
APPLYING INTENSIONAL QUERY PROCESSING
TECHNIQUES TO OBJECT-ORIENTED DATABASE

SYSTEMS

Yang Hee Kim

Department of Computer Science, Suwon Industrial College

Hyoung- Joo Kim

Department of Computer Engineering, Seoul National University

ABSTRACT
Conventional database systems generate a set of facts (ex-

tensional answers) as an answer for a given query. This also
applies to object-oriented databases where a set of objects will
be returned.

However, deductive database systems give an opportunity
to obtain the answer ofa query as a set offormulas @tensional
answers). Intensional answers provide users additional insight
to the nature ofextensional answers and can be computed only
using the rules without accessing the database. So, they can
be computed much faster and more cheaply than extensional
answers.

In this paper, by introducing rules for abstract expression
in the object-oriented database systems and by applying the
intensional query processing techniques of deductive database
systems to the object-oriented database systems, we make it
possible not only to answer incomplete queries which are not
able to be answered in conventional object-oriented database
systems, but also to express the answer-set abstractly as the
names of classes.

1 INTRODUCTION

Conventionally, a query to an object-oriented database
(OODB) system is answered only by the set of objects that
satisfy a given query [l] [7]. These objects may belong to dif-
ferent classes within a class hierarchy or they may be different
complex objects somehow related to each other.

A deductive database is composed of extensional predi-
cates (facts) and intensional predicates (rules). The exten-
sional predicates contain objects of base relations while the
intensional predicates contain deduction rules and conditions.

An intensional answer is a formula that states a condition
to be satisfied by objects of the extensional answer. Thus, in-
tensional answers are independent of a particular state in the
database. Moreover, intentional answers can be computed
much faster and more cheaply than extensional answers since
in most of the time extensional answers are much larger than
intensional answers. Intensional answers also represent the
answer to the given query in a more compact way and ex-

tensional answers usually change more often than intensional
answers. So, intensional answers provide a more stable an-
swer to a query than the extensional answer. Furthermore,
since the intensional answer is similar to a query, it can be
evaluated like a query and returns a set of objects which are
partial extensional answers. For a detailed description of the
intensional query processing, we refer to [13].

In this paper, we introduce rules into OODB systems and
apply the intentional query processing (IQP) techniques to
OODB systems. Then, it becomes possible to answer incom-
plete queries by representing OODB schema in terms of rules.
So far, all the query languages in OODB systems known to
us are not able to give answers to incomplete queries. An in-
complete query is a query on the attribute which belongs to a
subclass but not the base class. Conventionally, the answer-
set of a query in OODB is represented as a set of objects.
But, the presence of semantics in OODB schema and IQP
methodologies enable us to express the answer-set abstractly
as names of classes. In this paper, we present an algorithm to
obtain abstract representation of a given answer-set.

Rules which represent OODB schema in this paper con-
sist of structural rules and subclassing rules. The structural
rules in turn consist of “ISA”-relation representing the class
hierarchy. The subclassing rules represent characteristic prop-
erties of subclasses. We then transform all the rules to non-
recursive Horn clauses and get an intensional answer by using
SLD-resolution.

We provide some sample queries to show the advantages
of an intensional answer to a given query in an OODB system
over conventional answers.

We organize this paper as follows. In section 2, we discuss
several researches which has been done in the IQP. In section
3, we look at the “IS-&“-relationship in OODB systems and
the rules in OODB systems which are necessary in order to
use the IQP. In section 4, we briefly review the definition of
intensional answers, formalize methods to derive intensional
answers for a class hierarchy model and give a detailed exam-
ple. In the last section, we give conclusions and some remarks
for possible extensions of the method in this paper.

405

OBJECT
2 RESEARCHES ON INTENSIONAL

ANSWERS

There has been done a lot of researches in this area for last
seve.ral years. While their approaches are different, all have the
common goal which is to answer queries with a set of first-order
logic formulas rather than a set of facts. But research which
integrates this area and OODB was started only recently.

