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ABSTRACT 

While advanced analysis of large dataset is in high demand, data sizes have surpassed capabilities of 

conventional software and hardware. Hadoop framework distributes large datasets over multiple 

commodity servers and performs parallel computations. We discuss the I/O bottlenecks of Hadoop 

framework and propose methods for enhancing I/O performance. A proven approach is to cache data to 

maximize memory-locality of all map tasks. We introduce an approach to optimize I/O, the in-node 

combining design which extends the traditional combiner to a node level. The in-node combiner reduces 

the total number of intermediate results and curtail network traffic between mappers and reducers. 
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1. INTRODUCTION 

Hadoop is an open source framework that provides a reliable storing of large data collections 

over multiple commodity servers and parallel processing of data analysis. Since its emergence, 

it has firmly maintained its position as de facto standard for analyzing large datasets. Without 

in-depth understandings of complex concepts of a distributed system, developers can take 

advantages of Hadoop APIs for an efficient management and processing of the big data. 

Hadoop MapReduce [1] is a software framework built on top of Hadoop used for processing 

large data collections in parallel on Hadoop clusters. The underlying algorithm of MapReduce is 

based on a common map and reduce programming model widely used in functional 

programming. It is particularly suitable for parallel processing as each map or reduce task 

operates independent of one another. MapReduce jobs are mostly I/O-bound as 70% of a single 

job is found to be I/O-intensive tasks [2]. A typical MapReduce job is divided into three 

sequential I/O-bound phases: 

(1) Map phase: Locations of input data blocks distributed over multiple data nodes are retrieved 

via NameNode. Blocks are loaded into memory from local disk and each map task processes 

corresponding blocks. Intermediate results from each map task are materialized in map 

output buffers. When the contents of a buffer reach a certain threshold size, they are spilled 

to local disk. 

(2) Shuffle phase: Once a map task is completed, spilled contents are merged and shuffled 

across the network to corresponding reduce tasks. 

(3) Reduce phase: Each reduce task process received key groups. Similar to the map phase, 

reduce inputs are temporarily stored in reducer output buffers and periodically spilled to 

disks. Once all groups are processed, final results are written to HDFS as raw files. 

An increase in demand for non-batch and real-time processing using Hadoop has made 

performance the key issue for many MapReduce applications. A tolerable job completion time 
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is vital for any performance-oriented jobs thus an efficient MapReduce job must aim to 

minimize the number of I/O operations performed in each I/O-intensive phase described above 

[2]. In this paper, we show how caching the input data and locally aggregating intermediate 

results using the in-node combiner can optimize the overall performance of a MapReduce job. 

This paper is organized as follows. Section 3 gives an overview of the Hadoop MapReduce 

framework, describes the two bottlenecks found in MapReduce jobs and proposes two solutions 

for eliminating them. The algorithm for the in-node combiner, an enhancement to the traditional 

combiner, is demonstrated using a word count example in Section 4. Section 5 discusses the 

experimental results for counting daily word occurrences in Twitter messages using three 

different combining design patterns. 

2. RELATED WORK 

2.1 Hadoop Distributed File System 

Hadoop Distributed File System (HDFS) [3] is a Java-based file system that provides a scalable 

and reliable data storage system. It is built on top of the local file system and is able to support 

up to few petabytes of large dataset to be distributed across clusters of commodity servers. 

HDFS is the basis for most of Hadoop applications. It consists of a single NameNode and a 

number of DataNodes. The NameNode is responsible for managing the cluster metadata and the 

DataNode stores data blocks. All data stored in HDFS is broken down into multiple splits and 

distributed throughout the DataNodes. This allows large datasets beyond a capacity of a single 

node to be stored economically and also enables tasks to be executed on smaller subsets of large 

data sets. HDFS makes several replicas (3 by default) of all data blocks and stores them in a set 

of DataNodes in order to prevent data lose in case of hardware failures. At least one copy is 

stored at a different rack and thus both fault tolerance and high availability are assured. This 

feature allows a cluster to operate normally even with a node failure since data is guaranteed to 

be stored across multiple DataNodes [4-6]. 

A Hadoop job is commonly divided into a number of tasks running in parallel. Hadoop attempts 

to schedule a task with a consideration of data block locations. It aims to allocate tasks to run at 

where the corresponding data block resides. This feature minimizes unnecessary data transfer 

between nodes.  

