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ABSTRACT 
Conventional database systems generate a set of facts (ex- 

tensional answers) as an answer for a given query. This also 
applies to object-oriented databases where a set of objects will 
be returned. 

However, deductive database systems give an opportunity 
to obtain the answer ofa query as a set offormulas @tensional 
answers). Intensional answers provide users additional insight 
to the nature ofextensional answers and can be computed only 
using the rules without accessing the database. So, they can 
be computed much faster and more cheaply than extensional 
answers. 

In this paper, by introducing rules for abstract expression 
in the object-oriented database systems and by applying the 
intensional query processing techniques of deductive database 
systems to the object-oriented database systems, we make it 
possible not only to answer incomplete queries which are not 
able to be answered in conventional object-oriented database 
systems, but also to express the answer-set abstractly as the 
names of classes. 

1 INTRODUCTION 

Conventionally, a query to an object-oriented database 
(OODB) system is answered only by the set of objects that 
satisfy a given query [l] [7]. These objects may belong to dif- 
ferent classes within a class hierarchy or they may be different 
complex objects somehow related to each other. 

A deductive database is composed of extensional predi- 
cates (facts) and intensional predicates (rules). The exten- 
sional predicates contain objects of base relations while the 
intensional predicates contain deduction rules and conditions. 

An intensional answer is a formula that states a condition 
to be satisfied by objects of the extensional answer. Thus, in- 
tensional answers are independent of a particular state in the 
database. Moreover, intentional answers can be computed 
much faster and more cheaply than extensional answers since 
in most of the time extensional answers are much larger than 
intensional answers. Intensional answers also represent the 
answer to the given query in a more compact way and ex- 

tensional answers usually change more often than intensional 
answers. So, intensional answers provide a more stable an- 
swer to a query than the extensional answer. Furthermore, 
since the intensional answer is similar to a query, it can be 
evaluated like a query and returns a set of objects which are 
partial extensional answers. For a detailed description of the 
intensional query processing, we refer to [13]. 

In this paper, we introduce rules into OODB systems and 
apply the intentional query processing (IQP) techniques to 
OODB systems. Then, it becomes possible to answer incom- 
plete queries by representing OODB schema in terms of rules. 
So far, all the query languages in OODB systems known to 
us are not able to give answers to incomplete queries. An in- 
complete query is a query on the attribute which belongs to a 
subclass but not the base class. Conventionally, the answer- 
set of a query in OODB is represented as a set of objects. 
But, the presence of semantics in OODB schema and IQP 
methodologies enable us to express the answer-set abstractly 
as names of classes. In this paper, we present an algorithm to 
obtain abstract representation of a given answer-set. 

Rules which represent OODB schema in this paper con- 
sist of structural rules and subclassing rules. The structural 
rules in turn consist of “ISA”-relation representing the class 
hierarchy. The subclassing rules represent characteristic prop- 
erties of subclasses. We then transform all the rules to non- 
recursive Horn clauses and get an intensional answer by using 
SLD-resolution. 

We provide some sample queries to show the advantages 
of an intensional answer to a given query in an OODB system 
over conventional answers. 

We organize this paper as follows. In section 2, we discuss 
several researches which has been done in the IQP. In section 
3, we look at the “IS-&“-relationship in OODB systems and 
the rules in OODB systems which are necessary in order to 
use the IQP. In section 4, we briefly review the definition of 
intensional answers, formalize methods to derive intensional 
answers for a class hierarchy model and give a detailed exam- 
ple. In the last section, we give conclusions and some remarks 
for possible extensions of the method in this paper. 
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OBJECT 
2 RESEARCHES ON INTENSIONAL 

ANSWERS 

There has been done a lot of researches in this area for last 
seve.ral years. While their approaches are different, all have the 
common goal which is to answer queries with a set of first-order 
logic formulas rather than a set of facts. But research which 
integrates this area and OODB was started only recently. 

Cholvy and Demolombe [5] are the first who have consid- 
ered the problem of providing answers to queries which are 
independent of a particular set of facts, that is, answers which 
are valid in all the states associated to these sets of facts. In 
this case, the answer is a set of first-order logic formulas, defin- 
ing the rules that a given object should satisfy to belong to the 
answer. They make the hypothesis that the rule base is not 
recursive, but their algorithm accepts any form of clauses. In 
their work, a method is based on Resolution Inference Rules. 

