complexity of the backward inference (generally, μ can be much less than linear in model size). The total run time in

backward-inference-based change detection will be O(N2μ). Finally, let p be the size of pruned triples in each data and

(N2 − p) be M. The complexity of pruning-based change detection will be O(Mμ). Obviously, the amount of time saved

depends on the number of pruned triples. The worst case for pruning is when all subjects and objects in each triple set

exist in another triple set. In this case, the time requirement equals to the backward-inference-based change detection.

Conversely, the best case for the pruning method is when every triple in (K − K#) is pruned. In that case, there is no need

to use backward inference.

5. Performance analysis

In this section, we compare our change detection technique to other change detection methods in terms of delta size and

performance. First, for the comparison of the delta size, Explicit (�E), Closure (�C) and Explicit&Dense (�ED) are

used. Next, for the comparison of execution time, three methods for the minimum size delta are evaluated: forward-

chaining used in SemVersion [9] (denoted as FC), backward-chaining (denoted as BC) and our pruning-then-backward-

chaining (denoted as PBC). Note that we do not compare our approach against Delta Function [15, 16], since it is highly

beneficial only when the labels are already constructed.

5.1. Experimental setting and test data set

All experiments were performed on a Pentium 4–3.2GHz PC with 1 GB memory. We implemented change detection

using Java with the RDF parser Rio,1 and used Oracle 11gR2 as the relational database to store each version and deltas.

The buffer cache of the Oracle database was set to 512M and the database block size was set to 8K, the default size in

Oracle. Since there is no benchmark for RDF change detection, we used one synthetic RDF data set generated using our

RDF generator and a few real RDF sets from the bioinformatics domain, including Gene Ontology termDB RDF2 (GO)

and Uniprot Taxonomy RDF3 (Uniprot). Tables 1 and 2 show the characteristics of our real data sets, each of which con-

sists of nine versions (GO monthly version) and six versions (Uniprot versions from 14.8 to 15.3). We do not consider

other properties, such as ‘type’ and ‘subPropertyOf’, since these real data contain only the ‘subClassOf’ relationship.

Conversely, the synthetic data were generated by Jena [25] and the number of triples ranges up to 1,000,000 (note that,

Im et al. 249

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

if the data sets contain the inferred triples, the number of triples is about 9 million). Figure 6 shows an example of syn-

thetic RDF data. Unlike real data, it contains all kinds of properties (e.g. subClassOf, type and subProperty). Changes

between the two triple sets being compared were randomly generated by varying the change ratio. Since only a small

fraction of the entire data changes and we focus on the practical support for the change detection, two specific change

ratios (i.e. 5 and 10%) are used in the experimental setting.

5.2. Performance analysis of various change detection methods on real data

Tables 3 and 4 show the delta sizes of three deltas for GO and Uniprot, respectively. The delta sizes are defined as the

sum of deleted triples and inserted triples. As expected, �ED achieves the better performance (with fewest triples). The

three change detection techniques for �ED (FC, BC and PBC) always generate the same result.

Figure 7 compares the performance of the three techniques for �ED using real data sets, GO and Uniprot. First, for

the three alternative techniques for �ED, Figure 7(a and b) shows the elapsed times to compute the changes between

Table 2. Uniprot taxonomy RDF

U1 U2 U3 U4 U5 U6

Number of triples 3,163,163 3,198,383 3,230,870 3,256,174 3,282,876 3,327,128
Number of subClassOf 481,736 484,656 488,465 492,376 496,597 501,745
Size (MB) 220 222 224 226 228 231

…
<rdfs:Class rdf:about="http://example.org/Class99">
 <rdfs:subClassOf>
 <rdfs:Class rdf:about="http://example.org /Class34"/>
 </rdfs:subClassOf>
</rdfs:Class>
<rdfs:Class rdf:about="http://example.org /Class10">
…
<Class34 rdf:about="http://example.org /Instance34"/>
<Class35 rdf:about="http://example.org /Instance27"/>
…

Figure 6. Sample RDF in synthetic set.