Cholvy and Demolombe [5] are the first who have consid-
ered the problem of providing answers to queries which are
independent of a particular set of facts, that is, answers which
are valid in all the states associated to these sets of facts. In
this case, the answer is a set of first-order logic formulas, defin-
ing the rules that a given object should satisfy to belong to the
answer. They make the hypothesis that the rule base is not
recursive, but their algorithm accepts any form of clauses. In
their work, a method is based on Resolution Inference Rules.

Based on the research presented by Cholvy and Demolombe
[5], Pascual and Cholvy [lo] restrict types of rules in inten-
tional database (IDB) to Horn clauses, because Horn clauses
have a lot of advantages. But, they do not give the algorithm
to remove redundant resolution step and meaningless inten-
sional answers. Song [13] and Song and Dubin [14] use only
Horn-clauses for intensional databases and they give the de-
tailed SLD-resolution steps to avoid generating meaningless
intensional answers.

Imielinski [6], Pirotte and Roelants [ll], Motro [9] and
Motro and Yuan [8] use different approaches. Imielinski [6] in-
troduces the type of answers which mix both atomic facts and
general rules from projection, selection and join. So he tries to

incorporate intensional predicates as a part of answers. Pirotte
and Roelants [ll] show how intensional answers can be gener-
ated from the query and how integrity constraints can filter out
inadequate answers and produce simpler and more informatic
answers.

Motro [9] describe a method that applies database con-
straints to generate intensional answers and Motro and Yuan
[8] provide a simple query language incorporating intensional
queries.

Vadaparty and Badrinath [lS] develop a formalism to rep-
resent answers abstractly in OODB. They use the classes in
the taxonomy to express the answer-set abstractly and obtain
a unique optimal abstract representation.

3 LOGICAL REPRESENTATION OF
OBJECT-ORIENTED DATA MOD-
ELS

3.1 Class Hierarchy

We look at a class hierarchy, representing “ISA’‘-relationships
between the different classes. We assume the following query
syntax in our context :

SELECT (attribute of target record type)
FROM (object variables)
WHERE (predicate)

The class hierarchy represented in the following Figure will be
our object-oriented example database.

-SHIP

Figure I. CI~SS HlerarChy

A typical incomplete query for the class hierarchy in Figure
1 is the following:

SELECT VEHICLE.id
WHERE speed > 50

According to query languages in OODB systems known to
US, the above query is incorrect. But by integrating intensional
query processing into OODB systems, we can answer such a
query.

In a conventional OODB we get back a set of vehicle ids
where the speed of the vehicle is greater than 50 miles per
hour. According to our sample database in Figure 1, we get
back the following set:

{ HSC1, HSCZ, . ‘1, NSCl, NSCP,. .+, HSSl, HSSS,, . . }.

All these objects belong to different subclasses of the base
class object. In order to find all the a.pplying objects, the
database must provide a technique to search through all the
subclasses of vehicle. But this is not the common “State of the
Art” in OODB systems right now. There do not exist good
query languages for OODB systems which are simple to use
but at the same time powerful enough to use to fully account
the advantages of an object-oriented system.

By using semantics in OODB schema and intensional query
processing methodologies, the answer-set of a query is given by
not a set of objects but names of classes to which answer ob-
jects belong. Since these abstract representation of the answer
set is more concise, it provides us better understanding of the
answer set.

In our example there are the following intensional answers

. intensional-answer1 = all highspeed-cars

l intensional-answer2 = all normal-speed-cars

l intensional-answer3 = all high-speed-ships

In the next section of this paper, we will look at a way
to automatically access the desired subclasses without being
aware of the exact structure of the class hierarchy.

3.2 Rules for abstract expression

By introducing the notion of rules we can distinguish between
different kinds of rules:

0 integrity constraints

0 “usual” rules

0 structural rules

l subclassing rules

First, an OODB may have integrity constraints expressed
as rules. These are not unique for object-oriented systems, but
can be found in any database system. So, we are not interested
in them here.