Based on the research presented by Cholvy and Demolombe 
[5], Pascual and Cholvy [lo] restrict types of rules in inten- 
tional database (IDB) to Horn clauses, because Horn clauses 
have a lot of advantages. But, they do not give the algorithm 
to remove redundant resolution step and meaningless inten- 
sional answers. Song [13] and Song and Dubin [14] use only 
Horn-clauses for intensional databases and they give the de- 
tailed SLD-resolution steps to avoid generating meaningless 
intensional answers. 

Imielinski [6], Pirotte and Roelants [ll], Motro [9] and 
Motro and Yuan [8] use different approaches. Imielinski [6] in- 
troduces the type of answers which mix both atomic facts and 
general rules from projection, selection and join. So he tries to 

incorporate intensional predicates as a part of answers. Pirotte 
and Roelants [ll] show how intensional answers can be gener- 
ated from the query and how integrity constraints can filter out 
inadequate answers and produce simpler and more informatic 
answers. 

Motro [9] describe a method that applies database con- 
straints to generate intensional answers and Motro and Yuan 
[8] provide a simple query language incorporating intensional 
queries. 

Vadaparty and Badrinath [lS] develop a formalism to rep- 
resent answers abstractly in OODB. They use the classes in 
the taxonomy to express the answer-set abstractly and obtain 
a unique optimal abstract representation. 

3 LOGICAL REPRESENTATION OF 
OBJECT-ORIENTED DATA MOD- 
ELS 

3.1 Class Hierarchy 

We look at a class hierarchy, representing “ISA’‘-relationships 
between the different classes. We assume the following query 
syntax in our context : 

SELECT ( attribute of target record type ) 
FROM ( object variables ) 
WHERE ( predicate ) 

The class hierarchy represented in the following Figure will be 
our object-oriented example database. 

-SHIP 

Figure I. CI~SS HlerarChy 

A typical incomplete query for the class hierarchy in Figure 
1 is the following: 

SELECT VEHICLE.id 
WHERE speed > 50 

According to query languages in OODB systems known to 
US, the above query is incorrect. But by integrating intensional 
query processing into OODB systems, we can answer such a 
query. 

In a conventional OODB we get back a set of vehicle ids 
where the speed of the vehicle is greater than 50 miles per 
hour. According to our sample database in Figure 1, we get 
back the following set: 

{ HSC1, HSCZ, . ‘1, NSCl, NSCP,. .+, HSSl, HSSS,, . . }. 

All these objects belong to different subclasses of the base 
class object. In order to find all the a.pplying objects, the 
database must provide a technique to search through all the 
subclasses of vehicle. But this is not the common “State of the 
Art” in OODB systems right now. There do not exist good 
query languages for OODB systems which are simple to use 
but at the same time powerful enough to use to fully account 
the advantages of an object-oriented system. 

By using semantics in OODB schema and intensional query 
processing methodologies, the answer-set of a query is given by 
not a set of objects but names of classes to which answer ob- 
jects belong. Since these abstract representation of the answer 
set is more concise, it provides us better understanding of the 
answer set. 

In our example there are the following intensional answers 

. intensional-answer1 = all highspeed-cars 

l intensional-answer2 = all normal-speed-cars 

l intensional-answer3 = all high-speed-ships 



In the next section of this paper, we will look at a way 
to automatically access the desired subclasses without being 
aware of the exact structure of the class hierarchy. 

3.2 Rules for abstract expression 

By introducing the notion of rules we can distinguish between 
different kinds of rules: 

0 integrity constraints 

0 “usual” rules 

0 structural rules 

l subclassing rules 

First, an OODB may have integrity constraints expressed 
as rules. These are not unique for object-oriented systems, but 
can be found in any database system. So, we are not interested 
in them here. 

The second sort of rules are the “usual” rules that any 
deductive database can contain. Also these rules can be used 
the same way in an OODB system with rules as in deductive 
database systems. 

More important rules we have to be concerned about are 
the rules that has to be established in order to complete an 
intensional query successfully within an OODB system. These 
rules come out of the class hierarchy of the objects and the 
information which is stored in the database schema. The rules 
concerning the class hierarchy are the structural rules and rules 
concerning the structual information of the subclassing schema 
are the subclassing rules. 

