
SigDAQ: an enhanced XML query optimization technique q

Sangwon Park *, Hyoung-Joo Kim

School of Computer Science and Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul 151-742, South Korea

Received 12 October 2000; received in revised form 5 January 2001; accepted 11 April 2001

Abstract

XML is an emerging standard for data representation and exchange on the Web. XML is represented as a tree and the query as a

regular path expression (RPE). The query is evaluated by traversing each node of the tree. Several indexes are proposed for RPEs for

fast retrieval. In some cases these indexes may not cover all possible paths because of storage requirements. In this paper, we propose

a signature-based query optimization technique to minimize the number of nodes retrieved from the database when the indexes

cannot be used. The signature is a hint attached to each node, and is used to prune unnecessary sub-trees as early as possible when

traversing nodes. For this goal, we propose the SigDAQ which is a signature-based DOM (s-DOM) as a storage model and a

signature-based query executor (s-NFA). Our experimental results show that the signature method outperforms the original. � 2002

Elsevier Science Inc. All rights reserved.

1. Introduction

XML is an emerging standard for data representation
and exchange on the World-Wide Web. A database
system is required for efficient manipulation of XML
data, as large quantities of information are represented
and processed as XML. However, because the data
model of XML is different from those of conventional
databases, a new storage method and a query processing
model are required. To satisfy these requirements, re-
search on applying the previous semistructured data
(Abiteboul, 1997; Buneman, 1997) to XML documents
has begun. Semistructured data, which has been inten-
sively studied in recent years by the database research
community, is very similar to XML data. Therefore, the
research results in the area of semistructured data are
now broadly applicable to XML (McHugh and Widom,
1999). There are several semistructured or XML data-
base systems, e.g., Lore (McHugh et al., 1997) and
eXcelon (eXcelon, 1999).

In the XML data model, an XML document is rep-
resented as a graph of which each node is stored as an
object in the semistructured database, and queries are

evaluated by traversing these nodes. For efficient eval-
uation of the XML query, decreasing the number of the
traversed nodes is important.

SELECT x.company.(address|telephone)

FROM person.*.parent x;

The above is an example of an XML query, which is
similar to Lorel (Abiteboul et al., 1997). This query re-
trieves person’s parents’ addresses or telephone num-
bers. It contains the regular path expressions (RPEs)
(Abiteboul et al., 1997; Buneman et al., 1996; Chris-
tophides et al., 1994), which are supported by general
XML queries such as XML-QL (Deutsch et al., 1998)
and XQL. Some syntaxes, such as the starð�Þ in XML
queries, enlarge the search space when the query is
evaluated. In this example, almost all nodes under
person must be visited because of person.*. There-
fore, regular path indexes have been studied to solve this
problem.

The path index (Bertino and Kim, 1989) is proposed
for evaluating path expressions in object-oriented data-
bases. However, all possible paths cannot be covered by
this index due to the high storage requirements. New
indexing methods for semistructured data are proposed
in Goldman and Widom (1997), McHugh and Widom
(1999) and Milo and Suciu (1999) to evaluate the RPEs
more rapidly. These indexes have the automata of RPEs
and extents to find objects that match given RPEs. The
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characteristic of these indexes is that they are repre-
sented and stored as the same model. For example, the
nodes in DataGuide (Goldman and Widom, 1997) are
represented as OEM objects; 1-index, 2-index and T-
index (Milo and Suciu, 1999), which are semistructured
indexes, are represented as semistructured data. There-
fore, these indexes are also semistructured data .

The 1-index is for P :x, in which P is a regular ex-
pression started from the root, whereas 2-index is for
�:x:P :y. P denotes a regular expression and x, y denote
binding variables. This index gives pairs of the start
object x and the final object y that match the regular
expression P. However, in the worst case, the number of
nodes in the 2-index is the square of the number of
nodes in the data graph. This index has many nodes, and
lots of nodes must be traversed to evaluate the RPE. For
this reason the T-index decreases the size of 2-index by
reducing the coverage of regular expressions. An ex-
ample of T-index is �:person:x:P :y, and this restricts the
start object x, of which parent objects must be matched
by �:person.

