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Abstract

MapReduce is a programming model that is extensively used for large-
scale data analysis. However, it is inefficient to perform join operations us-
ing MapReduce, because large intermediate results are produced, even in
cases where only a small fraction of input data participate in the join. We
alleviate this problem by exploiting Bloom filters within a single MapRe-
duce job. We create Bloom filters for an input dataset, and filter out the
redundant records in the other input dataset in the map phase. To do
this, we modify the MapReduce framework in two ways. First, map tasks
are scheduled according to the processing order of input datasets. Second,
Bloom filters are dynamically created in a distributed fashion. We pro-
pose two map task scheduling policies and provide a method to determine
the processing order based on the estimated cost. Our experimental re-
sults show that the proposed techniques decrease the size of intermediate
results and can improve the execution time.
Keywords : join processing, MapReduce, Hadoop, Bloom filter

1 Introduction

MapReduce [8] has been extensively used for large-scale data analysis in both
academic and business areas. It can process huge amounts of data in a rea-
sonable time using a large number of commodity hardwares, and so valuable
information hidden in this data can be revealed with a lower cost compared
to previous techniques, such as traditional databases. The major benefits of
MapReduce are its simple programming interface and extremely high scalabil-
ity combined with graceful failure handling.

Unfortunately, MapReduce has some limitations to performing a join op-
eration on multiple datasets, one of the essential operations for practical data
analysis [6, 23]. The primary problem of join processing in MapReduce is that
it emits large intermediate results, regardless of the number of final join results.
This could cause an unnecessary network overhead for sending the intermediate
results to other cluster nodes, and a disk I/O cost for sorting and merging them,
even when only a small fraction of input data participate in the join.

∗A preliminary version of this paper entitled “Join Processing Using Bloom Filter in
MapReduce” has been presented at the 2012 ACM Research in Applied Computation Sym-
posium (RACS’12). This paper is an extended version that includes an additional map task
scheduling policy and new experimental results.
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In the field of databases, many techniques have been studied over the past 30
years to address this problem [9]. However, in MapReduce, auxiliary data struc-
tures such as indexes or filters are not available, because it was initially designed
to process a single, large dataset [8]. In this regard, some researchers have crit-
icized MapReduce for ignoring rich technologies in database management sys-
tems, including efficient indexes and careful query execution planning [19]. To
apply such techniques, the modified MapReduce versions [6, 18] of semijoin [5]
and bloomjoin [15] have been proposed, but they require multiple MapReduce
jobs to process input data multiple times.

In this work, we propose join techniques that utilize Bloom filters within
a single MapReduce job. We consider join operations for two datasets in this
paper. Our fundamental idea is to create Bloom filters [7] on one input dataset,
and to filter out redundant records in the other dataset by applying these filters
in the map phase. In this way, we can reduce the communication cost for
redundant records by processing the input datasets only once. However, it
is not trivial to apply Bloom filters within a single MapReduce job for the
following two reasons. First, the processing order of input datasets cannot be
controlled in the original MapReduce framework, because MapReduce schedules
map tasks regardless of the dataset from which their corresponding input splits
were obtained. Second, the Bloom filters should be constructed in a distributed
fashion, because an input dataset is divided into multiple splits and distributed
to all cluster nodes.

To resolve these issues, we modify the MapReduce framework as follows.
First, we change the map task scheduling so that input datasets are processed
sequentially in the map phase. Second, we design the execution flow to con-
struct Bloom filters dynamically within a single MapReduce job. Locally created
Bloom filters for an input dataset are sent to, and merged at, a master node.
We have implemented these features on the top of Hadoop [1], an open-source
implementation of the MapReduce framework. On this framework, we define
two map task scheduling policies: synchronous and asynchronous scheduling.
In synchronous scheduling, map tasks for the second input dataset are not as-
signed during the merging phase. In contrast, under asynchronous scheduling,
the map tasks are continuously assigned, though some tasks can be processed
without the merged filters. Under our scheduling policies, the processing cost
is affected by the processing order of the two input datasets. Therefore, we
propose a method to choose the processing order based on the estimated cost.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and related work to this study, and Section 3 describes the design and
implementation of our proposed framework. In Section 4, we provide a method
to determine the processing order of input datasets based on the estimated cost.
Then, we present our experimental results in Section 5. Finally, we conclude
and discuss future work in Section 6.