The structural rules and subclassing rules in Figure 1 are 
the followings : 

l structural rules 

- “ISA’‘-rules 

ISA(automobile, vehicle) 
ISA(watervehicle, vehicle) 
ISA(sportscar, automobile) 
ISA(family-car, automobile) 
ISA(ship, watervehicle) 
ISA(highspeed-car, sportscar) 
ISA(normalspeed-car, sportscar) 
ISA(high-speedship, ship) 
ISA(normalspeedship, ship) 

v subclassing rules 

- high-speed-car(X) t sportscar A speed(X,Y) A 
greater( Y ,200) 

- normalspeed-car(X) + sportscar A speed(X,Y) 
A greater(YJ00) A less(Y,200) 

- sportscar + automobile(X) A no-doors(X,Y) A 
equal(Y,2) 

- family-car(X) + automobile(X) A no-doors(X,Y) A 

ewW4) 

- high-speed-ship(X) + ship(X) A speed(X,Y) A 

greater(Y,50) 

- normalspeed-ship(X) +- ship(X) A speed(X,Y) A 
lesseq( Y ,50) 

4 FORMALIZATION 
OF INTENSIONAL QUERY PRO- 
CESSING IN OBJECT-ORIENTED 
DATABASE SYSTEMS 

4.1 Definition of Intensional Answers 

First of all, we briefly review the definition of intensional an- 
swers given in [5]. Define T as the database theory consisting 
of a set of facts and rules and let Q(X) be a query where X is a 
tuple of free variables. Then, we want to find all the formulas 
ans(X), such that 

T t-VX(ans(X)+ Q(X)) 

i.e., VX(ans(X) --) Q(X)) is a theorem of T. So, the inten- 
sional answer ANS(Q) to the query Q(X) is defined by the 
set of formulas : 

ANS(Q)= {ans(X):T k VX(ans(X)-+ Q(X))} 

where ans(X) is a literal. 
However, we want to restrict the answers within a defined 

domain of interest. Let DP = {PI, .,., P,} be a set of pred- 
icate symbols either of the IDB or the extentional database 
(EDB). And let L(DP) be the first order language whose pred- 
icate symbols are PI, . . . . P,. Then define an intensional answer 

ANS(Q,DP) to a query Q(X)by : 

ANS(Q,DP)= {uns(X):ans(X)~ L(DP) and 
T I- ‘dX(ans(X) --) Q(X)) and 
(uns(X) is not the negation of 

a tautology) and 
(each ans(X) is not redundant)} 

To derive an intensional answer, the resolution will be ap- 
plied to the database theory T and the negation of the theorem 
VX(ans(X) + Q(X)). But the negation of the thorems is 

not (VX(ans(X) -+ Q(X))) 

which is equal to 

3X(ans(X) A not(Q(X))) 

That leads to the standard form 

{4x0), -(Q(Xo>>l 

where X0 is a tuple of Skolem constants. So, the clause form 
for the resolution becomes 

S u {~~s(Xo>, -(Q(Xo))l 

where S is a set of clauses transformed from T. Since uns(ko) 
is not known at the beginning of the resolution process, we 
will start with S u {lQ(Xo)}. Resolving S U {--Q(Xo)} will 
result in a resolvent R(Xo) and then resolving R(Xo) together 
with ans(Xo) will result in the empty clause. That means that 
uns(X0) must equal to -&(X0). 



In the following sections, we outline an algorithm deriving 
intensional answers for a class hierarchy model consisting of 
non-recursive Horn clauses. By limiting non-recursive clauses 
the algorithm can be terminated, and by Horn clauses efficient 
algorithm can be used. 

4.2 Processing comparison literals 

To compute intensional answers efficiently, subclassing rules 
should be represented in a proper form. Since testing satis- 
fiability in first-order logic formula is undecidable, adopting 
first-order logic formula for managing subclassing rules is not 
desirable. Therefore, we need a subset of first order logic ex- 
pressions which is powerful enough for expressing subclassing 
rules and in which the satisfiability problem can be processed 
efficiently. 

Subclassing rules can be represented with the “simple pred- 
icates” [7]. The BNF of simple predicates abbreviated by SP 
is as follows. 