2.2 Hadoop MapReduce 

MapReduce [3] is one of many programming models available for processing large data sets in 

Hadoop. While Hadoop framework efficiently maintains task parallelization, job scheduling, 

resource allocation and data distribution in the backend, the MapReduce framework simply has 

two major components, a mapper and a reducer, for data analysis.  

A mapper maps every key/value record in the dataset by arbitrary intermediate keys and a 

reducer generates final key/value pairs by applying computations on the aggregated pairs. The 

strength of MapReduce framework lies in running such simple but powerful functions with 

Hadoop’s automatic parallelization, distribution of large-scale computations and fault tolerance 

features using commodity hardware. 

The top-level unit of each MapReduce task is a job. A job has several mappers and reducers 

allocated by the underlying scheduler depending on various factors including the size of input 

and available physical resources. The developer, with a minimum knowledge of a distributed 

system, simply needs to write Map and Reduce functions which are available as Hadoop APIs 

in various programming languages, to take advantage of the framework. The MapReduce model 

can be applied to various applications including distributed grep, graph problems, inverted 

index and distributed sort. Figure 1 describes a workflow of a common MapReduce job. 
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Figure 1. A workflow of typical MapReduce job. 

A detailed walkthrough of a MapReduce application is now described. The Input data files 

stored in HDFS are split into M pieces of typically 64MB per piece and distributed across the 

cluster. Once a MapReduce job is submitted to the Hadoop system, several map and reduce 

tasks are generated and each idle container is assigned either a map task or a reduce task. A 

container who is assigned a map task loads the contents of the corresponding input split and 

invokes MAP method once for each record. Optionally on the user’s request, SETUP and 

CLOSE methods may run prior to the first or after the last MAP method call respectively. Upon 

each MAP method call, it passes key and value variables to EMIT method, which then pairs are 

temporarily stored in a circular in-memory output buffer along with corresponding metadata. 

Figure 2 describes a structure of a circular map output buffer. Once the contents of a buffer 

reaches certain threshold size (80% by default), all key/value pairs are partitioned based on their 

keys and finally spilled to local disk as a single spill file per buffer. The number of partitions is 

equal to the total number of reduce tasks allocated for the job. Combiners, which are mini 

reduce tasks that combine intermediate results, may occasionally run on each partition prior to 

disk spills. Once all records have been processed, spill files of a task are merged as a single 

partitioned output file. Then each partition is transferred to the corresponding reducer across the 

network. This stage of the task is referred to as the shuffle phase. Figure 3 describes a workflow 

of the shuffle phase. 

       

  Figure 2. Circular map output buffer.                       Figure 3. MapReduce shuffle phase. 
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The reduce task sorts and groups received intermediate pairs by their keys preferably in memory 

but if their sizes exceed the memory limit, an external sort is used. Once pairs are sorted, 

REDUCE method is invoked once per each key group and the output is appended to a final 

output file. Finally one output file per reduce task is stored in HDFS. Figure 4 describes an 

example of a MapReduce job. 

 

Figure 4. An example of a MapReduce job. 

2.3 Hadoop I/O optimization 

The most mentioned weakness of HDFS is its poor I/O performance. Attempts to solve this 

problem can be classified into either combining stored files into forms of databases or 

modifying the existing HDFS I/O features [7]. The former approach improves system 

throughput rather than I/O performance by providing efficient indexing of data blocks. The 

second approach requires a complete re-design of the entire Hadoop system, which 

comparatively is dangerous. As a simple but practical alternative, utilizing an in-memory data 

storage system to cache input data is proven to be the most effective method for improving I/O 

performance of any data-intensive tasks. 

Ananthanarayanan et al. [2] built PACMan, an input data caching service that coordinates 

access to the distributed caches. Two cache eviction policies, LIFE and SIFE, are implemented 

within PACMan. LIFE evicts the cached blocks of the largest incomplete file and SIFE replaces 

cached blocks with the smallest incomplete file. These two policies aim to optimize for job 

completion time by maximizing memory-locality of tasks. Overall job completion times were 

reduced by up to 53% with LIFE and cluster utilization improved by up to 52% with SIFE.  