2 Background and Related Work

We first review the MapReduce framework and its join processing techniques.
Then, we describe the Bloom filter and previous work aimed at improving join
performance using the Bloom filter in different environments.
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MapReduce Framework [Dean, OSDI ’04]
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Figure 1: Execution overview of MapReduce.

2.1 MapReduce

MapReduce [8] is a programming model for large-scale data processing run on
a shared-nothing cluster. As the MapReduce framework provides automatic
parallel execution on a large cluster of commodity machines, users can easily
write their programs without the burden of implementing features for parallel
and distributed processing.

A MapReduce program consists of two functions: map and reduce. The map

function takes a set of records from input files as simple key/value pairs, and
produces a set of intermediate key/value pairs. The values in these intermediate
pairs are automatically grouped by key and passed to the reduce function. Sort
and merge operations are involved in this grouping process. The reduce function
takes an intermediate key and a set of values corresponding to the key, and then
produces final output key/value pairs. An execution overview of MapReduce is
shown in Figure 1.

A MapReduce cluster is composed of one master node and a number of
worker nodes. The master periodically communicates with the workers using
a heartbeat protocol to check their status and control their actions. When a
MapReduce job is submitted, the master creates map and reduce tasks, and
then assigns each task to idle workers. A map worker reads the input split
and executes the map function specified by the user. A reduce worker reads
the intermediate pairs from all map workers and executes the reduce function.
When all tasks are complete, the MapReduce job is finished.

2.2 Bloom Filter

A Bloom filter [7] is a probabilistic data structure used to test whether an
element is a member of a set. It consists of an array of m bits and k independent
hash functions. All bits in the array are initially set to 0. When an element
is inserted into the array, the element is hashed k times with k hash functions,
and the positions in the array corresponding to the hash values are set to 1. To
test the membership status of an element, we then evaluate this array. If all
bits of the element’s k hash positions are 1, we can conclude that it is in the set.
Bloom filters may yield false positives, but false negatives are not produced.

The merit of the Bloom filter is its space efficiency. Its size is fixed regard-
less of the number of elements n, but there is a tradeoff between m and the
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false positive probability p. The probability of a false positive after inserting n
elements can be calculated as follows [7]:

p =

(
1−

(
1− 1

m

)kn
)k

≈
(

1− e kn
m

)k
(1)

The Bloom filter has been used for efficient join processing. Bloomjoin [15]
is a join algorithm to filter out tuples not matched by a join using Bloom filters.
Suppose that relations R(a,b) and S(a,c) reside in site 1 and site 2, respectively.
In order to join these two relations, the bloomjoin algorithm generates a Bloom
filter with the join keys of a relation, say R. Then, it sends the filter to site 2,
where S resides. At site 2, the algorithm scans S and sends only the tuples with
the join keys that are set in the received filter to site 1. Finally, it joins R and
the filtered S at site 1. We adopt this algorithm for the MapReduce framework.

Bloomjoin was combined with a group-by operation and extended to multi-
way joins in [12]. More recent studies [16, 20] optimize complex distributed
multi-way joins using this algorithm. However, these techniques assume that
the join relations are neither split nor distributed to other nodes dynamically,
which is not the case in the MapReduce environment.

2.3 Joins in MapReduce

Join algorithms in MapReduce are roughly classified into two categories: map-
side joins and reduce-side joins [14]. Map-side joins are more efficient than
reduce-side joins, because they confine the final join results to the map phase.
However, they can only be used in particular circumstances. For Hadoop’s
map-side join [22], called the Map-Merge join [14], two input datasets should be
partitioned and sorted on the join keys in advance, or an additional MapReduce
job is required to meet the condition. A broadcast join [6] is efficient only when
the size of one dataset is small.