{zP)d::=t(S)P) A (SP) 1 (SP) V (SP) 1 l(SP) ) (predicates) 
re ica es ::= (comparison operator) ((variable name), 

(constant)) 
( (comparison operator) ((variable name), 

(variable name)) 
( (comparison operator) ((variable name), 

(variable name) + ( constant)) 
(comparison operator) ::= equal ) not-equal 1 greater 

] greater-eq ] less 1 less-eq 

Rosencrantz and Hunt showed that the satisfiability prob- 
lem of the set of simple predicate is NP-hard [12]. But 

they showed that conjunctive not-equal free predicates (sim- 
ple predicates that do not contain not-equal and V) can be 
solved in polynomial time. We can represent a large class of 
subclassing rules with conjunctive not-equal free predicates, 

The following algorithm changes a conjunctive not-equal 
free predicate to a weighted directed graph [12] [i’]. 

Algorithm 1 

Input : A conjunctive not-equal free predicate P. 
0~tP~lt : A weighted directed graph. 

(~1 and Q stand for variables and c stands for a constant) 

1. Convert P into an equivalent predicate P’ containing only 
less-eq comparison literal as follows : 

1.1 Replace 01 = vz with (~1 I ~2 + 0) A (~z 5 o1 + 0). 

1.2 Replace ~1 < ~2 with vu1 5 u2 + (-1). 

1.3 Replace VI 5 v2 with v1 5 o2 + 0. 

1.4 Replace wr > 02 with wz 5 u1 + (-1). 

1.5 Replace vr 2 wz with v2 5 u1 + 0. 

1.6 Replace VI = c with (~1 I 0 + c) A (0 5 u1 + (-c)). 

1.7 Replace wr < c with wr 5 0 f (c - 1). 

1.8 Replace ~1 < c with ~1 < 0 + c. 

1.9 Replace 2rr > c with 0 5 u1 + (-c - 1). 

1.10 Replace ~1 2 c with 0 < zil f (-c). 

2. 

1.11 Replace 2rr = 212 + c with (ol 2 w2 + c) A (w2 5 
qt (-c)). 

1.12 Replace ~1 < 212 + c with ~1 5; ‘~2 $ (c - 1). 

1.13 Replace zll 5 2)s + c with wl <I ‘~2 f c. 

1.14 Replace v1 > 212 + c with vs 5; wr + (-c - 1). 

1.15 Replace w1 1 212 $ c with 2)~ 2; wr f (-c). 

Convert P’ into a weighted directed graph. The graph 
has a node for each variable and a node for a constant 
zero. Conversion is as follows: 

2.1 ~1 5 212 + c corresponds to an edge from node wr to 
node wz with edge weight c. 

2.2 wr < 0 + c corresponds to an edge from node ~1 to 
zero node with edge weight c. 

2.3 0 < ~1 $ c corresponds to an edge from zero node 
to node wr with edge weight -c. 

There are two restrictions in the above algorithm. The one 
is that each variable should be integer valued. The other is 
that predicates can not have not-equal operators. Fortunately, 
many of subclassing rules involve integer valued domains such 
as engine size, price, number of doors, etc. And in this paper, 
we will deal with not-equal free predicates. 

The next algorithm will change a weighted directed graph 
G with no multiple edges to a conjuntive less-eq predicate 
(not-equal free predicate that contains only less-eq) 

Algorithm 2 

Input : A weighted directed graph G with no multiple edges. 
Output : A conjuntive less-eq predicate. 

(~1 and v2 stand for variables and c stands for a constant) 

1. An edge from node wr to node ~2 with edge weight c 
corresponds to vr 5 wz f c. 

2. An edge from node 01 to zero node with edge weight c 
corresponds to ~1 5 0 + c. 

3. An edge from zero node to node 711 with edge weight -c 
corresponds to 0 5 vr + c. 

The next algorithm will test comparison literals using a 
weighted directed graph and return a truth constant or a sim- 
plified predicate. 

Algorithm 3 

Znpul: A predicate consisting of the conjuction of an old com- 
parision predicate (predicate in resolvent before resolu- 
tion) and a new comparison predicate (predicate in re- 
solvent after resolution) 

Output: Truth constant (TRUE or FALSE) or simplified pred- 
icate 

1. Apply algorithm 1 to the conjunction of old and new 
comparison predicate. And then we get a weighted di- 
rected graph G. 
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2. If G has a negative cycle then 

return FALSE. 