As a result, some data are outside the boundary of
these indexes. The path index is for a specific path such
as person:boss:parent. All possible path indexes cannot
be used because of storage requirements. The T-index
does not cover all possible RPEs for the same reason.
Therefore, we need a new mechanism to evaluate the
RPE rapidly when the graph which index cannot cover
is traversed. It is also a problem that the index for a
semistructured data is another semistructured data.
When the index is used for query evaluation, the index
nodes must be traversed. However, the number of vis-
ited index nodes cannot be reduced even though they are
index nodes.

The data structure of XML documents is represented
in DOM (W3C, 2000) as a tree. DOM provides the in-
terfaces for traversing its parent, child and sibling nodes.
The tree can be navigated using these interfaces. We
propose the SigDAQ (signature-based DOM and query
executor) composed of s-DOM and s-NFA which are
based on the signature method (Chang and Schek, 1989;
Faloutsos, 1985), to reduce the search space when the
index is not used for the RPEs. The signature of s-DOM
gives a hint as to whether some nodes exist in the sub-
tree of a specific node. The s-NFA is used for evaluating
the RPEs using the signature information. This method
can be applied to semistructured indexes because they
are also represented as a graph. To evaluate the RPEs
many of the nodes in the indexes have to be visited be-
cause of blindness of a sub-graph to a node in the index.
The signature method removes the blindness, and re-
duces the number of visits to nodes of the data and
index trees.

The size of nodes of s-DOM becomes larger than the
size of the original because a signature is stored in each
node. However, as the size of a signature is several bytes,

the performance is not much affected. Because the op-
eration of signatures is a bit-wise operation, there is only
a small overhead for computation of the signature.

The method proposed in this paper is used in the
optimization module in XWEET (Jeong et al., ngps).
XWEET is a system that manages the XML in the Web
environment. XML data can be transferred from outside
the system, from internal data or produced from other
data sources. XWEET is a system that evaluates XML
queries from many XML data types available on the
Web. XWEET is composed of PDM, wrapper, media-
tor, XQP (XWEET Query Processor), WPG (Web Page
Generator) and HTML/XML Templates.

The remainder of this paper is organized as follows:
Section 2 presents related work, while Section 3 defines
the data model and the query language used in this
paper. Section 4 presents the s-DOM for nodes that
have signatures. The query optimization technique using
signatures is given in Section 5 and the experimental
results are discussed in Section 6. Finally, conclusions
are presented in Section 7.

2. Related work

Semistructured data (Buneman, 1997; Abiteboul,
1997) is represented as a graph. The query languages for
semistructured data are influenced by those of object-
oriented databases such as OQL (Cattell and Barry,
1997) and XSQL (Kifer et al., 1992). Both OQL and
XSQL use a path expression which enhances the ex-
pressive power of the queries. However, these query
languages are not adequate for the semistructured data
due to a lack of schema information. Even if schema
information is provided, the structure can be changed by
its own data.

To solve this problem, RPEs are used for semistruc-
tured queries (Abiteboul et al., 1997; Buneman et al.,
1996; Christophides et al., 1994). Indexes of semistruc-
tured data (Goldman and Widom, 1997; McHugh and
Widom, 1999; Milo and Suciu, 1999) are proposed to
execute RPEs more rapidly. They combine the index
structure and automata of the XML data. The target
objects can be retrieved by traversing the appropriate
automata graph for the RPE.

Theoretical foundations for query processing for
semistructured data are studied in Abiteboul and Vianu
(1997) and Mendelzon and Wood (1995). Abiteboul and
Vianu (1997) uses path constraints for optimization of
regular path queries. Fernandez and Suciu (1998) de-
fines a graph schema that has partial information about
the graph structure. It reduces the search space by query
pruning and query rewriting.

Signature techniques (Chang and Schek, 1989; Yong
et al., 1994) are used in database systems. Chang and
Schek (1989) used the signature to select matched tuples
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by select condition. Yong et al. (1994) proposed the
technique to reduce page I/O when evaluate the path
expression in object-oriented database. However, these
methods cannot be used for RPE.