Reduce-side joins can be generally used, but they are inefficient because
large intermediate records have to be sent from map workers to reduce workers.
Figure 2 shows an example of a join between R(a,b) and S(a,c) with the basic
reduce-side join algorithm, called the repartition join [6]. In this example, all
of the input records are collected by reduce workers to join records with the

Basic Join Processing in MapReduce
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same key, including redundant records marked with strikethrough text. Semi-
join [6] requires three MapReduce jobs. It finds unique join keys from an input
dataset, finds joined records in the other dataset, and then produces final join
results with an independent MapReduce job. Reduce-side joins with a Bloom
filter are described in [18], but these create the Bloom filter via an independent
job. Therefore, it is necessary to process input datasets multiple times. Our
proposed technique is completed within a single MapReduce job. [13] is closely
connected with our paper. This work conducts the theoretical investigation of
using Bloom filters within one MapReduce job, but does not provide concrete
technical details. We implement a working system, and propose synchronous
and asynchronous scheduling.

Map-Reduce-Merge [23] adds a merge phase after the reduce phase to sup-
port operations with multiple heterogeneous datasets, but suffers from the same
drawback as reduce-side join algorithms. There have been some attempts to
optimize multi-way joins in MapReduce [4, 11]. They discuss the same idea
of minimizing the size of the records replicated to the reduce workers. In this
paper, we address only two-way joins. However, our approach can be extended
to multi-way joins by combining these approaches.

3 The Proposed Framework

This section describes the overall architecture of our framework and the major
changes we have made. We have implemented our approach into Hadoop [1],
an open-source implementation of the MapReduce framework. In Hadoop, the
master node is called the jobtracker and the worker node is called the tasktracker.
We will use these terms in the remainder of this paper.

3.1 Execution Overview

Figure 3 shows the overall execution flow of a join operation on datasets R and S
in our framework. In this example, we suppose that R is chosen to be processed
first; that is, the Bloom filters are built on R. We use the term build input for
the input dataset processed first, and probe input for the other dataset. When
a user program is submitted, the following sequence of actions is performed.

1. Job submission. If a job is submitted, map and reduce tasks are created.
Assume that m1 map tasks for R, m2 map tasks for S, and r reduce tasks
are created. A task includes all necessary information to enable it to be
run on a tasktracker, such as the job configuration and the location of the
corresponding input/output files.

2. First map phase. The jobtracker assigns the m1 map tasks for R or
the reduce tasks to idle tasktrackers. A map tasktracker reads the input
split for the task, converts it to key/value pairs, and then executes the
map function for the input pairs.

3. Local filter construction. The intermediate pairs produced from the
map function are divided into r partitions, which are sent to r tasktrackers.
For each partition, a Bloom filter is created by inserting the keys of its
intermediate pairs. These filters are called local filters, because they are
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Execution Overview
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Figure 3: Execution overview.

built for only the intermediate results in a single tasktracker. If a task-
tracker runs multiple map tasks, it merges the local filters of each task
and maintains only r filters.

4. Global filter merging. When all m1 map tasks are complete, the job-
tracker signals all tasktrackers to send it their local filters via heartbeat
responses. Then, the jobtracker merges all local filters to construct the
global filters for R. Next, the jobtracker sends the global filters to all task-
trackers.

5. Second map phase. The jobtracker assigns the m2 map tasks for S
or the remaining reduce tasks to the tasktrackers. Tasktrackers run the
assigned tasks with the received global filters. The intermediate pairs with
keys that are not present in the global filters are filtered out.

6. Reduce phase. This step is the same as the reduce phase in Hadoop.
A reduce tasktracker reads the corresponding intermediate pairs from all
map tasktrackers using remote procedure calls. It sorts all intermediate
pairs and runs the reduce function. Final output results are written in
the given output path.

We have made two modifications to the design of Hadoop. First, we schedule
map tasks according to the order of the dataset. Second, we construct Bloom
filters on the build input in a distributed fashion to filter out the probe input.
The following subsections describe more details on these points.
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3.2 Map Task Scheduling

Hadoop basically assigns map tasks based on the order of the input split size,
considering the locality of the input split. Consequently, map tasks on different
input datasets are intermingled by the task scheduler. We assign map tasks
according to a certain order of the input datasets. This gives us the opportunity
to apply database techniques such as tuple filtering and join ordering. The order
is determined based on the estimated cost, as described in Section 4. Within a
single input dataset, map tasks are assigned as in the original Hadoop.