Zhang et al. [7] pointed out the poor HDFS file access performance as the major drawback of 

Hadoop. In order to provide high access performance without altering the existing HDFS I/O 

features, they built a novel distributed cache system named HDCache which periodically makes 

snapshots of local disk in shared in-memory caches that are forged as local disks to Hadoop. By 

storing replicas in different caches for every cached files, disk I/O is substituted for either local 

memory access or network I/O which leads to a significant improvement in overall performance.  

Senthikumar et al. [8] implemented Hadoop R-Caching, a caching system that adopts an open 

source in-memory database, Redis, as both global and local cache layers for HDFS. Redis, a 

high performance in-memory key-value storage, has been proven for its stability and efficiency 

not only as a database but also as a cache for Hadoop. 

While caching input data to maximize memory-locality of MapReduce tasks significantly 

reduces disk I/O operations in the map phase, I/O bottleneck during the shuffle phase is a 

significant performance degradation factor. Crume et al. [9] showed preliminary designs of 

approaches to compress intermediate data, which up to five orders of magnitude reduction the 

original key/value ratio was observed. 
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Dean and Ghemawat [1] suggested using combiners to reduce the size of intermediate results in 

MapReduce jobs. Lin and Schatz [10] introduced the in-mapper combining design, which is an 

improvement of the traditional combiner. This design guarantees the execution of combiners by 

moving the combining function within the map method. 

2.4 NoSQL 

While many modern applications require data with various formats and sizes to be stored and 

accessed simultaneously, typical Relational databases do not meet these requirements as they 

are not optimized for scalability and agility challenges. Most relational databases require data 

schema to be strictly defined and guarantee ACID properties to ensure database reliability. 

ACID properties are: 

• Atomicity: Each transaction is atomic that either a transaction is fully completed or not 

executed at all. A failure of a part of transaction must lead to a failure of an entire transaction. 

• Consistency: Only valid information is written to the database. All operations must abide by 

customary rules and constraints. 

• Isolation: Each transaction is isolated from any other transactions running concurrently. 

Concurrent transactions must not interfere with each other. 

• Durability: Committed transactions must be stored permanently even in the event of system 

failures or errors. Restoration of committed transactions should be ensured through database 

backups and transaction logs. 

ACID properties guarantee the database reliability but their strictness are not suitable for 

simplicity and scalability which many modern applications require. NoSQL (Not Only SQL) 

database [11] is developed in response to a rise in volume of data and high data access/write 

performance. NoSQL databases generally do not require a predefined schema thus data with 

various formats can be easily added to the application without significant changes. In oppose to 

ACID properties, NoSQL databases are based on the BASE paradigm and the CAP theorem. 

BASE paradigm stands for Basically Available, Soft state, Eventually consistency. It makes a 

tradeoff to consistency for availability and performance. NoSQL databases can achieve only 

two of the three CAP theorem. Either a system guarantees consistency and partition tolerance, 

availability and partition tolerance or consistency and availability. By sacrificing some strengths 

relational databases have, NoSQL database is able to provide highly scalable system which 

large volume of data is distributed across commodity servers and thus high read/write 

performance is achieved [12-14]. There are four types of data models supported by NoSQL 

databases: 

• Key-value: records are stored as key-value pairs. (Redis, Memcached, Dynamo) 

• Column oriented: records are stored as sparse tabular data. (Bigtable, Cassandra, HBase) 

• Document oriented: each record is a document that contains multiple fields. (MongoDB) 

• Graph oriented: records are stored as graph nodes and edges. (Neo4j) 
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Support for flexible data models and high performance make NoSQL database a perfect choice 

for caching frequently accessed/modified data. NoSQL databases have been adopted as both 

dynamic caches and primary data stores by various enterprises. In this paper, we utilize Redis, 

an in-memory NoSQL database, as our cache layer for both input data and intermediate results 

of MapReduce jobs. 

3. BACKGROUND 

MapReduce framework is a powerful model for processing large datasets in a distributed 

environment. As described in the previous section, each MapReduce phase requires multiple 

disk and network I/O operations. A typical MapReduce job consumes relatively low resource on 

computing whereas 79% of a job is I/O intensive [2]. In order to improve overall performance 

of a MapReduce job, unnecessary I/O operations must be minimized. In this section, we identify 

two significant I/O bottlenecks faced by MapReduce jobs and solutions for resolving those 

issues. 

3.1 HDFS bottleneck 

The poor performance of Hadoop is rooted in its nature of batch processing and HDFS, which is 

optimized for high throughput rather than high I/O performance. Redesigning the processing 

module can solve the former cause. However the weakness of HDFS inherently is caused by 

underlying hardware and its design principles [15]. 