Output: A set of ANSI(X) of intensional answers 

1. Negate the query and convert it into the clause form 

else 2. Repeat for all branches of a resolution tree 

If there is more than one edge from node ~1 to node 
01 then 

begin 
retain the minimum weight edge and discard 
the others 
apply algorithm 2 to G and we get a conjective 
less-eq predicate P 
change new comparison predicate to less-eq 
predicate using step1 of algorithm 1 
if P is the same as new comparison predicate 
then 

return TRUE 

else 
return P 

end 

else 

return old comparison predicate A new compar- 
ison predicate 

We can use Floyd’s all shortest path algorithm to see if the 
graph has a negative weight cycles. In algorithm 3, the step 1 
can be processed in a linear time, if-part of the step 2 (Floyd’s 
all shortest paths algorithm) takes O(lc3) and else-part of the 
step 3 can be processed in a linear time where Ic is a number 
of nodes in G. 

4.3 An algorithm for Intensional Answers 

In Section 3.2, we proposed structural rules and subclassing 
rules for class hierarchy. Before we get the intensional an- 
swers, first of all some rule transformations should be done in 
order to get unique intensional literals, secondly recursion in 
subcalssing rules should be removed, and “ISA’‘-rules to the 
first order logic should be changed. 

Unique intensional literals are literals that are either exten- 
sionally or intensionally defined but not both. So if we have 
literal p which is both EDB-defined and IDB-defined, then re- 
name the extensional literal p* and introduce a new rule p c 
p* in the IDB. In doing so, we can handle complete queries as 
well as incomplete queries for the intensional query processing. 

Since structural rules and subclassing rules are conjuction 
in IDB, we can remove recursion in subclassing rules. 

Finally we can change “ISA”-rules to the first-order logic 
since the semantic of “ISA” is implication. For example, 
ISA(X,Y) can be changed Y + X. Now, IDB corresponds 
to a set of non-recursive Horn clauses. 

The following algorithm will compute intensional answers 
from a set of non-recursive Horn clauses consisting of EDB U 
IDB and a query Q(X). 

2.1 Perform resolution using subclassing rules, struc- 
tural rules or new rules 

2.2 If resolvent contains extensional literal p* 

If base literal is not in the attributes of p* then 

current branch is fail branch and return 

current branch is success branch and return 

else /* if resolvent does not contain extensional lit- 
eral */ 

If resolvent contains at least two base literals 
then 

If factoring is impossible among base literals 
then 

current branch is fail branch and return 

else 

begin 

Perform the algorithm 3 

If result is FALSE then 

current branch is fail branch and 
return 

else if result is TRUE then 

current branch is success branch and 
return ANSI(X) = selected predi- 

cate 

else 
current branch is success branch and 
return ANSI(X) = selected predi- 

cate A simplified predicate 

end 

Until it cannot be futher resolved 

3. If all success branches contain extensional answers then 

begin 

choose the highest success branch 

generate the intensional answers by negating resol- 
vent 

end 

else 

begin 

ignore success branch containing extensional an- 
swers and 

return intensional answers ANSI(X) 
end 

Algorithm 4 

lnpzlt; A set of non-recursive Horn clauses consisting of EDB u 
ID3 and a query Q(X) where X is a tuple of free variables 

4.4 example 

To show the application of the algorithm introduced in the 
above section, we will use our example database given in Fiqure 
1. 



EDB and IDB schema looks as follows : 

vehicle(id, weight, color) 

automobile(id, weight, color, size, gasmileage, 
no-doors) 

family-car(id, weight, color, size, gas-mileage, 
no-doors, noseats) 

sportscar(id, weight, color, size, gasmileage, 
no-doors, speed) 

high-speed-car(id, weight, color, size, gasmileage, 
no-doors, speed) 

normalspeed-car(id, weight, color, size, 
gasmileage, no-doors, speed) 

water-vehicle(id, weight, color, level, speed) 

ship(id, weight, color, level, speed, size) 

highspeedship(id, weight, color, level, speed, size) 

normalspeed-ship(id, weight, color, level, speed, 
size) 

“ISA”-rules 

subclassing rules 

First we rename the extensional literal, add new rules in 
the IDB, remove recursion, and change “ISA”-rules to the first 
order logic. 