Efficient storage of XML documents to existing data-
base systems has been studied (Deutsch et al., 1999;
Florescu and Kossmann, 1999; Shanmugasundaram
et al., 1999; Shimura et al., 1999). These methods focus
on schema generation to store XML documents in re-
lational databases and on query translation for opti-
mization. There are two methods for storing XML
documents in existing database systems. One is by
making relational database schemas using the tags of
XML documents such as those in Deutsch et al. (1999)
and Shanmugasundaram et al., 1999, and each element
is stored in the tables. The other is by storing a node of
a tree (Florescu and Kossmann, 1999; Shimura et al.,
1999) as an object, as XML is represented as a tree.

In the former, XML queries have to be translated to
target database languages when we store and extract
XML data from the underlying database system, which
is represented as a tree and is stored in two-dimensional
relational tables. In that case, a wrapper is required to
reconstruct the results as XML objects. DTD is im-
portant data for making database schemas that are used
to store objects. Shanmugasundaram et al. (1999) de-
scribes a method for making database schemas to store
XML using DTD information. Because many XML
documents do not have DTD information, Garofalakis
et al. (2000) show a method to extract DTD from data.

The latter method shows that each node of a tree is
stored as an object that is used in eXcelon (eXcelon,
1999), PDOM (GMD-IPSI, 2000). The original struc-
ture of XML documents cannot be changed by storing
each node as an object. Object-oriented databases or
Lore (Abiteboul et al., 1997) use this method. We as-
sume that each node in DOM which is the data model of
the XML document is stored as an object. When each

node is stored as an object in a database, minimizing
node visits is the main requirement to optimize the
queries.

3. Data model and query language

The XML data of interest are similar to OEM (Pa-
pakonstantinou et al., 1995); that is, a data model of
semistructured data. OEM is a self-describing object
model and is represented as a graph. The difference
between the OEM and XML data model is that the
former is represented as a graph, the latter as a tree and
ordered list. DOM is a standard interface of XML data,
whose structure is a tree, which is the data model used in
this paper. Each node in DOM references its parent,
child and sibling nodes. The sibling nodes are an ordered
list.

Fig. 1 is an example of an XML document. This
document does not have a DTD that is used to check the
validity of an XML document, but DTD is not used in
this paper because the databases in this paper store
XML documents which have DTD or not. If an XML
document does not have a DTD then it is more similar
to semistructured data. The DOM structure of this
XML document is represented in Fig. 2. The structure is
a tree that can be traversed from a certain node to its
parent, child or sibling nodes. XML structure can be a
graph that has cycles. The method proposed in this
paper can be used in cyclic graphs as described in Sec-
tion 4.3. For simplicity, only trees are used in this paper.

Each node is stored as an object and its OID is rep-
resented by ‘&’ as depicted in Fig. 2. For example, the
OID of the root node is &1. There are element node,
attribute node and text node in DOM, in which each
node has a name or a value. The element node and the
attribute node have names. The text node is a leaf node
and has a value, and the attribute node has a name and a

Fig. 1. Example of an XML document.
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value. For example, object &1 and &2 are examples of
element nodes whose name is ‘‘AttrList’’, and object &7
is an attribute node whose name is ‘‘name’’ and value is
‘‘Johnson’’. The leaf node, such as objects &23 and &24,
is a text node. Simple definitions useful for describing
the mechanism described in this paper are:

Definition 3.1 (label path). A label path of a DOM object
o is a sequence of one or more dot-separated labels,
l1:l2 . . . ln, such that we can traverse a path of n nodes
(n1 . . . nn) from o, where node ni has label li, and the type
of node is element or attribute.

Definition 3.2 (regular path expression, RPE). An RPE is
a path expression that has regular expressions in the
label path.

Queries in this paper are RPEs such as Addr-

List.((person.*)|company).name. They allow wild-
card operators such as *, +, ?. The scan operator is
provided for searching nodes matched to the given RPE
when processing the query. If each node is stored as an
object in unclustered fashion, it is highly likely that a
page is read from disk to fetch a node. Therefore, the
number of fetching nodes must be diminished to reduce
the cost of evaluating the queries. The objective of this
paper is to reduce the search space of the DOM tree by
pruning the data graph to minimize disk operation when
evaluating RPEs.

