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When accessing objects in an object-oriented database, performance can be greatly improved by
prefetching objects efficiently. In this paper we present a new object prefetch policy, dynamic
selective eager object fetch (SEOF), which prefetches objects only from selected candidate pages
without using any high-level object semantics. Our policy considers both correlations and
frequencies of fetching objects when selecting prefetch candidates. Unlike existing prefetch policies,
dynamic SEOF utilizes the memory and the swap space of clients efficiently without resource
exhaustion. Furthermore, the proposed policy has good adaptability to both the effectiveness of
clustering and database size. It also adjusts the degree of prefetching dynamically according to the
working environment. We show the performance of the proposed policy through experiments over

various multi-client system configurations.

1. INTRODUCTION

Object-oriented databases are widely being deployed in
the next generation of telecommunications, Internet and
financial applications around the globe due to their rich
data model. One of the key issues in such applications is
performance, because of their computationally complex data
management. To meet their stringent requirements, there
have been numerous publications concerning clustering and
pointer swizzling, which are major issues in achieving high
performance in object management [1, 2, 3, 4, 5, 6].

The most common approach to building an object-
oriented DBMS is the data shipping architecture in the
client–server environment, e.g. O2 [7], ORION-1SX [8].
Therefore, in order to speed up object access it is necessary
to reduce object misses at clients and to minimize client–
server interactions. As such, it is well known that efficient
object buffer management can significantly improve the
overall performance.

However, object-buffer management has a number of
complex and difficult problems that need to be solved
if object buffering is to be efficient. The object buffer
should handle fragmentation as well as heavy memory
allocation and deallocation, since it should be able to
manipulate objects of various sizes. Moreover, a buffer
consistency protocol may make object-buffer management
more difficult [9].

It is also not easy for an object buffer to delimit the
span of an object access. This is because the use of the
FIX/UNFIX protocol for page-buffer management results in

1Current address: Samsung Electronics Co., Ltd. 12th Fl., Samsung
Plaza Bldg. 263, Seohyeon-Dong, Pundang-Gu, Sungnam-Si, Kyounggi-
Do, Korea.

performance degradation of object access. Thus, efficient
buffer replacement is very difficult, if not impossible.

Because of the difficulties related to object buffering, most
previous projects [1, 9, 10, 11] have investigated efficient
object prefetch policies rather than efficient object-buffer
replacement algorithms, in order to increase the object-
buffer hit ratio. An early article proposed a policy which
exploits high-level object semantics in terms of inheritance
and structural relationships [1]. Alternative approaches
based on profiling or the learning of object access patterns
have been studied in [9, 11].

A prefetch policy that uses high-level object semantics
is likely to help the efficient retrieval of complex objects.
However, this approach cannot predict general object access
patterns which might result from invoking a method [12].
Moreover, it is difficult for an object manager fashioned
in a byte server to understand all the semantics of objects
because the byte server has no understanding of class,
relationship or inheritance. In predictive schemes, it is
expensive to keep profiling or learning object access patterns
on every access context and it is difficult to realize these
policies. In addition, all of the previous studies [1, 2, 5,
9, 13] took little notice of exhaustion and competition for
memory and swap resources, since most experiments were
performed on small databases. Further, performance issues
in multi-client environments have rarely been studied.

We therefore set out to build a new object prefetch
policy, dynamic selective eager object fetch (SEOF), that
prefetches objects only from selected candidate pages
without using any object semantics. We then studied the
performance of our new policy over various multi-client
system configurations.
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The remainder of the paper is organized as follows.
Section 2 discusses in further detail the techniques of object
prefetch and related work. In Section 3, we introduce
our dynamic SEOF algorithm and the rationale underlying
it. Section 4 describes the simulation model and presents
the experimental results. In Section 5, we briefly describe
some issues in the implementation of our policy. Finally,
conclusions from our study and some areas for future
research are given in Section 6.

2. TECHNIQUES OF OBJECT PREFETCH

Most object-oriented database applications have a strong
tendency to cache a large number of objects in virtual
memory and perform extensive computations on them.
However, it is not desirable to keep objects in page frames,
because pure page-based buffering leads to inefficient space
utilization if databases are clustered poorly [8, 9, 13].

To solve this problem, many object-oriented DBMSs are
based on the dual-buffer architecture in which an object
buffer functions above a page buffer [8, 9]. Examples are
Itasca [14], Ontos [15] and Versant [16]. This partitioned
buffering approach provides good space utilization by
filtering unused objects from the page buffer, and also allows
efficient garbage collection.

Performance when accessing objects in the dual-buffer
architecture primarily depends on the object-buffer hit ratio.
However, as mentioned above, object-buffer management
has many difficult issues to be resolved. Among them,
delimiting the span of references to an object is the most
significant problem, since the system should know it in
order to displace unused objects deliberately. Thus, adopting
a replacement algorithm such as LRU to an object buffer
might be a difficult task, if not impossible. In addition,
paging or buffer replacement in object-oriented database
applications, the working cycles of which are characterized
by a load-work-save model, are less important than in
traditional ones [4]. Taking this into consideration, many
systems including O2, Objectivity/DB [17], Versant, Mneme
[4] and EPVM [5] cache objects in virtual memory without
object replacement and an underlying operating system takes
all the responsibility of memory management and swap I/O.
That is, all fetched objects are kept in memory until a
transaction commits or a reference is definitely finished.