The second sort of rules are the “usual” rules that any
deductive database can contain. Also these rules can be used
the same way in an OODB system with rules as in deductive
database systems.

More important rules we have to be concerned about are
the rules that has to be established in order to complete an
intensional query successfully within an OODB system. These
rules come out of the class hierarchy of the objects and the
information which is stored in the database schema. The rules
concerning the class hierarchy are the structural rules and rules
concerning the structual information of the subclassing schema
are the subclassing rules.

The structural rules and subclassing rules in Figure 1 are
the followings :

l structural rules

- “ISA’‘-rules

ISA(automobile, vehicle)
ISA(watervehicle, vehicle)
ISA(sportscar, automobile)
ISA(family-car, automobile)
ISA(ship, watervehicle)
ISA(highspeed-car, sportscar)
ISA(normalspeed-car, sportscar)
ISA(high-speedship, ship)
ISA(normalspeedship, ship)

v subclassing rules

- high-speed-car(X) t sportscar A speed(X,Y) A
greater(Y ,200)

- normalspeed-car(X) + sportscar A speed(X,Y)
A greater(YJ00) A less(Y,200)

- sportscar + automobile(X) A no-doors(X,Y) A
equal(Y,2)

- family-car(X) + automobile(X) A no-doors(X,Y) A

ewW4)

- high-speed-ship(X) + ship(X) A speed(X,Y) A

greater(Y,50)

- normalspeed-ship(X) +- ship(X) A speed(X,Y) A
lesseq(Y ,50)

4 FORMALIZATION
OF INTENSIONAL QUERY PRO-
CESSING IN OBJECT-ORIENTED
DATABASE SYSTEMS

4.1 Definition of Intensional Answers

First of all, we briefly review the definition of intensional an-
swers given in [5]. Define T as the database theory consisting
of a set of facts and rules and let Q(X) be a query where X is a
tuple of free variables. Then, we want to find all the formulas
ans(X), such that

T t-VX(ans(X)+ Q(X))

i.e., VX(ans(X) --) Q(X)) is a theorem of T. So, the inten-
sional answer ANS(Q) to the query Q(X) is defined by the
set of formulas :

ANS(Q)= {ans(X):T k VX(ans(X)-+ Q(X))}

where ans(X) is a literal.
However, we want to restrict the answers within a defined

domain of interest. Let DP = {PI, .,., P,} be a set of pred-
icate symbols either of the IDB or the extentional database
(EDB). And let L(DP) be the first order language whose pred-
icate symbols are PI, P,. Then define an intensional answer

ANS(Q,DP) to a query Q(X)by :

ANS(Q,DP)= {uns(X):ans(X)~ L(DP) and
T I- ‘dX(ans(X) --) Q(X)) and
(uns(X) is not the negation of

a tautology) and
(each ans(X) is not redundant)}

To derive an intensional answer, the resolution will be ap-
plied to the database theory T and the negation of the theorem
VX(ans(X) + Q(X)). But the negation of the thorems is

not (VX(ans(X) -+ Q(X)))

which is equal to

3X(ans(X) A not(Q(X)))

That leads to the standard form

{4x0), -(Q(Xo>>l

where X0 is a tuple of Skolem constants. So, the clause form
for the resolution becomes

S u {~~s(Xo>, -(Q(Xo))l

where S is a set of clauses transformed from T. Since uns(ko)
is not known at the beginning of the resolution process, we
will start with S u {lQ(Xo)}. Resolving S U {--Q(Xo)} will
result in a resolvent R(Xo) and then resolving R(Xo) together
with ans(Xo) will result in the empty clause. That means that
uns(X0) must equal to -&(X0).

In the following sections, we outline an algorithm deriving
intensional answers for a class hierarchy model consisting of
non-recursive Horn clauses. By limiting non-recursive clauses
the algorithm can be terminated, and by Horn clauses efficient
algorithm can be used.