Table 3. Quality of change detection in GO (number of subClassOf relationships)

Pairs of RDF

(G1, G2) (G2, G3) (G3, G4) (G4, G5) (G5, G6) (G6, G7) (G7, G8) (G8, G9)

�E 873 1955 588 254 436 609 533 887
�C 9,038 17,002 3,750 2,617 4,170 5,029 3,401 5,568
�ED 794 1716 517 226 399 578 479 731

Table 1. Gene Ontology TermDB RDF

G1 G2 G3 G4 G5 G6 G7 G8 G9

Number of triples 419,995 426,235 431,540 432,705 456,793 459,225 462,589 490,488 467,654
Number of subClassOf 44,301 38,024 39,339 39,575 39,739 39,943 40,360 40,703 41,309
Size (MB) 33 33 35 35 35 35 35 35 36

Im et al. 250

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

two consecutive versions in each real data set. From Figure 7(a and b), we can observe that PBC significantly outper-

forms both FC and BC. PBC is about 10–80 times faster than FC and about 1.5–4 times faster than BC. We separately

measured the execution time of each core operations in change detection, set-difference and inference to understand why

PBC can outperform both FC and BC significantly. Table 5 shows the elapsed times of set-difference and inference oper-

ations when each change detection technique computes �ED for (G6, G7) from GO and (U4, U5) from Uniprot. The

results in Table 5 show that the inference operation takes most of the time in change detection. Consequently, FC per-

forms worst, as it must compute the closure of all triples in each version in advance, while both BC and PBC calculate

the closure of triples that are already computed by a set-difference between the two RDF triple sets. However, although

both BC and PBC use backward-chaining inference for change detection, PBC outperforms BC considerably in all cases,

because PBC prunes a number of triples for backward inference.

Table 4. Quality of change detection in Uniprot (number of subClassOf relationships)

Pairs of RDF

(U1, U2) (U2, U3) (U3, U4) (U4, U5) (U5, U6)

�E 6,538 4,335 4,635 5,080 6,503
�C 73,015 46,313 49,383 62,524 67,952
�ED 6,516 4,303 4,566 4,873 6,279

Figure 7. Elapsed time on real data sets. (a) Elapsed time on GO; (b) elapsed time on Uniprot.

Im et al. 251

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

We counted the number of triples that participated in the backward-chaining process in BC and PBC to investigate the

effect of the pruning scheme in PBC. Figure 8(a and b) shows the results for GO and Uniprot data sets. As is illustrated

in Figure 8(a and b), PBC can prune 10–60% of triples as early as possible prior to backward inference. We also observe

that the elapsed times in Figure 7(a and b) are approximately in proportion to the number of triples that participate in the

backward inference in Figure 8(a and b). In addition, we know from Figure 8(a and b) that the pruning effect of PBC is

greater in Uniprot than in GO. This is due to the characteristics of each data set. In the Uniprot data set, numerous exist-

ing concepts are removed and many new concepts are introduced in the subclass hierarchy between two consecutive ver-

sions. This type of change matches our pruning conditions (recall the subject–object condition in Section 3.2). As shown

in Figure 8(b), most triples, particularly for (U1, U2), are pruned by PBC. Meanwhile, numerous concepts in GO data set

are, rather than being deleted, moved from one position to another position in the hierarchy between two consecutive

Table 5. Elapsed time analysis: (G6, G7) and (U4, U5) (s)

(G6, G7) (U4, U5)

Inference time Set-operation time Inference time Set-operation time

FC 280 (63%) 162 (37%) 6585 (98%) 127 (2%)
BC 3 (50%) 3 (50%) 377 (96%) 15 (4%)
PBC 2 (40%) 3 (60%) 309 (95%) 15 (5%)

Figure 8. Pruning effect on real data sets. (a) Pruning effect on GO; (b) pruning effect on Uniprot.

Im et al. 252

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

versions, and thus they are not pruned. As shown in Figure 8(a), the ratio of pruned triples in GO by PBC is much less

than in Uniprot.

5.3. Scalability on synthetic data

In this section, in order to show that our change detection scheme is scalable, we present the delta size and the elapsed

time of each of three change detection schemes by varying the number of triples in the synthetic data set from 1000 to

1,000,000. Table 6 plots the delta size of the deltas generated by the three schemes with the ratio of changed triples as 5

and 10%, respectively. Unlike the real data sets, the result shows the sum of deleted triples and inserted triples that con-

tain not only ‘subClassOf’ relationships but also all the properties, such as ‘type’ and ‘subProperty’. We know from the

table that �C generates much larger deltas and �ED yields the fewest triples. In addition, we notice that all of FC, BC

and PBC produce the same �ED.