Consequently, the performance of object access can be
improved not by efficient buffer replacement but by efficient
object prefetch. Moreover, prefetching objects is more
profitable in object-oriented database applications, since
fetched objects are not likely to be invalidated by other
clients, because of the high read/write ratio and weak data
sharing [1, 4, 11].

We can classify object prefetch policies into three
categories according to how we select candidate objects
for prefetching. The first is the aggressive eager prefetch
scheme where all objects are extracted from a page or a
segment together upon the first fetch of an object from a
particular page or the segment. ORION and ENCORE [18]

use this scheme. This policy allows good performance of
object access by improving the object-buffer hit ratio and it
can be highly profitable in multi-client environments, since
object hits reduce the workload on the server.

However, since a number of unneeded objects can be held
in memory by eager prefetching, this policy may lead to
many page faults and heavy swapping as well as unnecessary
copy overhead. Thus, this approach may induce significant
performance degradation although it can be of benefit with
small and well-clustered databases.

The second policy is equipped with advanced object
semantics. That is, all of the objects linked with the
requested one are fetched recursively on every object miss.
Observing the access patterns of object-oriented database
applications, Chang and Katz [1] proposed a run time clus-
tering algorithm and a smart buffering policy which exploits
knowledge about inheritance and structural relationships.
Their smart buffering uses access hints provided by a user
and object relationships to obtain all objects that will be
used in advance. It also gives high priority to the pages
related with the accessed objects, if they are already cached.

This policy can achieve extremely good performance
for retrieving complex objects, if they are clustered well.
When objects have multiple relationships, however, some
object access patterns cannot be incorporated with clustering
[9, 11]. That is, this policy may actually cause more
unnecessary object fetching than the first one if only some of
the relationships are utilized. It also cannot predict general
object access patterns and it is difficult to implement this
scheme on a byte server.

The third approach is the predictive one, which predicts
which objects will be used through profiling or learning
access patterns. In the profile-based policy [9], sophisticated
buffering hints are stored in a profile to prefetch objects
more precisely. As an alternative, Palmer and Zdonik
[11] proposed a predictive cache that employs associative
memory to recognize access patterns. In these policies,
profiling or learning should be associated with each access
context, since access patterns even on the same data may be
different according to applications. However, it is difficult
to profile or learn access patterns on every context with very
much accuracy.

Kemper and Kossmann [13] made another effort to
improve the performance of object access. They tried to
adapt to more complex and variable object patterns by
mixing page-based buffering and object-based buffering
simultaneously. This combined buffer management
technique caches an object as placed in its home page and
later copies the object to the object buffer pool if the home
page should be replaced. However, it is very difficult to
move a fetched object lazily, when the address of the object
is used directly by languages like C or C++.

Object prefetch has also been studied in many previous
researches on swizzling, since these two topics are closely
related [2, 3, 4, 5, 6]. Although these studies made
observations mainly about various swizzling techniques,
their results exhibit the evaluation of object prefetch
schemes indirectly.
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FIGURE 1. Access pattern of OO1 traversal operation.

3. DYNAMIC SELECTIVE EAGER OBJECT
FETCH POLICY

In general, the cost of object access in the dual-buffer
architecture can be computed as:

Access Cost

= Ohit × COhit

+ Omiss × (Phit × CPhit + Pmiss × CPmiss + COmiss)

where Ohit (Omiss) is the hit (miss) ratio of the object buffer,
Phit (Pmiss) is the hit (miss) ratio of the page buffer, COhit

(COmiss ) is the access cost for a hit (missed) object and CPhit

(CPmiss ) is the access cost for a hit (missed) page. This is
explained by the steps in accessing an object: if an object is
missed, the page which has the object is fixed and then the
object is copied from it. In the same way, if a page is missed,
the page should be fetched from a server or a disk device.

Here, CPmiss is much greater than any other cost since it
includes the cost of client–server interactions. Therefore,
decreasing Pmiss and Omiss is the key for improving the
performance of object access.2 First, an efficient page
buffer replacement policy can raise the page buffer hit
ratio. Several alternatives are possible including LRU, LFU,
LRU-K [19] and 2Q [20]. In object-oriented DBMSs,
these replacement polices may be as good as in traditional
DBMSs.3

As noted in Section 2, however, an efficient object
prefetch policy is needed to reduce object misses rather than
an efficient object buffer replacement algorithm. Existing
prefetch policies have already been reviewed in the previous
section.

In this section, we first present the basic SEOF method
and then we extend the basic version into the dynamic one,

2We are primarily concerned with the page-server architecture, since it
is the most popular. However, our work can also be applied to the object-
server architecture.

3Unfortunately, so far as we know, there does not exist any replacement
policy tuned for object-oriented database systems.

which adjusts its behavior dynamically according to working
environment.

3.1. Basic policy

Now, we derive our new object prefetch policy, SEOF.
We decided to choose the eager object prefetch policy (the
first policy classified in Section 2) as the basis of our new
algorithm, since this policy does not require any object
semantics. Furthermore, this scheme induces little overhead
for incorrect prefetches, because this approach does not issue
any additional page requests for prefetching.