4.2 Processing comparison literals

To compute intensional answers efficiently, subclassing rules
should be represented in a proper form. Since testing satis-
fiability in first-order logic formula is undecidable, adopting
first-order logic formula for managing subclassing rules is not
desirable. Therefore, we need a subset of first order logic ex-
pressions which is powerful enough for expressing subclassing
rules and in which the satisfiability problem can be processed
efficiently.

Subclassing rules can be represented with the “simple pred-
icates” [7]. The BNF of simple predicates abbreviated by SP
is as follows.

{zP)d::=t(S)P) A (SP) 1 (SP) V (SP) 1 l(SP)) (predicates)
re ica es ::= (comparison operator) ((variable name),

(constant))
((comparison operator) ((variable name),

(variable name))
((comparison operator) ((variable name),

(variable name) + (constant))
(comparison operator) ::= equal) not-equal 1 greater

] greater-eq] less 1 less-eq

Rosencrantz and Hunt showed that the satisfiability prob-
lem of the set of simple predicate is NP-hard [12]. But

they showed that conjunctive not-equal free predicates (sim-
ple predicates that do not contain not-equal and V) can be
solved in polynomial time. We can represent a large class of
subclassing rules with conjunctive not-equal free predicates,

The following algorithm changes a conjunctive not-equal
free predicate to a weighted directed graph [12] [i’].

Algorithm 1

Input : A conjunctive not-equal free predicate P.
0~tP~lt : A weighted directed graph.

(~1 and Q stand for variables and c stands for a constant)

1. Convert P into an equivalent predicate P’ containing only
less-eq comparison literal as follows :

1.1 Replace 01 = vz with (~1 I ~2 + 0) A (~z 5 o1 + 0).

1.2 Replace ~1 < ~2 with vu1 5 u2 + (-1).

1.3 Replace VI 5 v2 with v1 5 o2 + 0.

1.4 Replace wr > 02 with wz 5 u1 + (-1).

1.5 Replace vr 2 wz with v2 5 u1 + 0.

1.6 Replace VI = c with (~1 I 0 + c) A (0 5 u1 + (-c)).

1.7 Replace wr < c with wr 5 0 f (c - 1).

1.8 Replace ~1 < c with ~1 < 0 + c.

1.9 Replace 2rr > c with 0 5 u1 + (-c - 1).

1.10 Replace ~1 2 c with 0 < zil f (-c).

2.

1.11 Replace 2rr = 212 + c with (ol 2 w2 + c) A (w2 5
qt (-c)).

1.12 Replace ~1 < 212 + c with ~1 5; ‘~2 $ (c - 1).

1.13 Replace zll 5 2)s + c with wl <I ‘~2 f c.

1.14 Replace v1 > 212 + c with vs 5; wr + (-c - 1).

1.15 Replace w1 1 212 $ c with 2)~ 2; wr f (-c).

Convert P’ into a weighted directed graph. The graph
has a node for each variable and a node for a constant
zero. Conversion is as follows:

2.1 ~1 5 212 + c corresponds to an edge from node wr to
node wz with edge weight c.

2.2 wr < 0 + c corresponds to an edge from node ~1 to
zero node with edge weight c.

2.3 0 < ~1 $ c corresponds to an edge from zero node
to node wr with edge weight -c.

There are two restrictions in the above algorithm. The one
is that each variable should be integer valued. The other is
that predicates can not have not-equal operators. Fortunately,
many of subclassing rules involve integer valued domains such
as engine size, price, number of doors, etc. And in this paper,
we will deal with not-equal free predicates.

The next algorithm will change a weighted directed graph
G with no multiple edges to a conjuntive less-eq predicate
(not-equal free predicate that contains only less-eq)

Algorithm 2

Input : A weighted directed graph G with no multiple edges.
Output : A conjuntive less-eq predicate.

(~1 and v2 stand for variables and c stands for a constant)

1. An edge from node wr to node ~2 with edge weight c
corresponds to vr 5 wz f c.

2. An edge from node 01 to zero node with edge weight c
corresponds to ~1 5 0 + c.

3. An edge from zero node to node 711 with edge weight -c
corresponds to 0 5 vr + c.

The next algorithm will test comparison literals using a
weighted directed graph and return a truth constant or a sim-
plified predicate.