Table 7 plots the elapsed time of three change detection techniques in calculating �ED. As expected, FC performs

worst and PBC performs better than BC. However, the pruning effect of PBC is, unlike in real data sets, not so large,

because each change operation in the synthetic data, such as triple deletion, triple insertion and triple deletion-then-

insertion (i.e. moving from one position to another position in the hierarchy) was generated uniformly. In addition, we

can observe that the percentage of changes have some influence on the performance trends of FC, BC and PBC. PBC

performs better than BC when we set the ratio of changed triples to 10%. In particular, it should be noted that the perfor-

mance gap between BC and PBC is widening as the number of triples exceeds 100,000. This is because, as the number

of triples is increased, the pruning effect of PBC allows us to skip the inference step for the pruned triples while BC

should carry out the backward inference against more triples. In addition, we also counted the number of triples that par-

ticipated in the backward-chaining process in BC and PBC. Table 8 shows the results for two data sets. As illustrated in

Table 8, we can also observe that most triples are pruned in PBC. Consequently, we confirm that the proposed change

detection is more suitable for large RDF data sets.

Table 6. Delta size of change detection in synthetic data (number of all relationships)

Change ratio: 5% Change ratio: 10%

1,000 10,000 100,000 1,000,000 1,000 10,000 100,000 1,000,000

�E 44 455 4,576 45,720 90 911 9,109 91,261
�C 170 2,365 20,255 347,099 218 3,354 42,533 508,774
�ED 36 373 3,746 37,443 74 747 7,471 74,797

Table 7. Elapsed time on synthetic data sets (s)

Change ratio: 5% Change ratio: 10%

1,000 10,000 100,000 1,000,000 1,000 10,000 100,000 1,000,000

FC 7.8 64 978 13,102 6.5 53.1 1072 15,087
BC 0.1 2.2 22.1 6,426 0.6 4.4 63.7 13,099
PBC 0.1 1.4 17.7 4,007 0.5 3.5 33.5 8,108

Table 8. Pruning effect on synthetic data sets (number of triples)

Change ratio: 5% Change ratio: 10%

1,000 10,000 100,000 1,000,000 1,000 10,000 100,000 1,000,000

BC 6 62 625 6,208 12 125 1,229 12,342
PBC 3 48 482 4,681 7 81 947 9,437

Im et al. 253

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

6. Conclusion

Previous work on the RDF change detection technique mainly focused on minimizing the delta size using the semantics

of RDF. However, no existing approaches are scalable. We need to develop scalable schemes to compute the closure of

the triples to detect changes for the large RDF data. In this paper, we propose an efficient change detection technique for

RDF. It generates the smaller delta using backward-chaining inference and a pruning method. Our proposed scheme first

stores two RDF models in a relational database. It then computes the difference using the set-difference operation. Next,

it prunes many triples that are not necessary to apply backward inference. Finally, we apply the closure rules only to the

relevant triples for the deltas. Our experiments prove that our method generates the same size of RDF deltas that previous

work produced, but performs better.

We have two areas for future work. First, we need to improve the performance of our change detection schemes. For

this, we will investigate alternative storage schemes and will develop new query processing for RDF triples for change

detection. Next, we will extend our scheme to be able to handle the OWL model that has more powerful but complicated

inference rules.

Notes

1. Available at http://openrdf.org

2. Available at http://geneontology.org

3. Available at http://dev.isb-sib.ch/projects/uniprot-rdf/

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MEST) (No.

20120005695) and also supported by the MKE, Korea under ITRC NIPA-2012-(H0301-12-3001).

References

[1] Klyne G, Carroll JJ and McBride B. Resource description framwork (RDF): Concepts and abstract syntax. W3C

Recommendation, 2004.

[2] Flouris G, Manakanatas D, Kondylakis H, Plexousakis D and Antoniou G. Ontology change: classification and survey. The

Knowledge Engineering Review 2008; 23(2): 117–152.

[3] Noy NF and Klein M. Ontology evolution: Not the same as schema evolution. Knowledge and Information Systems 2004; 6(4):

428–440.

[4] Plessers P, Troyer O and Castelyan S. Understanding ontology evolution: A change detection approach. Journal of Web

Semantics 2007; 5(1): 39–49.

[5] Tummarello G, Morbidoni C, Bachmann-Gmur R and Erling O. RDFSync: Efficient remote synchronization of RDF models.

In: Proceedings of international semantic web conference, 2007, pp. 537–551.

[6] Im D, Lee S and Kim H. A version management framework for RDF triple stores. International Journal of Software

Engineering and Knowledge Engineering 2012; 22(1): 85–106.

[7] Klein M, Kiryakov A, Ognyanov D and Fensel D. Ontology versioning and change detection on the Web. In: Proceedings of

international conference on knowledge engineering and knowledge management, 2002, pp. 197–212.

[8] Noy NF and Musen MA. Ontology versioning in an ontology management framework. IEEE Intelligent Systems 2004; 19(4):

6–13.