The OO1 object operation benchmark [21], which
was developed to evaluate scientific and engineering
applications, exhibits the aspect of navigational object
access in general object-oriented database applications.
The OO1 benchmark database consists of Part and
Connection objects, where every Part is connected to
three other Parts via Connections. The connections
between Parts are selected randomly to produce 90%–
1% clustering factor: 90% of the connections are to the
closest 1% of Part objects. The traversal operation
of the OO1 benchmark accesses all Parts connected to a
randomly selected Part object recursively, up to 7 hops.

Figure 1 shows the access pattern of the traversal
operation on the small OO1 benchmark database, which
contains 20,000 Part objects. The X and Y axes represent
the page id where accessed objects reside and the sequence
of object accesses, respectively. Figure 1a, which shows
the access pattern when running traversal 10 times,
indicates the two distinct localities of page accesses on each
traversal: one is for accessing Parts and the other is for
Connections. Figure 1b scales up a portion of Figure 1a.

Given this access pattern, we found that a page that
contains many objects accessed by the traversal
operation is continuously referenced at regular intervals.
Figure 1b shows some examples: pages 681, 682, . . . , 685.
On the other hand, a page that is accessed intermittently
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is considered to have only a few objects to be fetched.
This observation allows us to select the page that has been
accessed often as a candidate from which objects are eagerly
prefetched.

However, there may exist a group of objects that are
created and stored sequentially and also retrieved together
on every access. Thus, choosing candidate pages only by
access frequencies can mislead prefetching since only a few
objects may be actually used. Pages 705, 706 and 708 in
Figure 1b are not accessed again after fetching two or three
objects in a row.

To solve the problem described above, correlations
between object fetches should be factored out. Until
now, the correlation problem has been considered only by
several page buffer management schemes. Frequency-based
replacement algorithms exclude the surge of references to
a page by not incrementing the reference count if the page
has been referenced repeatedly in a short interval [22]. From
this, the policy does not give high priority to a page that
is accessed repeatedly in a short interval and yet relatively
infrequently referenced overall. The problem of correlated
references is also mentioned in LRU-K [19] and 2Q [20] in
a similar manner.

This factor can be incorporated into the object prefetch
policy, where a page is not selected as a candidate if the page
is referenced several times only in a short interval. Since a
page with correlated references seems to contain only a few
objects to be used, fetching only the requested objects would
save buffer space. Furthermore, the page is very likely to be
hit since the time interval between fetches of objects from
the page is short.

As such, our SEOF algorithm is based on the two
observations addressed below.

• A page which has been referenced repeatedly in a short
interval seems to have only a few objects to be fetched.
This is considered as the correlation of object fetches.

• If there are frequent non-correlated references to a
page, the page is likely to have many objects to be used.

The conceptual outline of SEOF algorithm is as follows.
SEOF maintains two FIFO queues,4 Sin and Sout, as shown
in Figure 2. The two queues have lengths ThreshSin and
ThreshSout , respectively. On every fixing of a page for a
missed object, SEOF places the page in Sin, if the page is
not already in either Sin or Sout. When Sin becomes larger
than ThreshSin , the first-come entry of Sin is moved to Sout.
The length of Sout is maintained in the same way. If the fixed

4Experiments with LRU queues gave us similar results.

{when the reference to object o, which is located in page
p, is invoked}

if o is already in the object buffer then
{do nothing (an object buffer hit)}

else
if p is in Sout then

dequeue p from Sout
fetch all uncached objects in p eagerly

else
if p is in Sin then

{do nothing (a correlated access)}
else

enqueue p into Sin
if size of (Sin) > ThreshSin then

dequeue the first-come entry e in from Sin
enqueue ein into Sout
if size of (Sout) > ThreshSout then

dequeue the first-come entry eout from Sout
end if

end if
end if
fetch object o

end if
end if
return object o

ALGORITHM 1. Selective eager object fetch.

page is in Sout, SEOF fetches all uncached objects from the
page, but the reference is ignored during its stay in S in.

In SEOF, Sin solves the correlated fetch problem by
counting the repeated references within a short interval as
one and Sout selects the frequently referenced page as a
candidate for prefetching. Using these two queues, SEOF
fetches objects eagerly only from the pages which are likely
to have many objects which will be used. The detailed
algorithm is given in Algorithm 1.

Our SEOF algorithm works independently of the page-
buffer management. However, the page buffer can employ
Sin and Sout as its own buffer pools. How SEOF is
incorporated with the page buffer management is potentially
our next research topic.

3.2. Dynamic policy

ThreshSin and ThreshSout of SEOF are the important tuning
parameters, since the sizes of the two FIFO queues decide
the degree of object prefetching. Qualitatively, as ThreshSin

gets smaller and ThreshSout gets larger, SEOF prefetches
objects more aggressively. On the other hand, SEOF does
less prefetching because the test for candidate selection is
too strong, when ThreshSin is large and ThreshSout is small.

In order to test the sensitivity of SEOF to its parameters,
we conducted experiments with various values of ThreshSin

and ThreshSout . The traversal operation was repeated
on the small OO1 database with ThreshSin and ThreshSout
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ranging from 20 to 600. The results are plotted in Figure 3.
The X and Y axes are ThreshSin and ThreshSout , respectively,
and the Z axis shows the ratio of used objects to (pre) fetched
objects.