HDFS is primarily designed for storing and processing vast volumes of data. It follows write-

once-read-many model, which thus simplifies data coherency and enables high throughput 

access. However, such requirement has led to a comparatively large data block size (64MB by 

default) and consequentially resulted in inefficient random write and read performance. Data-

intensive tasks such as MapReduce jobs require high file access performance. Once a 

MapReduce job is submitted, NameNode retrieves locations of all data blocks needed for the 

job then each allocated task loads blocks from local disk to memory and processes each records. 

While Hadoop tries to maximize data locality by assigning tasks at nodes where the target data 

resides, loading multiple large blocks into memory is still significant performance degrading 

operations. Without modifying the core of HDFS, reducing HDFS I/O within a MapReduce job 

is the most effective approach for enhancing file access performance. 

3.1.1 In-memory cache 

Utilizing an in-memory cache to maximize memory-locality of a MapReduce job has been 

proven to be efficient for reducing HDFS I/O operations. An additional thread periodically 

loads data blocks stored in HDFS into in-memory cache and evict them according to appropriate 

eviction policies and task schedules. Instead of directly loading large data blocks from HDFS to 

memory at every data request, caches are queried for data availability as a priority. A significant 

improvement in performance is guaranteed when all input data is cached and hence HDFS I/O 

during the data read phase is at its minimum [2]. In-memory cache systems such as Memcached 

and Redis provide not only high throughput but also high file access rate and are adequate 

choices for caches. Figure 5 describes an overview of an in-memory cache for a MapReduce job. 
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Figure 5. An in-memory cache for Hadoop MapReduce. 

 

3.2 In-Memory cache 

During the shuffle phase of a MapReduce job, intermediate results generated by a map task are 

temporarily stored in a circular output buffer and periodically spilled to disk and finally shuffled 

to corresponding reducers across the network. The total number of I/O operations during this 

phase depends on the amount of intermediate results and the number of reducers to transfer to. 

Reduce tasks generally do not begin reduce functions until all input data have been processed by 

map tasks. The time taken to process all records and transferring intermediate pairs to 

corresponding reducers account for significant portion of overall processing. A research [16] 

shows that the shuffle phase accounts for 26%-70% of the running time of 188,000 MapReduce 

jobs ran by Facebook. This confirms that transferring data between successive phases is a severe 

bottleneck in MapReduce jobs. Hence, optimizing network activity at this phase is critical for 

improving job performance. As the most simple but efficient solution for minimizing the 

volume of intermediate data emitted by map tasks, we introduce three different combining 

design patterns in this section. 

The combiner function [3] is a useful extension provided as a Hadoop API that performs partial 

merging of intermediate data prior to sending them across the network to reducers. In a case 

where intermediate results contain significant number of repetitions that are destined for the 

same reducer; the combiner can substantially reduce the amount of intermediate results and 

therefore save substantial network communication cost without altering the final outputs. 

3.2.1 Combiner 

The combiner is a mini-reducer that operates on data generated by map tasks. It is executed in 

isolation per task and performs local aggregation between map and reduce tasks to curtail 

network traffic. A combiner function in general is identical to the reduce function except its 

output types must match reducer’s input types. Combiners by implementation are designed to 

run at most twice during the map phase. The first run is prior to spilling of contents stored in 

each map output buffer and the second run is on merging stage of spill files at the end of a map 

task. Theoretically combiners should substantially improve overall performance of MapReduce 

jobs with high population of combinable intermediate results by cutting down the network 

communication cost. However, two significant drawbacks lie within using combiners: 
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• Execution of a combiner is not guaranteed: Combiners may not be executed on some 

occasions as Hadoop may choose not to run them if execution is determined to be inefficient 

for the system. A known but configurable occasion is when the number of spill files does not 

exceed the configured threshold (3 by default). Other occasions are systemically not 

controllable by developers. Such randomness may cause undesired situations where 

combinable intermediate results are not fully combined thus missing out on potential 

optimizations. 

• Size of emitted map outputs is not optimized: The emitted results are temporarily stored in in-

memory buffers and the combining function is applied on them before spilling them to local 

disk. Thus combiners do not actually reduce the number emitted results. This characteristic 

leads to situations where map output buffers are filled with soon-to-be combined outputs 

causing more spill files to be generated. 