Algorithm 3

Znpul: A predicate consisting of the conjuction of an old com-
parision predicate (predicate in resolvent before resolu-
tion) and a new comparison predicate (predicate in re-
solvent after resolution)

Output: Truth constant (TRUE or FALSE) or simplified pred-
icate

1. Apply algorithm 1 to the conjunction of old and new
comparison predicate. And then we get a weighted di-
rected graph G.

408

2. If G has a negative cycle then

return FALSE.

Output: A set of ANSI(X) of intensional answers

1. Negate the query and convert it into the clause form

else 2. Repeat for all branches of a resolution tree

If there is more than one edge from node ~1 to node
01 then

begin
retain the minimum weight edge and discard
the others
apply algorithm 2 to G and we get a conjective
less-eq predicate P
change new comparison predicate to less-eq
predicate using step1 of algorithm 1
if P is the same as new comparison predicate
then

return TRUE

else
return P

end

else

return old comparison predicate A new compar-
ison predicate

We can use Floyd’s all shortest path algorithm to see if the
graph has a negative weight cycles. In algorithm 3, the step 1
can be processed in a linear time, if-part of the step 2 (Floyd’s
all shortest paths algorithm) takes O(lc3) and else-part of the
step 3 can be processed in a linear time where Ic is a number
of nodes in G.

4.3 An algorithm for Intensional Answers

In Section 3.2, we proposed structural rules and subclassing
rules for class hierarchy. Before we get the intensional an-
swers, first of all some rule transformations should be done in
order to get unique intensional literals, secondly recursion in
subcalssing rules should be removed, and “ISA’‘-rules to the
first order logic should be changed.

Unique intensional literals are literals that are either exten-
sionally or intensionally defined but not both. So if we have
literal p which is both EDB-defined and IDB-defined, then re-
name the extensional literal p* and introduce a new rule p c
p* in the IDB. In doing so, we can handle complete queries as
well as incomplete queries for the intensional query processing.

Since structural rules and subclassing rules are conjuction
in IDB, we can remove recursion in subclassing rules.

Finally we can change “ISA”-rules to the first-order logic
since the semantic of “ISA” is implication. For example,
ISA(X,Y) can be changed Y + X. Now, IDB corresponds
to a set of non-recursive Horn clauses.

The following algorithm will compute intensional answers
from a set of non-recursive Horn clauses consisting of EDB U
IDB and a query Q(X).

2.1 Perform resolution using subclassing rules, struc-
tural rules or new rules

2.2 If resolvent contains extensional literal p*

If base literal is not in the attributes of p* then

current branch is fail branch and return

current branch is success branch and return

else /* if resolvent does not contain extensional lit-
eral */

If resolvent contains at least two base literals
then

If factoring is impossible among base literals
then

current branch is fail branch and return

else

begin

Perform the algorithm 3

If result is FALSE then

current branch is fail branch and
return

else if result is TRUE then

current branch is success branch and
return ANSI(X) = selected predi-

cate

else
current branch is success branch and
return ANSI(X) = selected predi-

cate A simplified predicate

end

Until it cannot be futher resolved

3. If all success branches contain extensional answers then

begin

choose the highest success branch

generate the intensional answers by negating resol-
vent

end

else

begin

ignore success branch containing extensional an-
swers and

return intensional answers ANSI(X)
end

Algorithm 4

lnpzlt; A set of non-recursive Horn clauses consisting of EDB u
ID3 and a query Q(X) where X is a tuple of free variables

4.4 example

To show the application of the algorithm introduced in the
above section, we will use our example database given in Fiqure
1.