As described above, SEOF moves closer to a non-
prefetching policy as ThreshSin gets larger and ThreshSout

gets smaller. With small ThreshSin and large ThreshSout ,
SEOF performs very similarly to the aggressive eager
prefetching algorithm. SEOF was insensitive to ThreshSout

values larger than 300 and that portion of the results is not
plotted. This is because the maximum interval between
accesses to a given page was small in these experiments.
The labels LOF and EOF in Figure 3, lazy object fetch and
eager object fetch respectively, represent the results for the
non-prefetching policy and the aggressive eager prefetching
policy, respectively.

Although SEOF can cover a wide range of prefetching
behavior, as shown in Figure 3, it is not easy to find
optimal values for ThreshSin and ThreshSout . In addition,
no single value of ThreshSin and ThreshSout could give the
best performance in all working environments. Therefore, it
is necessary to adjust ThreshSin and ThreshSout dynamically
according to such environment factors as the workloads
of the system components, such as the server or the
network, and contention for the resources of the client,
such as physical memory and swap space. We therefore
developed the dynamic version of SEOF, which adjusts
ThreshSin and ThreshSout dynamically according to the
working environment.

As we showed in our previous work [10], the degree of
optimal prefetching depends on the system workload. When
a server or a network is overloaded, it is beneficial to reduce

0.0 1.0Utilization Window

Target Object Buffer

Target Utilization

Current Utilization

FIGURE 4. Object buffer utilization window.

client-server interactions by prefetching objects aggressively
and caching many objects in clients. That is, aggressive
prefetching could reduce the average response time of page
requests to the server and thus, improve the overall system
performance. However, when the number of clients is small
and the system workload is low, the advantage of eager
prefetching is lost because of the heavy swapping that results
from fetching too many objects. That is, swap I/O becomes
a major bottleneck, since the server response time is short.
In this case, system performance could be improved by
prefetching fewer objects.

Therefore, dynamic SEOF determines the degree of
prefetching based on the current system workload, and then
adjusts ThreshSin and ThreshSout accordingly.

Our dynamic SEOF algorithm can be sketched as follows.
First, periodically or after some fixed number of runs of
the SEOF algorithm, dynamic SEOF determines the target
degree of prefetching by examining the current system
workload. Here, the degree of object prefetching can be
expressed numerically by the utilization of objects in the
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FIGURE 5. Effects of the page buffer size.

buffer. That is, the ratio of actually used objects to (pre)
fetched objects measures the aggressiveness of prefetching.
For instance, the non-prefetching policy used all the fetched
objects, so its utilization is 1.0, but as the aggressiveness
of prefetching gets stronger the utilization of objects in the
buffer decreases. Thus

new target utilization = F ′(current system workload),

where the function F ′ is inversely proportional to the system
workload. Any function may be used for F ′ if it can reflect
the system workload well. For example, we can consider
a simple function that increases the target utilization by
�utilization when the system workload is lower than a
LowThresholdworkload and decreases the target utilization
by �utilization if the system workload is higher than a
HighThresholdworkload.

However, the target utilization should have a limited range
in order to prevent resource exhaustion. As mentioned in
our previous work [10], it might not be feasible to run
aggressive prefetching in a real environment, especially
for large database applications, since it may require too
much swap space by prefetching many unnecessary objects
blindly. Thus, dynamic SEOF should set minimum target
utilization according to the resources of the client, and
should not allow a target utilization below that minimum.
The restrictions on object buffer usage will be discussed
further in Section 4.

After the target utilization is determined, dynamic SEOF
compares the current utilization with the target utilization
and then adjusts ThreshSin and ThreshSout in order to
approach the target utilization. Therefore, ThreshSin and
ThreshSout are a function of the target utilization of objects
in the buffer,

new {ThreshSin , ThreshSout}
= F ′′(target utilization, current utilization).

Similar to the previous function F ′, we can consider

a function F ′′ that increases ThreshSin and decreases
ThreshSout by �queue when the current utilization is lower
than the target utilization. If the current utilization is
higher than the target utilization, the function F ′′ decreases
ThreshSin and increases ThreshSout by �queue. However,
dynamic SEOF should not be too sensitive to variations of
the object utilization. For this problem, we can use a window
concept as shown in Figure 4.

That is, the function F ′′ allows a certain amount of
difference between the target utilization and the current
utilization by adjusting ThreshSin and ThreshSout only if the
current utilization is outside the target utilization window.

In a similar way, the initial values of ThreshSin , ThreshSout

and the target utilization may be determined from the system
workload at start time.

Finally, the size of the page buffer of the client should
be considered in order to prevent resource contention at
clients. We performed additional experiments to examine
the memory resource contention by the object buffer and
the page buffer. We ran the traversal operation on the
OO1 database clustered by 90%–1% factor varying the page
buffer size from 400 to 4800 K bytes. The results, as shown
in Figure 5, confirm our intuition that a large page buffer
may suffer from heavy swapping, although it gives high
buffer hit ratio.