XML queries can be executed by traversing each
node of the tree. Therefore, to optimize XML queries,
minimizing the number of visited nodes is the key issue.

In this paper the terms node and object are inter-
changeable because a node is stored as an object in a
database.

4. Storing XML documents based on the signature method

In this section the storage structure, s-DOM, which is
based on the signature technique is explained. Each
node in s-DOM has not only a node name, but also a
signature, that provides a hint for diminishing the search
space by pruning worthless graphs as early as possible
when an RPE is evaluated. The query processor s-NFA
using s-DOM is described in the following section.

4.1. What is signature?

The signature (Chang and Schek, 1989; Faloutsos,
1985; Sacks-Davis et al., 1984) techniques are proposed
in the area of full text retrieval. The word signature for a
certain string is its hash value generated by a given
hashing function like Table 1(a). 1 A given string is
tested by the signature whether the string is contained in
a certain document block or not. For example, if
the three strings, ‘‘person’’, ‘‘company’’ and ‘‘name’’ in
Table 1(a) are stored in the same document block D, the
block signature SD of that document block is obtained
by bit-wise ORing all the hash values of the strings in the
block, which is H\person", H\company" and H\name":

&1 AddrList

&5

&2 &3 &4

&11 &12&10&9&8&7&6

&13 &14

person person company

name

first last

company name company

persontelephoneaddress

father name address telephone

name

"John" "Smith"

"IBM"

"Heidelberg" "123-4567"

"William Johnson"

"Samsung" "Suwon" "549-0987"

&15 &17 &18 &19 &20 &21 &22

&23 &24 &25 &26 &27

&28

"Robert Johnson"

Fig. 2. DOM graph.

1 We make a signature by the SC method of Faloutsos (1985).
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SD ¼ 10101011 ¼ ð00100010 _ 00001001 _ 10001000Þ:
Then we can determine whether there is a string ‘‘per-
son’’ in the block D by checking H\person". If H\person" �
H\person" ^ SD, then there is a high possibility that
‘‘person’’ exists in that document block. We call it this
false drop. However, since for H\address", the result of
SD ^ H\address" is not H\address". This means that there is
no string ‘‘address’’ in that document block. So we can
stop searching for a string in that block, thus decreasing
the cost of comparison operations.

The property of the signature hashing function used
in building s-DOM and s-NFA is that each string value
yields m bit positions (not necessarily distinct), in the
range 1–F. We can get m and F by the following equa-
tions (Faloutsos, 1985). We fix the false drop f as 0.2 and
changed the number D which is the number of hash
values to make signature. Then we can get the signature
size F from 1 to 10 bytes:

log2 f ¼ �
F

D log2 e
;

m ¼ int
F

D log2 e

� �
:

The corresponding bits are set to 1, while all the other
bits are set to 0. For example, in Table 1(a), the value
‘‘telephone’’ sets to 1 the bits of positions 3 and 5
ðm ¼ 2Þ. The signature technique used in this paper is
based on superimposed coding (Faloutsos, 1985), that
is, ORing of some signatures.

When we search a certain string in the document
which is composed of several document blocks, the
signature can be used to shrink the search space by
comparison between the signature of a document block
and the hash value of a given query string. Like the
block signature, s-DOM described in the following sec-
tion, is a method applied signature to DOM in order to
shrink the search space when evaluating RPEs.

4.2. s-DOM (signature-based DOM)

In this paper it is assumed that each node of DOM is
stored as an object, which is shown in eXcelon (1999),
Florescu and Kossmann (1999), McHugh et al. (1997)
and Shimura et al. (1999). We additionally add a sig-
nature to each node in DOM, and call it s-DOM. The
label path contains the names of the element or attribute
nodes in the DOM tree. Therefore, only element and
attribute nodes are involved in making the signature.
Let the hash value of the name of a node i be Hi, and the
signature be Si. The Si is the ORing of all the hash values
of its child nodes. That is, the hash value is propagated
to its parent node.