In order to schedule map tasks by dataset, each map task needs to know
the dataset identifier of the corresponding input split. Accordingly, we have
implemented new input format and input split classes (DataSetInputFormat
and DataSetSplit) to contain this information by extending the respective
Hadoop FileInputFormat and FileSplit classes. In addition, we have mod-
ified JobQueueTaskScheduler, which is the default task scheduler of Hadoop,
to schedule map tasks using the dataset identifier.

We define the two scheduling policies of synchronous and asynchronous
scheduling. These are similar in that they assign map tasks in the order of
the input datasets, but their behavior is different during the global filter merg-
ing phase.

3.2.1 Synchronous Scheduling

Under the synchronous scheduling policy, our task scheduler does not assign the
map tasks for the probe input during the global filter merging phase. Instead,
the assignment is deferred until the global filters are constructed and sent to the
tasktrackers. Then, every probe input split can be processed with the filters, so
more redundant intermediate results can be filtered out.

However, under this policy, all tasktrackers cannot run the map tasks for the
probe input, and should wait until the global filter construction is finished. (Of
course, they can run the copy operations of reduce tasks or the tasks of other
MapReduce jobs.) The waiting time could be long, especially if straggler nodes
exist. Then, the gain from the filtering is offset by the loss from such waiting.
Hadoop has a feature known as speculative execution, in which multiple copies
of the same task are run on different tasktrackers when the job is close to
completion. We can reduce the waiting time using speculative execution during
the global filter merging phase.

3.2.2 Asynchronous Scheduling

Even if the waiting time during the global filter merging phase is not long, the
loss from the waiting may be large depending on the size of the records that
are filtered out. Thus, we provide an asynchronous scheduling policy. Under
asynchronous scheduling, our task scheduler continues to assign the map tasks
for the probe input without such waiting. Tasktrackers can run these tasks
without filtering until they receive the global filters.

In this policy, tasktrackers do not need to wait during the global filter merg-
ing phase. Instead, the size of the intermediate results may be increased. There
is a tradeoff between synchronous and asynchronous scheduling, and it depends
on the waiting time and the filter performance.
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3.3 Bloom Filter Construction

While a tasktracker runs a map task for the build input, it creates the Bloom
filters on the intermediate records produced from the task. A Bloom filter is
created for each map output partition, which is assigned for each reduce task.
Therefore, the total number of Bloom filters is the number of reduce tasks.
When multiple map tasks are run, each tasktracker merges its Bloom filters, so
that only one set of Bloom filters is maintained. We call this set the local filters.

When all map tasks for the build input are complete, the jobtracker must
gather all local filters to construct the global filters. In Hadoop, the jobtracker
controls the tasktrackers by putting some instructions, called TaskTrackerAction,
in heartbeat messages. For the merging process, we add two TaskTrackerAction
classes, called SendLocalFilterAction and ReceiveGlobalFilterAction. The
jobtracker sends the SendLocalFilterAction as the heartbeat response to all
tasktrackers, and they send the jobtracker their local filters. The jobtracker
merges all the local filters to build the global filters using bitwise OR opera-
tions, and sends the ReceiveGlobalFilterAction with the global filters in the
heartbeat response to all tasktrackers.

If the number of reduce tasks or tasktrackers is large, the global filter con-
struction can become a bottleneck. This overhead could be distributed by merg-
ing local filters hierarchically, although this has not yet been implemented—we
leave this issue for future work.

3.4 API and Parameters

Hadoop provides a library class called MultipleInputs to support MapReduce
jobs that have multiple input paths with a different InputFormat and Mapper

for each path. This class is convenient, as it allows users to specify which jobs
should perform the join operation. We provide a similar library class called
JoinInputs. Users can specify jobs to be joined with Bloom filters using the
following API.

JoinInputs.addInputPath(conf, path, dsid, inputformat, mapper)

Compared to MultipleInputs, we add dsid to specify the dataset identifier,
and use inputformat as a subclass of DataSetInputFormat, described in 3.2.

We also add several parameters to configure our framework, as shown in
Table 1. Users can define these in Hadoop configuration files, or specify them
as runtime parameters.