EDB 

vehicle*(id, weight, color) 

automobile*(id, weight, color, size, gasmileage, 
no-doors) 

family-car*(id, weight, color, size, gas-mileage, 
no-doors, noseats) 

sportscar*(id, weight, color, size, gas-mileage, 
no-doors, speed) 

highspeed-car*(id, weight, color, size, gasmileage, 
no-doors, speed) 

normalspeed-car*(id, weight, color, size, 
gasmileage, no-doors, speed) 

water-vehicle*(id, weight, color, level, speed) 

ship*(id, weight, color, level, speed, size) 

highspeedship*(id, weight, color, level, speed, 
size) 

normalspeed-ship*(id, weight, color, level, speed, 
size) 

- “ISA’‘-rules 

vehicle(X) c automobile(X) 

vehicle(X) + watervehicle 

automobile(X) +- sportscar 

automobile(X) +. family-car(X) 

watervehicle + ship(X) 

sportscar + high-speed-car(X) 

sportscar t normal-speed-car(X) 

ship(X) + highspeed-ship(X) 

ship(X) + normalspeed-ship(X) 

- subclassing rules 

high-speed-car(X) + speed(X,Y) A 
greater(Y,200) 

normalspeed-car(X) + speed(X,Y) A 
greater(Y,lOO) A less(Y,200) 

sportscar + no-doors(X,Y) A equal(Y,2) 

family-car(X) + no-doors(X,Y) A equal(Y,4) 

highspeedship(X) + speed(X,Y) A 
greater(Y,50) 

normalspeed-ship(X) + speed(X,Y) A 
lesseq(Y,50) 

- New rules 

vehicle(X) + vehicle*(X) 

automobile(X) + automobile*(X) 

family-car(X) + family-car*(X) 

sportscar + sportscar* 

highspeed-car( X) + high-speed-car*(X) 

normalspeed-car(X) c normal-speed-car*(X) 

Now let us consider the query “Find a set of vehicle ids 
where the speed of the vehicle is greater than 50 miles per 
hour”. The query can be written as 

Q(X) = vehicle(X) A speed(X,Y) A greater(Y,50). 

Thus the goal clause is 

+ vehicle(X), speed(X,Y), greater(Y,50) 

Now the resolution tree is as follows. 

GOAL : f venlcle(X), s~eea(x,Y). grearer(Y.So) 

fvenicte00, soeea(x,Y), greater(Y,50) 

’ I\ 

fvehlclc*(X), 

sPeea(X,Y), 

greater(Y.50) AutomoQlle Part 

/ 

watervmcle Part 
(Figure 2.1 .) (Figure 2.2) 

Figure 2. Resolution Tree 
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greaferw.50). greater(Y.50) greaterw ‘00). 
les5(Y.200), 
speeaccn 

I JUCCISS / I 
greaterw.50, 

succe55 / 
AN5 ‘, CXP ANS’, (X)- 

Figure 2. I. Automobile Part PI 

;oeedtX,Y,, 
greaterlY.50) 

/ 

ANS 3, (Xl- 
hlgLsPeeeshlPlx, 

sPeed(X’,Y i, 
greater(Y.50) 

Figure 2.2. Watervehicle Part 

Since there are three branches that have intensional an- 
swers, we have following intensional answers: 

. ANSj(X) = highspeed-car(X) 

. ANSf(X) = normalspeed-car(X) 

. AIfS? = highspeedship(X) 

5 CONCLUSIONS AND REMARKS 

In this paper, we developed a formalism to obtain intensional 
answers for a class hierarchy model. By introducing rules into 
the OODB systems and applying the JQP techniques to the 
OODB systems, we are able to use the advantages of the se- 
mantics of OODB schema. 

By using rules derived from the schema information, we are 
able not only to answer incomplete queries without knowing 
the exact structure of the database but also to express the 

answer-set abstractly as the names of classes. It provides us 
better understanding of the answer. 

However, the method in this paper also has a disadvantage. 
For complete queries, the algorithm in this paper is less efficient 
than current query languages since our method answers a query 
only after it generates the complete resolution tree by using 
structural rules, subclassing rules, and new rules. 

In this paper, we only obtain intensional answers for a class 
hierarchy model but not for a class-composition hierarchy. Our 
method does not seem to be powerful enough to represent a 
complex object hierarchy. It is probable that we need more 
powerful logic for reasoning intensional answers on complex 
objects. 
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