In addition, the optimal size of the page buffer depends on
the degree of object prefetching. That is, if the prefetching
is aggressive—when the utilization of objects in the buffer is
low—only a small page buffer is needed, since many objects
are cached in the object buffer and the small page buffer
may reduce resource contention. For instance, the eager
prefetching policy requires only one page buffer frame, since
it prefetches all the objects in a page and caches them in
the object buffer. On the other hand, when only a small
number of objects are prefetched, a large page buffer may
improve the system performance by increasing the number
of page buffer hits. Dynamic SEOF therefore adjusts the
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Dynamic SEOF
run the basic SEOF algorithm
if adjusting ThreshSin and ThreshSout is required then

calculate the new target utilization of objects in the buffer
calculate the new ThreshSin and ThreshSout

resize the Sin and Sout queue according to the new ThreshSin and ThreshSout

calculate the new page buffer size and resize the page buffer
end if

Function F ′
{Calculate the new target utilization of objects in the buffer}
get the current system workload
if the current system workload > HighThresholdworkload then

move the current target object buffer utilization window left by � utilization
else if the current system workload < LowThresholdworkload then

move the current target object buffer utilization window right by � utilization
end if

Function F ′′
{Calculate the new ThreshSin and ThreshSout}
if the current utilization is in the right side of the target utilization window then

decrease ThreshSin and increase ThreshSout by �queue
else {the current utilization is in the left side}

increase ThreshSin and decrease ThreshSout by �queue
end if

Function F ′′′
{Calculate the new page buffer size}
a new page buffer size ⇐ (the current utilization × α + β) × the maximum page buffer size

ALGORITHM 2. Dynamic SEOF.

page buffer size dynamically according to the degree of
object prefetching. As we mentioned above, the degree of
aggressiveness can be measured as object buffer utilization.
Thus, dynamic SEOF resizes the page buffers of clients
according to current utilization of objects in the buffer. That
is,

new page buffer size = F ′′′(current utilization).

We can use a function F ′′′ that returns a fraction of
the maximum page buffer size according to the current
utilization.

The detailed algorithm for dynamic SEOF is given in
Algorithm 2.5

4. PERFORMANCE EVALUATION

4.1. Simulation model

The performance evaluation employed in this study is based
on a page-server architecture using dual-buffering. 6 The

5In Algorithm 2 we give the functions F′, F ′′ and F ′′′, which were
used in our experiments. However, any good functions can be used with
our algorithm.

6The results of our experiments can also be adapted to the object-server
architecture, where the results explain the evaluation of object prefetch from

conceptual structure of the simulation model is shown in
Figure 6. Several components are simulated in the model:
CPU, DISK, VM, PAGE BUFFER, OBJECT BUFFER and
NETWORK.

The VM component of the simulator is used for modeling
page faults and swap I/Os. VM manages physical memory
by page aging [23], where the pages that are no longer part
of working set are aged at regular intervals. When there is
no available physical memory, VM swaps out some of the
oldest pages. In the simulator, a virtual memory block is
4 Kbytes long. The PAGE BUFFER component uses LRU
for buffer replacement and all fetched objects are kept in
OBJECT BUFFER until a transaction ends. All requests in
the simulator are scheduled on a first-come-first-served basis
and concurrency control is simulated by piggybacking page-
level locks on page requests.

Table 1 presents the parameter settings used in the
experiments. The values listed in the table were derived from
measurements of our own object manager, which is based on
the page-server architecture.

We used the traversal operation of the OO1
benchmark as the work load. Two databases are used:
the medium database of 50,000 Parts and the large

a server.
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TABLE 1. Simulation parameter settings.

Parameters Value (ms)

Object copy time 0.003/object
Avg. object buffer processing time 0.077
Avg. page buffer processing time 0.025
Avg. swap I/O time 16.0
Avg. disk access time 17.0/8 kbytes
Network processing time 1.1 + 0.00075 byte−1

Network transfer time 4.5 Mbits s−1

OO1 Part processing time 5.0/Part
Connection processing 0.5/Connection

time
OO7 Object access time 0.5/object

database of 200,000 Parts.7 With Part of 200 bytes and
Connection of 32 bytes, the medium and large database
sizes are 16 Mbytes and 64 Mbytes, respectively. The page
size is 8 Kbytes. We used two alternative clustering factors,
90%–1% and 80%–5% in order to evaluate the performance
with varying degrees of clustering. Each client generates a
single stream of object accesses by tracing the traversal
operation with random seeds. In order to study the effects
of prefetching in multi-client environments, we varied the
number of clients from 1 to 20. We also performed the
simulation with the traversal 1 operation of the OO7
benchmark [24]. We used the small and medium databases
of the OO7 benchmark, where each atomic part object is
connected to three other atomic parts. The databases are
4 Mbytes and 25 Mbytes, respectively.

In all experiments, we pre-ran each operation twice so
that the dynamic SEOF policies get the initial values of
queue sizes and the target utilization by collecting the system
workload. The simulator was coded in C++SIM [25], since
we can use C++ directly without learning another language,
and it is publicly available.

7We eliminated the results on the small database of 20,000 Parts from
this paper because the database is small enough to fit in physical memory
and so gives little information on our algorithm. The results using the small
database can be found in [10].