Table 1: User Parameters

Parameter Description Type Default value

whether to use Bloom filters
mapred.filter.use

for join processing
boolean true

mapred.filter.size size of a Bloom filter (bits) integer 4194304

number of hash functions
mapred.filter.num.hash

for Bloom filters
integer 2

asynchronous/synchronous
mapred.filter.async

map task scheduling policy
boolean true
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4 Cost Analysis

We adjust the cost model for Hadoop described in [17] to consider the cost
for the construction of Bloom filters. We use the same assumption of the cost
model, i.e., that the execution time is dominated by I/O operations. Using this
cost model, the query optimizer can choose the strategy that minimizes the total
cost, including the processing order of input datasets, the map task scheduling
policy, and whether to use Bloom filters.

4.1 Cost Model

Assume that we have a MapReduce job for a join on R and S. Let |R| be the
size of R, |S| be the size of S, and |D| be the size of the intermediate data of
the job. In addition, let cr be the cost of reading or writing data remotely, cl
be the cost of reading or writing data locally, and ct be the cost of transferring
data from one node to another, as defined in [17]. We will assume that the size
of the sort buffer is B + 1, the maximum size of the input split is b, and the
maximum number of map tasks that are run simultaneously on the cluster is
nm.

The total cost for the job is the sum of the cost Cr of reading the input
data, the cost Cs of performing the sorting and merging at the map and reduce
nodes, the cost Cf of transferring the Bloom filters among the nodes, and the
cost Ct of transferring intermediate data among the nodes. We omit the cost of
writing the final results, because this is the same regardless of whether Bloom
filters are used.

Then, the total cost C is as follows:

C = Cr + Cs + Cf + Ct (2)

where

Cr =

{
cr · (|R|+ |S|+ b · nm) , if synchronous scheduling is used
cr · (|R|+ |S|) , otherwise

(3)

Cs = cl · |D| · 2(dlogB |D| − logB (m1 +m2)e+ dlogB (m1 +m2)e) (4)

Cf = 2ct ·m · r · t (5)

Ct = ct · |D| (6)

Note that we compute Cr by adding b · nm to the input data if synchronous
scheduling is used in Equation 3. This cost model only considers I/O costs, but
we should include the waiting time during the global filter merging phase in
the cost model. Though it cannot be measured consistently, we approximate its
overhead as the cost that the maximum number of map tasks can be run sim-
ulatenously on all tasktrackers. Accordingly, we include the cost by converting
the waiting time into the maximum size of the input splits for the maximum
number of map tasks.

Cs and Ct are the same as in [17], and we add the cost Cf to the cost
model. Cf is a constant because the Hadoop parameters, such as the size of a
Bloom filter m, the number of reduce tasks r, and the number of tasktrackers
t, are set. The coefficient is multiplied by two as local and global filters are
transmitted between the jobtracker and the tasktrackers. Another difference in
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our model is that the size of the intermediate results |D| changes according to
the scheduling policy and the performance of the Bloom filters. This is discussed
in the following subsection.

4.2 Estimating the Size of the Intermediate Results

The most important factor in determining the total cost is the size of the in-
termediate results |D|. In order to estimate |D|, we need to know the number
of distinct join keys and the ratio of joined records in each dataset. We assume
that this information is given. It may be maintained in some systems. (In
Hive [2], for example, some research has been conducted that aims to optimize
queries using table and column statistics [21, 10].) Otherwise, this information
can be determined from certain parameters.

For simplicity, we shall assume that the job does not have any selection
predicate on the input datasets. Selection predicates affect the size of the inter-
mediate results, but our model can be easily extended to consider them.

The size of the intermediate results depends on the map task scheduling
policy described in 3.2. Let σR be the ratio of the joined records of S with R,
and σS be that of R with S. In synchronous scheduling, |D| can be estimated
using the probability of a false positive p from Equation 1 as follows:

|D| =
{
|R|+ σR|S|+ p(1− σR)|S| , if R is the build input
|S|+ σS |R|+ p(1− σS)|R| , if S is the build input

(7)

In asynchronous scheduling, |D| can be estimated as follows:

|D| =
{
|R|+ |S|a + σR · |S|f + p(1− σR) · |S|f , if R is the build input
|S|+ |R|a + σS · |R|f + p(1− σS) · |R|f , if S is the build input

(8)

where

|R|a = min(b · nm, |R|), |R|f = |R| − |R|a,
|S|a = min(b · nm, |S|), |S|f = |S| − |S|a.