3.2.2 In-Mapper combiner 

The in-mapper combiner (IMC) [10] resolves the two problems of the traditional combiner 

addressed above. The key idea of IMC is to run the combining function inside the map method 

to minimize the volume of emitted intermediate results. Instead of emitting results to map 

output buffers at every invocation of the MAP method, IMC stores and aggregate results in an 

associative array indexed by output keys and emit them at the end of the map task. This 

approach guarantees the execution of combiners and substantial reduction in the total number of 

emitted map outputs. Figure 6 shows a pseudo code for a word count MapReduce job with IMC 

design pattern. The total number of map outputs sent across the network is O(R) for a simple 

word count MapReduce job without a combiner and O(KM) for a job with IMC, where R 

corresponds to the total number of input records, K corresponds to the number of distinct keys 

in the dataset and M corresponds to the total number of allocated mappers for the job. Because 

the scope of IMC is bound to a mapper and its execution is guaranteed and the effectiveness of 

IMC increases relative to the total number of mappers, which by far is smaller than the total 

number of records. Figure 7 shows an example of a MapReduce job using in-mapper combining 

design. 

 

 

 

 

 

 

 

 

 

Figure 6. Algorithm 1: Word count algorithm with IMC design pattern. 

1: class Mapper 

2:  method Setup() 

3:   H ← InitAssociativeArray() 

4:  method Map(long id, twit t) 

5:  d ← ExtractDate(t) 

6:   W ← BagOfWords(t) 

7:   for all words w ∈ W do 

8:    H{d, w} ← H{d, w} + 1 

9:  method Cleanup() 

10:   for all date-word-pair dw ∈ H do 

11:    Emit(date-word-pair dw, count H{d, w}) 

1: class Reducer 

2:  method Reduce(date-word-pair dw, counts [c1, c2, ....]) 

3:   s ← InitCount() 

4:   for all count c ∈ counts do 

5:    s ← s + c 

6:   Emit(date-word-pair dw, sum s) 
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Figure 7. A MapReduce job with the in-mapper combining design. 

4. OUR APPROACH 

The in-mapper combiner is capable of resolving the problems of traditional combiner and 

improves the overall performance substantially. The combining function of a traditional 

combiner runs in a separate thread from the main mapper thread. As long as the map output 

buffer is not fully occupied, the map method is executed in parallel with the combining function. 

However, in order to guarantee execution of combiners, IMC withdraws parallelism by moving 

the combing function within the map method. Each map task is required to maintain an 

associative array for storing intermediate results. Often when dealing with large data sets with 

IMC, the size of distinct keys stored in an associate array exceeds heap size of a map task 

therefore causing a memory overflow. An explicit memory management is necessary for such 

case. When the size of the array grows beyond its capacity at key insertion, least recently 

updated records are evicted and emitted to buffers to free up memory. 

Similar to the traditional combiner, the scope of IMC is limited within a single map task. 

However Hadoop’s strength lies in its capability for parallel processing. Typically multiple map 

tasks each processing different data splits run in each node in parallel. Taking this into account, 

the scope of IMC can be extended to a node-level by combining all intermediate results 

generated within the same node for further optimization. As an improvement to IMC, we 

propose a new combing design pattern called the in-node combiner. 

4.1 In-Node Combiner (INC) 

The key idea of the in-node combiner is to combine all intermediate results generated within a 

node. Instead of maintaining a single associative array for each map task, arrays are merged into 

a single locally shared data structure that stores all intermediate results in the same node. All 

map tasks aggregate results in a locally shared cache and the last map task running in the node 

emits results stored in the cache. Figure 8 shows a pseudo code for a word count MapReduce 

job with the in-node combining design pattern. 

The in-node combiner has two significant benefits over IMC: 
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• Total number of emitted results by a node is minimized: The domain of local aggregation is 

extended to node level leading to a further reduction in the total number of emitted 

intermediate results. By consuming smaller portion of map output buffers and forcing only 

the last mapper to emit locally combined results, fewer spill files are generated. Finally, 

reduced intermediate result size guarantees substantial reduction in network communication 

cost. 

• Combining function is executed in a separate thread: IMC made a tradeoff between 

parallelism and performance. Combining function was replaced into the map method. 

However, by using an in-memory cache system that runs outside of Hadoop for storing 

intermediate results, INC shifts the responsibility for combining, managing memory and 

indexing to a separate thread.  