4.2. Simulation results

Experiments were performed to compare three different
prefetch policies:

(i) EOF that fetches all objects eagerly from a page upon
the first object miss in the page;

(ii) LOF that fetches only one requested object at a time;
and

(iii) the SEOF policies we proposed: the basic SEOF
(B-SEOF) and its two derivatives, dynamic SEOF
(D-SEOF) and restricted dynamic SEOF (RD-SEOF).

RD-SEOF works like D-SEOF but it limits the range of
utilizations of objects in the buffer in order to prevent
resource exhaustion.

EOF and LOF set the page buffer size of the client to
8 Kbytes and 4.3 Mbytes, respectively. This offered the
best performance for these two cases in our experiments. In
the experiments we ran B-SEOF varying the queue sizes.
However, in this paper, we have presented only one of
the results, which gives reasonable performance under the
constraint of 10 Mbytes object buffer space. Its ThreshSin

and ThreshSout were 120 and the size of the client page
buffer was set to 2.7 Mbytes. In the experiments with the
two dynamic versions of SEOF, we used only the network
utilization as the system workload, since it was the major
bottleneck of the system performance in our experiments.
The high and low system workload thresholds were 0.55
and 0.3, respectively, and �utilization was set to 0.1. We
resize ThreshSin and ThreshSout when the current utilization
is beyond 20% of the target utilization8 and �queue was 8.
In RD-SEOF, the minimum object buffer utilization was
configured to limit the object buffer space up to about
12 Mbytes. A server page buffer size of 5.5 Mbytes and
5 Mbytes of client physical memory were used for all of the
experiments.

We first present the results of the simulation for the OO1
benchmark databases clustered by 90%–1% factor.

8We varied the window size according to the target utilization, since we
thought that the degree of change in the utilization depended on it. However,
the experiments with static window sizes gave similar results.
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FIGURE 7. Average elapsed time (s) (OO1, 90%–1%).
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Figure 7 shows the average elapsed time of running
traversal 10 times. As we expected, non (or less)
prefetching policies outperform the eager prefetching policy
in the range of 10 or fewer clients. This is because the
eager prefetching policy (like EOF) suffers naturally from
heavy swapping, since it tends to prefetch many unneeded
objects. However, as clients are added, the small number
of page requests in the eager prefetching policy can pay
off the swapping overhead by reducing the response time
of the server. This fact is reinforced by Figure 8, which
plots the total number of page requests and Table 2, which
represents the average response time of the servers. In
Figure 7, we can see that the experiments with two or three
clients offer a reasonable performance improvement over
one client. This is because with two or three clients, cached
pages in the server are likely to be used by more than one
client. However, as more clients are added, this advantage

is lost because the server tends to become overloaded due to
contention against the server page buffer.

Observing the performance of SEOF policies, the curve
of B-SEOF on the medium database lies in the middle
of EOF and LOF, but B-SEOF is very close to LOF on
the large database. The reason is that the large working
set of the traversal operation prevents B-SEOF from
prefetching enough objects to keep the hit ratio high.
However, D-SEOF gives the best performance at almost
all configurations. D-SEOF prefetches small numbers of
objects when the system workload is low, but it prefetches
objects more aggressively as the system becomes more
overloaded. This behavior of D-SEOF can also be found
in Table 3 which represents the size of the object buffer used
during experiments as well as Figure 8 and Table 2. These
results demonstrate the ability of dynamic SEOF to adjust
the queue sizes well according to the system workload.
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TABLE 2. Average response time of the server (s) (OO1, 90%–1%).

No. of clients

Strategies 1 2 3 5 7 10 15 20

Medium DB
EOF 0.035 0.033 0.034 0.035 0.038 0.043 0.063 0.096
LOF 0.034 0.034 0.034 0.037 0.039 0.047 0.071 0.112
B-SEOF 0.033 0.033 0.034 0.036 0.039 0.047 0.071 0.112
D-SEOF 0.034 0.034 0.034 0.036 0.039 0.045 0.064 0.099
RD-SEOF 0.034 0.034 0.034 0.037 0.039 0.045 0.066 0.100

Large DB
EOF 0.036 0.037 0.038 0.042 0.047 0.059 0.099 0.162
LOF 0.036 0.038 0.040 0.047 0.054 0.078 0.138 0.211
B-SEOF 0.035 0.037 0.040 0.046 0.053 0.076 0.135 0.208
D-SEOF 0.035 0.038 0.040 0.046 0.053 0.060 0.100 0.162
RD-SEOF 0.036 0.038 0.040 0.046 0.053 0.075 0.133 0.204

TABLE 3. Object buffer size (Mbytes) (OO1, 90%–1%).