In asynchronous scheduling, |R|a or |S|a give the size of the probe input splits
that are processed without filtering, and |R|f or |S|f give the size of the probe
input splits that are processed with Bloom filters. As some probe input splits are
processed without filtering, the size of the intermediate results in asynchronous
scheduling may be larger than that under synchronous scheduling. However,
synchronous scheduling suffers from the waiting time during the global filter
merging phase, and this cost is included in Equation 3.

Our cost model can be used to compute the total cost of the repartition join
(without Bloom filters) with the condition that Cf = 0 and |D| = |R|+ |S|. We
can use our cost model to choose the processing order of the input datasets, the
map task scheduling policy, and whether to use Bloom filters.

5 Experimental Results

In this section, we present experimental results of our implementation. All
experiments were run on a cluster of 11 machines consisting of 1 jobtracker and
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10 tasktrackers. Each machine had a 3.1 GHz quad-core CPU, 4 GB memory,
and 2 TB hard disk. The operating system was 32-bit Ubuntu 10.10, and the
Java version used was 1.6.0 26.

We implemented the proposed framework on Hadoop 0.20.2. We set the
HDFS block size to 128 MB and the replication factor to 3. Each tasktracker
could simultaneously run three map tasks and three reduce tasks. The I/O
buffer was set to 128 KB, and the memory for sorting data was set to 200 MB.

5.1 Datasets

We used TPC-H benchmark [3] datasets, varying the scale factor (SF) between
100, 200, and 300. The scale factor describes the entire database size of the
dataset in gigabytes. We performed a join between the two largest tables in the
database, lineitem and orders. The orderkey column of the lineitem table
is a foreign key to the orderkey column of the orders table. Thus, we added
some selection predicates to control the join selectivities. Our test query can be
expressed in SQL-like syntax as follows:

SELECT substr(l.*, 0, len), substr(o.*, 0, len)

FROM lineitem l, orders o

WHERE l.orderkey = o.orderkey

AND o.custkey < ‘?’

We ran the query, changing the ‘?’ in the predicate to set the ratio of joined
records of orders with lineitem (σL) to between 0.001 and 0.5. In addition,
we set the query results as substrings of the joined records in each table in
order to vary the size of the intermediate results by changing the length of the
substrings len. Hadoop programs for the test queries were hand-coded, and we
chose orders as the build input and lineitem as the probe input based on the
estimated cost.

5.2 Evaluation

We compared the performance of our techniques to that of the existing repar-
tition join [6], semijoin [6], and the reduce-side join with Bloom filters, which
are created in an independent MapReduce job, referred to as RSJ-f [18]. Our
techniques can be run with synchronous and asynchronous scheduling, and we
refer to these as SBJ (Synchronous Bloom Join) and ABJ (Asynchronous Bloom
Join). We used the MurmurHash implemented in Hadoop as the hash function,
and set the number of hash function k = 2 and the size of a Bloom filter to 4
Mb. We also used this configuration for RSJ-f, so that the performance of the
Bloom filters did not differ between tests.

Figure 4 shows the execution times of the test queries using each join tech-
nique on various sizes of TPC-H dataset. Figures 4(a), 4(b), and 4(c) show
similar patterns. We can observe that the techniques using filters (SBJ, ABJ,
and RSJ-f) show better performance than the repartition join when σL is small.
Among these, our techniques outperform RSJ-f, which processes the build input
twice and has additional costs to initialize and cleanup an extra MapReduce job.
If more records participate in the join, the performance becomes worse because
the number of redundant records that can be filtered out is reduced. Semijoin
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Figure 4: Execution times on various sizes of TPC-H dataset. (len = 10, 128
MB HDFS block)
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Figure 5: Intermediate result sizes on various sizes of TPC-H dataset. (len =
10, 128 MB HDFS block)

did not finish when σL was greater than or equal to 0.05, because it ran out of
memory.