1: class Mapper 

2:  method Setup() 

3:   C <- InitCache() 

4:  method Map(long id, twit t) 

5:  d ← ExtractDate(t) 

6:   W ← BagOfWords(t) 

7:   for all words w ∈ W do 

8:    C{d, w} ← C{d, w} + 1 

9:  method Cleanup() 

10:   for all date-words dw ∈ H do 

11:   if ( C{d, w} > threshold OR isLastMapper ) 

12:     Emit( {d, w}, count C{d, w} ) 
 

Figure 8. Algorithm 2: Word count algorithm with INC design pattern. 

In order to prevent cache overflows due to excessive amount of distinct keys, two properties are 

checked at map method invocation. If a key has a value larger than a certain threshold (pre-emit 

threshold), it is immediately emitted by the current map task. The number of results emitted by 

the last mapper thus is slightly reduced. This approach is particularly effective for partially 

sorted initial data sets where similar keys are likely to be handled by the same map task. A task 

also periodically checks the current cache size and evicts a portion of combined results to free 

up memory. 

The number of intermediate results transferred across the network decreases to O(KN) for a 

word count MapReduce job using INC, where N corresponds to the total number of data nodes. 

The performance of INC increases relative to the number of data nodes in the cluster. When pre-

emit threshold is set to infinity and memory is sufficient enough to store all keys, the total 

number of network I/O operations is equal to the sum of distinct keys stored in each node cache. 

The number of participating data nodes by principle is far smaller than the number of allocated 

map tasks, thus substantial performance enhancement is expected with INC. Figure 9 and 10 

describe an overview of a MapReduce job using INC. 
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Figure 9. An overview of a MapReduce job with in-node combiner. 

 

 

Figure 10. In-node combiner example. 

4.2 Implementation 

Our architectural goal is to avoid altering the existing Hadoop features. Modifying the core of 

any systems is not only complex but may violate the original design principles. Any newly 

implemented features must be fully compatible with and independent of existing Hadoop 

features. Thus aggressive use of Hadoop API and other existing stable systems are the prior 

considerations for our implementation. 

An implementation of a Hadoop in-memory cache can be either an entirely new system 

designed primarily for Hadoop or a modification of an existing cache system. For our purpose, 

we chose to make a use of an existing cache system that best satisfies our requirements. Of 

many available cache systems, Memcached and Redis are the two most predominant in-memory 

key/value data stores available as open-source. Their usage is not only limited to caches but also 

primary databases for various applications [17].  

REmote DIctionary Server known as Redis is an open-source in-memory data structure store. It 

is a popular key-value cache and a database. One notable difference Redis has compared to 

Memcached is that keys in Redis can be mapped to non-string data types including lists, sets, 

sorted sets and hashes allowing data to be stored and handled is various formats. Redis also 

supports full snapshot mechanism and disk serialization. Either data is asynchronously stored to 

disk periodically or all data modifying operations are logged in log files. Although in its beta 

phase, Redis also provides full clustering features that include auto partitioning, live 

reconfiguration and fault tolerance. Our quad-core machine can process 232k SET requests per 

second and 227k GET commands per second. 
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Redis provides a built-in protection allowing the user to set a max limit to memory usage. Redis 

will either return error messages to write commands or evict least recently used keys when the 

max memory limit is reached. Redis can handle up to 232 keys in a single instance. An empty 

instance used about 1MB and 1 million hashes with 5 fields occupy only around 200MB. Due to 

its exceptional read/write performance, support for various data types and efficient memory 

usage, Redis is the perfect choice for our cache and a data store. 

4.2.1 System architecture 

We set multiple Redis instances at each node, which are clustered into a single global Redis 

instance. Performance enhancement is guaranteed only when the entire input data for the job is 

cached, an occasion where only a fraction of data is cached may even lead to performance 

degradations. In order to observe the effects of fully loaded caches with 100% memory hit ratio, 

we deliberately loaded the entire data into the Redis cluster. Each record is stored in a hash with 

multiple fields. Hash types in Redis has a constant lookup speed. 

A custom InputFormat is implemented to directly read each hash bucket from local Redis 

instances instead of regular batch files. The RedisHashInputFormat assigns each Redis instance 

as a single input split, therefore the number of allocated map tasks for a job is equal to the total 

number of local Redis instances. The RedisHashInputFormat retrieves a list of all keys stored in 

the corresponding local Redis instance at its initialization. Each record is retrieved at each 

nextKeyValue method invocation. 