EDB and IDB schema looks as follows :

vehicle(id, weight, color)

automobile(id, weight, color, size, gasmileage,
no-doors)

family-car(id, weight, color, size, gas-mileage,
no-doors, noseats)

sportscar(id, weight, color, size, gasmileage,
no-doors, speed)

high-speed-car(id, weight, color, size, gasmileage,
no-doors, speed)

normalspeed-car(id, weight, color, size,
gasmileage, no-doors, speed)

water-vehicle(id, weight, color, level, speed)

ship(id, weight, color, level, speed, size)

highspeedship(id, weight, color, level, speed, size)

normalspeed-ship(id, weight, color, level, speed,
size)

“ISA”-rules

subclassing rules

First we rename the extensional literal, add new rules in
the IDB, remove recursion, and change “ISA”-rules to the first
order logic.

EDB

vehicle*(id, weight, color)

automobile*(id, weight, color, size, gasmileage,
no-doors)

family-car*(id, weight, color, size, gas-mileage,
no-doors, noseats)

sportscar*(id, weight, color, size, gas-mileage,
no-doors, speed)

highspeed-car*(id, weight, color, size, gasmileage,
no-doors, speed)

normalspeed-car*(id, weight, color, size,
gasmileage, no-doors, speed)

water-vehicle*(id, weight, color, level, speed)

ship*(id, weight, color, level, speed, size)

highspeedship*(id, weight, color, level, speed,
size)

normalspeed-ship*(id, weight, color, level, speed,
size)

- “ISA’‘-rules

vehicle(X) c automobile(X)

vehicle(X) + watervehicle

automobile(X) +- sportscar

automobile(X) +. family-car(X)

watervehicle + ship(X)

sportscar + high-speed-car(X)

sportscar t normal-speed-car(X)

ship(X) + highspeed-ship(X)

ship(X) + normalspeed-ship(X)

- subclassing rules

high-speed-car(X) + speed(X,Y) A
greater(Y,200)

normalspeed-car(X) + speed(X,Y) A
greater(Y,lOO) A less(Y,200)

sportscar + no-doors(X,Y) A equal(Y,2)

family-car(X) + no-doors(X,Y) A equal(Y,4)

highspeedship(X) + speed(X,Y) A
greater(Y,50)

normalspeed-ship(X) + speed(X,Y) A
lesseq(Y,50)

- New rules

vehicle(X) + vehicle*(X)

automobile(X) + automobile*(X)

family-car(X) + family-car*(X)

sportscar + sportscar*

highspeed-car(X) + high-speed-car*(X)

normalspeed-car(X) c normal-speed-car*(X)

Now let us consider the query “Find a set of vehicle ids
where the speed of the vehicle is greater than 50 miles per
hour”. The query can be written as

Q(X) = vehicle(X) A speed(X,Y) A greater(Y,50).

Thus the goal clause is

+ vehicle(X), speed(X,Y), greater(Y,50)

Now the resolution tree is as follows.

GOAL : f venlcle(X), s~eea(x,Y). grearer(Y.So)

fvenicte00, soeea(x,Y), greater(Y,50)

’ I\

fvehlclc*(X),

sPeea(X,Y),

greater(Y.50) AutomoQlle Part

/

watervmcle Part
(Figure 2.1 .) (Figure 2.2)

Figure 2. Resolution Tree

410

greaferw.50). greater(Y.50) greaterw ‘00).
les5(Y.200),
speeaccn

I JUCCISS / I
greaterw.50,

succe55 /
AN5 ‘, CXP ANS’, (X)-

Figure 2. I. Automobile Part PI

;oeedtX,Y,,
greaterlY.50)

/

ANS 3, (Xl-
hlgLsPeeeshlPlx,

sPeed(X’,Y i,
greater(Y.50)

Figure 2.2. Watervehicle Part

Since there are three branches that have intensional an-
swers, we have following intensional answers:

. ANSj(X) = highspeed-car(X)

. ANSf(X) = normalspeed-car(X)

. AIfS? = highspeedship(X)

5 CONCLUSIONS AND REMARKS

In this paper, we developed a formalism to obtain intensional
answers for a class hierarchy model. By introducing rules into
the OODB systems and applying the JQP techniques to the
OODB systems, we are able to use the advantages of the se-
mantics of OODB schema.