Figures 5(a), 5(b), and 5(c) show the intermediate result sizes in each test
case. Those of ABJ vary each time, so we present the average size in our results.
We exclude the semijoin because it uses a map-side join for the second and third
jobs. In each case, SBJ and RSJ-f have almost the same size intermediate results,
and ABJ has a slightly larger size because some map tasks are processed without
filtering in the global filter merging phase. Instead, SBJ has the additional cost
of waiting during the merging phase, and RSJ-f runs an extra MapReduce job
to create the Bloom filters. The repartition join has the largest size, because
it emits all probe input records as intermediate results. We can see that the
intermediate result sizes increase as σL increases, and this leads to an increase
in execution times. As the size of the Bloom filters is fixed, the probability of
false positives increases with the number of join keys that are inserted into the
filters. This is more obvious in the case of a large scale factor.

With the configurations in Figure 4 and 5, ABJ shows better performance
than SBJ, although this is dependent on the size of the intermediate results that
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Figure 6: Execution times with various HDFS block sizes. (SF = 100, len =
30)
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Figure 7: Intermediate result sizes with various HDFS block sizes. (SF = 100,
len = 30)

are produced in the global filter merging phase. Figure 6 shows the execution
times with various HDFS block sizes. As the block size is the maximum size
of an input split in the map phase, ABJ processes more input records without
filtering as the block size increases. We also set len to 30 to clarify the impact
of the increase in intermediate result size. In this case, SBJ is better than ABJ
when σL is small.

Figures 7(a), 7(b), and 7(c) show the intermediate result sizes corresponding
to the cases in Figures 6(a), 6(b), and 6(c). We can observe that the difference
between the intermediate result sizes of SBJ and ABJ is generally large when σL
is small, and the gap gets larger as the block size gets larger. Therefore, we can
confirm that the performance of SBJ and ABJ is affected by the intermediate
result size, and is dependent on several factors such as the performance of the
Bloom filters, the input split size, and the maximum number of map tasks, as
described in Section 4.2.

Finally, we ran the test query with various sizes of the Bloom filter, from 512
Kb to 8 Mb. Figure 8 and Figure 9 show the execution times and intermediate
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Figure 8: Execution times with various Bloom filter sizes. (SF = 100, len =
10, 128 MB HDFS block)
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Figure 9: Intermediate result sizes with various Bloom filter sizes. (SF = 100,
len = 10, 128 MB HDFS block)

result sizes, respectively, for the experiments. In Figure 9(a), we can observe
that the 512 Kb Bloom filter was sufficient when σL=0.001, so the intermediate
result sizes were barely reduced as the size of the Bloom filter increased. Rather,
a large-sized filter increased the execution time, as shown in Figure 8(a). If the
filter size is too large, the overhead for constructing and communicating the
filters offsets the benefits of filtering. On the other hand, in Figure 9(c), we
can observe that the 512 Kb Bloom filter was too small when σL=0.5, so only
a small number of redundant records were filtered out. This also increases the
execution time, as shown in Figure 8(c). If the size of the Bloom filters is too
small, redundant records cannot be filtered out. Therefore, it is important to
determine the most appropriate size for the Bloom filter. This can be determined
from statistical information about the input datasets, and we leave this for future
work.
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6 Conclusions and Future Work

In this paper, we have presented an architecture to improve the join performance
of the MapReduce framework using Bloom filters. We made two design changes
to Hadoop. First, we assigned map tasks based on the order of the dataset.
Second, we constructed Bloom filters in a distributed fashion. We have pro-
posed two scheduling policies, synchronous and asynchronous scheduling, and
described a cost model to estimate the total join cost in each case. We have
evaluated our techniques against several existing join algorithms with various
sizes of TPC-H dataset on our commodity cluster. The results show that our
techniques significantly improve the query execution time, especially in the case
where a small fraction of an input dataset is being joined.

In future work, we will extend our framework to support multi-way joins,
and implement an optimizer module to automatically determine the best join
strategy in terms of the processing order of the input datasets, the scheduling
policy, and the Bloom filter size. Further, we plan to apply some other filtering
techniques to our framework.
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