A container in Hadoop is a collection of physical resources allocated by the ResourceManager 

upon job submission. The number of allocated containers varies by the required resources for 

the submitted job. RMContainerAllocator class is responsible for allocating either map or 

reduce tasks to containers. In our system, upon assigning a map task to a container, each 

container establishes a connection to the local Redis cache and updates the total number of 

allocated map tasks within the same node under a configured key. Each map task also updates 

its status on task completion in the local cache allowing other map tasks in the same node to be 

aware of overall job status. Each map task compares the total number of map tasks to the 

completed map tasks stored in the cache to verify if it is the last mapper running in the node. 

Instead of storing intermediate results in an isolated associative array, they are stored in the 

local Redis cache. For memory efficiency, each intermediate key-value pair is stored under one 

of many hash buckets. Figure 11 and 12 shows an overview and a workflow of our system 

respectively. 

 

Figure 11. System overview. 
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Figure 12. System workflow. 

5. EXPERIMENT 

Our Hadoop cluster consists of four physical nodes each running CentOS 6.5 with Hadoop 2.5.1 

and equipped with a Intel i7 Quad-Core CPU, 8GB of RAM and 11TB HDD. Three Redis 2.9 

instances run at each node, of which two are globally clustered and the other is used as a local 

in-node combiner cache.  

The dataset used for the experiment is a set of random Twitter messages known as tweets 

published in March of 2013. A tweet has 6 fields; tweet id, message, original tweet id, date of 

submission and user id. Each tweet is separated by a new line character and multiple duplicates 

may exist due to the retweet feature. There are total of 20 files (12GB) each containing different 

number of unsorted tweets.  

We implemented two simple MapReduce algorithms for performance comparisons. The main 

algorithm is a word count algorithm that counts occurrences of every word in Twitter messages 

and outputs results in separate files per day. Another MapReduce job computes relational status 

between Twitter users using mention tags. Twitter’s mention feature directs a message to a 

particular user by writing username followed by at-sign. If a tweet contains mention tags, its 

author and the mentioned user are expected to have a relationship. Messages and referring user 

ids are aggregated per user using our algorithm. Figure 13 shows a pseudo-code for our second 

MapReduce job. 
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1: class Mapper 

2:  method Map(long id, twit t) 

3:   M ← getMentionTags (t) 

4:   for all users m ∈ M do 

5:                            Emit(UserID u, MentionId, m) 

6:            Emit(m, getMessage(t)) 

 

1: class Reducer 

2:  method Reduce(userID u, C [c1, c2, c3, …..]) 

3:   for all object c ∈ C do 

4:                            if IsObject(c) 

5:         T ← c 

6:                            else 

7:                               T.updateStatus(c) 

8:   Emit(userID u, status T) 
 

Figure 13. Algorithm 3: Computing relationships between Twitter users. 

5.1 In-Memory cache 

For read performance comparisons between HDFS and an in-memory cache, all 20 files are 

copied into HDFS and also loaded into the Redis cluster of 8 instances (100% cache hit ratio). 

Each tweet is stored as a key/value pair under a hash. There are total of 8 map tasks (2 tasks per 

node) and each takes a single Redis instance running in the corresponding node as its input split. 

As Table 1 and Figure 14 show, the average job completion time of a word count MapReduce 

job is reduced by 23% when using an in-memory cache. The reduction is caused by shorter map 

completion time which was reduced by 14%. Bypassing HDFS and using an in-memory cache 

as the data source substantially improves overall performance of a MapReduce job. 

Table 1. Comparison between HDFS and in-memory cache. 

Data Source Map Completion Time (min) Job Completion Time (min) 

HDFS 46.53 68.23 

In-memory cache 39.64 52.53 

 

 

Figure 14. Average job completion time for HDFS and in-memory cache. 
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5.2 Combiner 

The effects of three combining design patterns are compared for three different input sizes and 

cluster sizes. The same word count MapReduce algorithm with HDFS as the source of input 

data is used for all three combining design patterns. The number of map tasks varies by the 

corresponding input data size and the number of reduce tasks is fixed at one. The job 

completion times are for one job iteration. 