By using rules derived from the schema information, we are
able not only to answer incomplete queries without knowing
the exact structure of the database but also to express the

answer-set abstractly as the names of classes. It provides us
better understanding of the answer.

However, the method in this paper also has a disadvantage.
For complete queries, the algorithm in this paper is less efficient
than current query languages since our method answers a query
only after it generates the complete resolution tree by using
structural rules, subclassing rules, and new rules.

In this paper, we only obtain intensional answers for a class
hierarchy model but not for a class-composition hierarchy. Our
method does not seem to be powerful enough to represent a
complex object hierarchy. It is probable that we need more
powerful logic for reasoning intensional answers on complex
objects.

References

PI

[31

[41

[51

PI

PI

PI

PI

F. Bancilon, Object-Oriented Database Systems, in Pro-
ceedings of Seventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 152-
162, Austin, Texas, March 21-23 1988.

J. Banerjee, et al., Data Model Issues on Object-Oriented
Applications, in ACM Transactions on Office Information
Systems, Vo1.5, No.1, March, 1987.

S. Bottcher, M. Jarke and W. Schmidt, Adaptive Predicate
Management in Database Systems, in Proceedings of 12th
VLDB Conference, 1986.

C. Chang and R. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press, New York and Lon-
don, 1973.

L. Cholvy and R. Demolombe, Querying a RuLeBase,
in Proceedings of the first int’l conference on Ex-
pert Database Systems, ed.Kerschberg, L., pp. 365-371,
Charleston, South Carolina, April 1-4, 1986.

T. Imielinski, Intelligent Query Answering in Rule Based
Systems, J. of Logic Programming, vol 4, no. 3, pp. 229-
258, September, 1987. Also appeared as Transforming
Logical Rules by Relational Algebra, in Proceedings of
Foundations of Deductive Database Systems and Logic
Programming, ed. Minker, J., pp. 338-377, Washington
DC, August 8-12, 1986.

H. 3. Kim, Logic Design of Object-Oriented Database
Schema, Technical Report : GIT-ICS-89/06, January,
1989.

A. Motro and Q. Yuan, Querying DataBase h’nowledge,
Proceedings of ACM SIGMOD, Atlantic City, New Jersey,
May 23-25, 1990, pp. 173-183.

A. Motro, Using Integrity Constraints to Provide Inten-
sional Answers to Rekational Queries, in Proceedings of
15th VLDB Conference, 1989.

411

[lo] E. PascuaI and L. Cholvy, Answering Queries Addressed
to the Rulebase of a Deductive Database, in Proceedings of
2nd Int’l Conference on Information Processing and Man-
agement of Uncertainty in Knowledgebased Systems, pp.
138145, Urbino, Italy, July 1988, Springer-Verlag, Lec-
ture Notes in Computer Sciences 313.

[II] A. Pirotte and D. Roelants, Constraints for Improving
the Generation of Intensional Answers in a Deductive
Databases, 1989 Int’l Conference on Data Engineering, pp.
652-659.

[12] D. J. Rosenkrantz and M. B. Hunt, Processing conjunc-
tive predicates and queries, in Proceedings of the Sixth
International Conference on VLDB, pp. 64-74, Montreal,
1980.

[13] Song, I-Y., Intensional Query Processing in Deductive
Database Systems, Ph.D Dissertation, Louisiana State
University, August 1988.

[14] I-Y. Song and D.Dubin, IQPS’:Implementation of an Zn-
tensional Query Processing Shell, submitted for pubhca-
tion.

[15] I-Y. Song, H-J. Kim and P. Geutner, Intensional Query
Processing : A three step Approach , in Proceedings
of 1990 International Conference on Database and Ex-
pert Systems Application, pp. 542-549, Vienna, Austria,
Aug.29-31, 1990.

[16] K. Vadaparty and B. R. Badrinath, User-controlled Ab-
stract Answers in Object-Orieneted Systems, Technical
Report : LCSR-TR-164, Department of Computer Sci-
ence, Rutgers University, Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ 08903,
April, 1991.

412