[9] Volkel M and Groza T. SemVersion: An RDF-based ontology versioning system. In: Proceedings of IADIS international con-

ference on WWW/internet, 2006, pp. 195–202.

[10] Leonardi E, Hoai TT, Bhowmick SS and Madria S. DTD-DIFF: A change detection algorithm for DTDs. Data & Knowledge

Engineering 2006; 61(2): 384–402.

[11] Wang Y, DeWitt DJ and Cai J. X-Diff: An effective change detection algorithm for XML documents. In: Proceedings of inter-

national conference on data engineering, 2003, pp. 519–530.

[12] Berners-Lee T and Connolly D. Delta: An ontology for the distribution of differences between RDF graphs, http://www.w3.org/

DesignIssues/Diff (2004).

[13] Papavassiliou V, Flouris G, Fundulaki I, Kotzinos D and Christophides V. On detecting high-level changes in RDF/S KBs. In:

Proceedings of international semantic Web conference, 2009, pp. 473–488.

[14] Tzitzikas Y, Theoharis Y and Andreou D. On storage policies for semantic Web repositories that support versioning. In:

Proceedings of European Semantic Web conference, 2008, pp. 705–719.

[15] Zeginis D, Tzitzikas Y and Christophides V. On the foundations of computing deltas between RDF models. In: Proceedings of

international Semantic Web conference, 2007, pp. 637–651.

Im et al. 254

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

[16] Zeginis D, Tzitzikas Y and Christophides V. On computing deltas of RDF/S knowledge bases. ACM Transactions on the Web

2011; 5(3): 14.

[17] Hayes P and McBride B. RDF semantics. Technical Report, W3C Recommendation, 2004.

[18] Christophides V, Plexousakis D, Scholl M and Tourtounis S. On labeling schemes for the Semantic Web. In: Proceedings of

international World Wide Web conference, 2003, pp. 544–555.

[19] Broekstra J and Kampman A. Inferencing and Truth maintenance in RDF Schema. In: Proceedings of workshop on practical

and scalable semantic system, 2003.

[20] Shen W and Qu Y. An RDF storage and query framework with flexible inference strategy. In: Proceedings of Asia–Pacific Web

conference, 2006, pp. 166–175.

[21] Stuckenschmidt H and Broekstra J. Time–space trade-offs in scaling up RDF schema reasoning. . In: Proceedings of workshop

on scalable Semantic Web knowledge base system, 2005, pp. 172–181.

[22] Broekstra J, Kampman A and Harmelen FV. Sesame: A generic architecture for storing and querying RDF and RDF schema.

In: Proceedings of international Semantic Web conference, 2002, pp. 54–68.

[23] Ognyanov D and Kiryakov A. Tracking changes in RDF(S) repositories. In: Proceedings of international conference on knowl-

edge engineering and knowledge management, 2002, pp. 373–378.

[24] Carroll JJ. Signing RDF graphs. In: Proceedings of international Semantic Web conference, 2003, pp. 369–384.

[25] Carroll JJ, Dickinson I, Dollin C, Reynolds D, Seaborne A and Wilkinson K. Jena: Implementing the Semantic Web recommen-

dation. In: Proceedings of international World Wide Web conference, 2004, pp. 74–83.

[26] Eder J and Wiggisser K. Change detection in ontologies using DAG comparison. In: Proceedings of international conference

on advanced information systems engineering, 2007, pp. 21–35.

[27] Leonardi E, Bhowmick SS and Madria S. XANDY: Detecting changes on large unordered XML documents using relational

databases. In: Proceedings of international conference on database systems for advanced applications, 2005, pp. 711–723.

[28] Abadi DJ, Marcus A, Madden SR and Hollenbach K. Scalable semantic web data management using vertical partitioning. In:

Proceedings of international conference on very large data bases, 2007, pp. 411–422.

[29] Wilkinson K, Sayers C, Kuno H and Reynolds D. Efficient RDF storage and retrieval in Jena2. In: Proceedings of workshop on

Semantic Web and databases, 2003, pp. 131–150.

[30] Chong EI, Das S, Eadon G and Srinivasan J. An efficient SQL-based RDF querying scheme. In: Proceedings of international

conference on very large data bases, 2005, pp. 1216–1227.

[31] Eisenberg A and Melton J. SQL: 1999, formerly known as SQL 3. sigmod record 1999; 28(1): 131–138.

Im et al. 255

Journal of Information Science, 39 (2) 2013, pp. 238–255 � The Author(s), DOI: 10.1177/0165551512463650