Table 2. Results for different combining designs (R = 24M, N = 4) 

Method Map Output Reduce Input Job Completion Time (min) 

No combiner 144,237,557 144,237,557 66.48 

Traditional combiner 144,237,557 65,385,683 54.53 

In-mapper combiner 65,385,683 65,385,683 48.47 

In-node combiner 2,535,467 2,535,467 43.02 

 

Table 2 shows results for processing 24M records with 4 datanodes. Results indicate that all 

three combining design patterns show significant reduction in reduce input size compared to the 

uncombined. Reduce input size is reduced by more than 50% and average job completion time 

is reduced by 30% with INC. Map output size of the traditional combiner remains unchanged 

from the uncombined because traditional combiners run on emitted outputs. INC generates the 

minimum number of map output among all combining designs. Almost 90% reduction in map 

output size is observed. Figure 15 shows results for a word count job with different input sizes 

and combining design patterns. As the input data size increases, more keys are processed by 

each map task and thus more pairs with a same key are combined. With INC, average job 

completion time was reduced by almost 50% compared to the uncombined. When the number of 

combinable results is large enough, INC is the most effective choice for enhancing overall 

performance. Results show that the effectiveness of INC increases relative to the total number 

of distinct keys. 

 

Figure 15. Average job completion time VS Input size. 

Figure 16 shows results for a word count job processing 9 million records running with different 

cluster sizes. For all types of combining methods, increasing the cluster size improves the task 

parallelism and thus job completion time is greatly reduced. For a single node cluster, increase 

in job completion time is observed for INC due to the additional cost for maintaining 

connections to the local cache. However, INC performance enhances gradually with increase in 
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cluster size. 40% enhancement in job completion time compared to the uncombined is observed 

with INC running in 4 data nodes. 

 

Figure 16. Average job completion time VS Number of nodes. 

Unfortunately combiners do not always improve performances of all MapReduce jobs. 

Combiners should only be used for jobs with sufficient amount of combinable intermediate 

results. If the amount of intermediate pairs with a same key generated within a map task is low, 

using a combiner is unlikely to improve the performance but only adds additional execution 

costs. Table 3 shows results for running our second algorithm. Since only tweets containing 

mention tags are candidates for the algorithm, the number of distinct keys is significantly 

reduced compared to the word count algorithm. Unless messages are exactly identical to each 

other, each tweet with mention tags generates multiple intermediate pairs that are not 

combinable. Results show only 3% of total map outputs and 6% of job completion time was 

reduced when using combiners. This indicates that using combiners on MapReduce jobs with 

small percentage of combinable intermediate pairs do not have significant impact on overall 

performance. Combiners must be used carefully only on appropriate cases otherwise 

performance may be deteriorated. 

Table 3. Results for computing relational status (R = 24M, N = 4) 

Method Map Output Reduce Input Job Completion Time (min) 

No combiner 2,651,123 2,651,123 47.32 

Traditional combiner 2,651,123 2,618,876 45.53 

In-mapper combiner 2,618,876 2,618,876 44.47 

In-node combiner 2,570,458 2,570,458 45.02 

 

6. CONCLUSION 

We have shown a workflow of a common Hadoop MapReduce job and described the two 

bottlenecks which primarily is caused by the poor I/O performance. Both disk and network I/O 

during all phases of a MapReduce job should be optimized for better performance. Caching 

entire input data of a job ensures a significant improvement in overall performance. Though 

caching solves the HDFS bottleneck by completely bypassing it but multiple disk and network 

I/O performed during the shuffle phase are significant performance degradation factors. The 

combiner was introduced to reduce the amount of intermediate results shuffled across the 
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network by locally aggregating partial results at the map side. The in-mapper combiner 

improves the traditional combiner by reducing the number of emitted intermediate results. Our 

experimental results showed that the job completion time was reduced by 25% using an in-

mapper combiner. The effectiveness of IMC is relative to the total number of allocated map 

tasks. We proposed the in-node mapper which extends the scope of IMC to node level. It aims 

to combine all intermediate results within the same node by locally combining intermediate 

results generated within the same node. Our experimental result showed INC improves the job 

performance by up to 20% compared to IMC. 

We have modified Hadoop core to utilize in-memory cache to store intermediate results and 

map task status information. Our system allows map tasks to be aware of current status of the 

node it is running on. Using this feature, various different combining techniques can be applied 

to further optimize MapReduce jobs. 
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