No. of clients

Strategies 1 2 3 5 7 10 15 20

Medium DB
EOF 13.0 12.8 13.1 13.0 12.9 13.0 13.1 12.9
LOF 2.1 2.1 2.2 2.2 2.1 2.2 2.1 2.1
B-SEOF 4.9 5.4 5.5 5.3 5.4 5.3 5.4 5.2
D-SEOF 2.1 2.1 2.2 2.1 2.2 13.0 13.0 13.0
RD-SEOF 2.1 2.1 2.2 2.1 2.2 12.8 13.0 12.8

Large DB
EOF 37.0 39.3 37.7 38.0 37.9 38.0 37.6 37.9
LOF 2.8 2.8 2.8 2.8 2.8 2.8 2.7 2.8
B-SEOF 11.3 10.0 10.6 10.5 10.2 10.4 10.2 10.3
D-SEOF 2.8 2.8 2.8 4.1 5.6 38.0 37.5 38.2
RD-SEOF 2.8 2.8 2.8 4.3 7.0 9.1 9.6 10.3

In the medium-sized database, dynamic versions of SEOF
(D-SEOF and RD-SEOF) show better performance than
LOF when the number of clients is small. This can be
explained by the fact that, although the object buffer spaces
used by these policies are similar, LOF experienced more
swapping since it used more page buffer space than the
dynamic SEOF policies.

Lastly, the restricted version is less dynamic than D-
SEOF because of the buffer space restriction, and thus
its performance is somewhat inferior to D-SEOF when
the system workload is high. However, when the system
workload is low, the restriction on object buffer space does
not affect the behavior of RD-SEOF since it works like LOF;
thus it performs as well as D-SEOF.

Compared to B-SEOF, RD-SEOF shows better perfor-
mance than the basic policy in the medium database.
However, the performance of the two policies is almost the
same in the large database, since the restricted version was
allowed to use an object buffer space as large as that of

B-SEOF. Table 3 shows clearly the limitation on object
buffer space of RD-SEOF.

The surge of the performance curve of RD-SEOF at
10 clients with the medium database can be explained by
the fact that RD-SEOF uses more client page buffer space
than other policies like EOF or D-SEOF, resulting in more
swapping.

Not surprisingly, the size of the buffer space used by
each policy is proportional to the aggressiveness of object
prefetching and the static versions like EOF, LOF, and
B-SEOF did not change the buffer usage regardless of
the system workload. Unlike these policies, the dynamic
versions, like D-SEOF and RD-SEOF, prefetched more
objects and thus required more object buffer space as the
number of clients increased.

In our experiments, we tuned the system workload
thresholds so that the dynamic versions of SEOF worked
aggressively, since the system workload (especially network
load) was increased sharply as the number of clients
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FIGURE 9. Average elapsed time (s) (OO1, 80%–5%).

increased. Thus, these dynamic versions changed their
behavior substantially.

Table 3 also reveals that it might be infeasible to run
eager prefetching policies like EOF or D-SEOF in a real
environment especially for large database applications. 9

That is, a system with 5 Mbytes of physical memory may
not allow EOF or D-SEOF to use about 40 Mbytes of swap
space. This is because these policies tend to prefetch too
many unnecessary objects blindly, as noted in Section 2.
This is also the reason why we include the restricted version
of dynamic SEOF in our simulations, which can limit the
aggressiveness of object prefetching according to client
resources.

Next we consider the effects of clustering on the
performance of prefetch polices.

Figure 9 plots the average elapsed time for the traversal
on the databases clustered by a factor of 80%–5%. These
graphs show similar results to those for a clustering factor
of 90%–1%. However, with increasing numbers of clients,
the performance of LOF degrades more sharply than the
previous result. The reason is that the server is saturated
more quickly because of the low buffer hit ratio at the clients.
The point of intersection of LOF and EOF moves left for the
same reason.

Comparing the results for B-SEOF with the previous
ones, it moves closer to EOF in the experiments with the
medium database, but it behaves more like LOF for the large
database. This is explained as follows. With a clustering
factor of 80%–5%, the medium database has fewer cycles
between Part objects, while almost all of the working set
of the medium database can still be cached as before. Thus,
B-SEOF with the poorly clustered medium database selects
more pages as candidates for prefetching. On the other hand,
the low clustering factor in the large database causes only

9The system should be able to displace unused objects at any time in
order to use eager prefetching policies. However, object replacement cannot
be easily done with C or C++ language binding.

a few objects in a page to be used. As a result, B-SEOF
selects fewer pages as candidates on the poorly clustered
large database. This behavior is also explained in Table 4,
which represents the size of the object buffer used during
the experiments for a clustering factor of 80%–5%.

Dynamic versions of SEOF work well, as in the previous
experiments. However, RD-SEOF works more like the
B-SEOF policy with the medium database, but in the large
database the performance gap between these two policies
becomes wider than in the previous result. The reason is that
in the medium database, B-SEOF uses more buffer space
because of the low clustering factor, but with the poorly
clustered large database, RD-SEOF prefetches more objects
than B-SEOF because of the heavy workload.

The total number of page requests and the average
response time of the server for a clustering factor of 80%–
5% are not given in the paper, since the results are consistent
with those of the previous experiment.

We also evaluate our algorithm with the OO7 traver-
sal 1 operation. The elapsed time of running a cold
traversal appears in Figure 10. We do not give the results
for the hot traversal, which consists of first running a cold
traversal and then running the same traversal three more
times, since the results for the hot traversal are similar to
those for the cold traversal.

For the small database, all policies have a similar
performance because of the high degree of locality in the
traversal operation. In addition, the working set is small
enough to be cached in its entirety in the client memory,
and thus, there is no difference in the response time to page
requests among policies. In this traversal, the performance
of EOF was worse than other policies because of object copy
overhead, although it is not easy to see in the figure. That
is, most objects in the small database can be fetched from
the client page buffer since the client caches all of the small
database and thus, the response times to fetch one object
are similar for all policies. However, EOF incurred a copy
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TABLE 4. Object buffer size (Mbytes) (OO1, 80%–5%).

No. of clients

Strategies 1 2 3 5 7 10 15 20

Medium DB
EOF 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
LOF 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6
B-SEOF 8.4 8.9 9.1 8.8 9.1 9.0 8.9 8.9
D-SEOF 2.5 2.6 2.6 2.6 14.0 14.0 14.0 14.0
RD-SEOF 2.5 2.6 2.6 12.7 12.5 12.8 12.5 12.4

Large DB
EOF 48.7 48.2 49.0 48.1 48.5 48.2 48.3 48.6
LOF 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9
B-SEOF 7.2 7.3 7.3 7.8 7.5 7.5 7.5 7.5
D-SEOF 3.0 3.0 3.0 3.8 48.4 48.2 48.5 48.6
RD-SEOF 3.0 2.9 3.1 8.6 9.1 8.6 8.9 8.8
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FIGURE 10. Average elapsed time (s) (OO7, cold).

overhead by prefetching many unneeded objects, degrading
the performance.

Even for the medium database, LOF also has an advantage
over EOF for the same reason, that is, clients experienced
high cache hit ratios, over 90%, because of the high degree
of locality of traversal. However, EOF went from bad
to worse, since EOF suffered from heavy swapping by
prefetching too many objects (see Figure 11).

On the other hand, all versions of SEOF show better
performance than LOF. This is because SEOF policies
reduced the response time for page requests by prefetching
(not too many) objects without incurring heavy swapping.
Among SEOF policies, the performance of B-SEOF is better
than the dynamic versions in the experiments with small
numbers of clients, since the basic version prefetches more
objects than the other versions, as shown in Figure 11, which
plots the object buffer usages of each policy. Surprisingly,
RD-SEOF shows the best performance in the case of seven

or more clients. This can be explained by the fact that
RD-SEOF starts the traversal by prefetching objects more
aggressively, since the system workload is heavier than in
the case of D-SEOF.10

5. IMPLEMENTATION

Our SEOF algorithm can be employed easily without
changing an existing object manager. The SEOF algorithm
requires only two FIFO queues, Sin and Sout, and a few
interfaces to manage these queues, which would be called
only by the object buffer manager. Figure 12 shows an
example of the implementation of SEOF algorithm and the
calling sequence from the object buffer manager.

For dynamic versions of SEOF, the resizing function

10In the experiments with a medium database, we tuned the restricted
dynamic SEOF to use object buffer space up to 20 Mbytes, since the total
size of accessed objects is about 14 Mbytes.
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Sin Sout

ADD

CHECK

SEOF

// when object o in page p is missed

check p is in SEOF

if p in SEOF

       // do eager prefetching

       delete p from SEOF

else 

      // fetch the missed object 

       add p to SEOF

...

DELETE

Object Buffer

// check if p is in Sout

// enqueue p into Sin

// dequeue p from Sout

FIGURE 12. The calling sequence for the SEOF policy.

should be included and it should be called periodically or
following some number of calls to the CHECK function,
where the queue sizes are adjusted dynamically according to
the system workload. Information on the system workload
can be acquired from the underlying operating system or can
be computed using the number of clients or the number of
requests to the server.

6. CONCLUSION AND FUTURE RESEARCH

In this paper we have developed a new object prefetch
policy, dynamic selective eager object fetch, which
prefetches objects only from selected candidate pages
without using any high-level object semantics and which
adjusts its behavior dynamically according to the working
environment. Our policy is based on two observations:

(i) the page which has been referenced repeatedly in a
short interval seems to have only a few objects to be
fetched; and

(ii) if there are frequent non-correlated references to a page,
the page is likely to have many objects to be used.

Unlike existing prefetch policies, dynamic SEOF utilizes the
memory and the swap space of clients efficiently without
resource exhaustion. It is also easy to implement.

The results of our experiments indicate that object
prefetch can improve overall performance significantly,
although performance may suffer from heavy swapping
caused by prefetching too many unneeded objects. Dynamic
versions of SEOF offered the best performance over almost
all configurations. In addition, the restricted version of
dynamic SEOF limited its object buffer space well.

The experiments with a low clustering factor confirm that
the dynamic SEOF policy has good adaptability to both
the effectiveness of clustering and database size. It also
shows good performance with the OO7 benchmark. From
these results, we are sure that our dynamic SEOF is general
enough to be used in real environments. Furthermore,
our algorithm induces little overhead, since it does not
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require any new information except to manage the two FIFO
queues.

We are currently implementing the proposed dynamic
SEOF policy on top of our ODMG-93 compliant object-
oriented DBMS, SOP.11 In the future, we would like to
extend our prefetch policy so that a series of unused
prefetched objects can be displaced efficiently. We will also
develop functions (like F ′ and F ′′) that can adjust ThreshSin

and ThreshSout smoothly according to access patterns as
well as the system workload. We conjecture that these
two methods could substantially improve the performance
of dynamic SEOF.
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