As described in the previous section, the existence of
a certain name l in the sub-tree of the node i can be
estimated by comparison of Hl ^ Si. If Hl ^ Si � Hl,
then there may be a node whose name is l in the sub-
tree. Otherwise, if Hl ^ Si 6¼ Si, then it assures of
no existence of the name l in the sub-tree. Table 1(a)
shows hash values of the element and attribute names
in Fig. 2. Algorithm 1 explains how to calculate the
signature of a node, and Example 4.1 shows how to
form signatures in s-DOM. The results are shown in
Table 1(b), which describes the signature of each node in
Fig. 2.

Algorithm 1 (MakeSignature(node)).

1. s 0
2. if node is an Element or Attribute node then
3. for each ChildNode of node do
4. s  s _ MakeSignature(ChildNode) /* bitwise

operation */
5. s s _ Hash(ChildNode.Name) /* bitwise oper-

ation */
6. end for

7. end if
8. node.signature  s

Table 1

Hash values of the name of each element and the signatures of each node

(a) Hash value of string

AddrList 01001000 person 00100010

name 10001000 first 10100000

last 01000010 company 00001001

address 01000001 telephone 00101000

father 00000011

(b) Signature of a node in s-DOM

&1 11101011 &2 11101011 &3 11101011

&4 11101001 &5 11100010 &6 00000000

&7 00000000 &8 01101001 &9 10101010

&10 00000000 &11 00000000 &12 00000000

&13 00000000 &14 00000000 &17 00000000

&18 00000000 &19 10001000 &27 00000000

S. Park, H.-J. Kim / The Journal of Systems and Software 61 (2002) 91–103 95



Example 4.1 (generation of signature). Let the signature
of object &i be Si and the hash value of the name of
object &i be Hi. In this example, it is presented how to
generate S2 of object &2 in Fig. 2. First, S5 and S6 should
be obtained, since they are the child objects of object &2.
The signature S13 and S14 should be generated for S5. At
this time, S6, S13 and S14 are 0 because their child nodes
are text nodes. Therefore, S5 is 11100010 by ORing of
signatures S13ð0Þ, S14ð0Þ and hash values H13ð10100000Þ
and H14ð01000010Þ. As a result, S2 is 11101011 by
S5ð11100010Þ _ S6ð0Þ _ H5ð10001000Þ _ H6ð00001001Þ.

In Example 4.1, a parent node has the signature in-
formation of its child nodes. This means that the pos-
sibility of existence of a node that has a specific name
can be determined by comparing the signature between
the signature of a node and the hash value of a query
string. Example 4.2 shows how the test for the existence
of such a node in the sub-tree is performed.

Example 4.2 (node traversing). When we wish to know
whether there is a node whose name is ‘‘address’’ in the
sub-tree of &3 in Fig. 2, we perform a bit-wise AND
operation between the hash value of ‘‘address’’, H\address"

and the signature of &3, S3. If H\address" ^ S3 � H\address",
then it is possible that a node whose name is ‘‘address’’
exists in the sub-tree of &3. On the contrary, for a node
whose name is ‘‘father’’, since H\father" ^ S4 6¼ H\father"

we can make sure there does not exist such a node in the
sub-tree of &4. Therefore, the sub-tree of &4 is pruned
when finding a node named ‘‘father’’.

4.3. Signatures of graph

Algorithm 1 needs to be changed when s-DOM is a
graph. To make a signature of an object n in s-DOM, we
have to obtain the hash values of all object labels of the

sub-graph of n. In this case all objects in the graph can
be found by graph reachability (Skvarcius and Robin-
son, 1986). However, the s-NFA explained in the fol-
lowing section can be used unchanged even in cyclic
graph.

5. s-NFA (signature-based NFA)

The characteristic of an XML query is that it has
RPEs. In this paper the query is evaluated by translating
it to non-deterministic finite automata (NFA). The RPE
is evaluated by transition of states in NFA. If a certain
node in s-DOM arrives to a final state in NFA, the node
is pertinent to a query result set. We propose a scan
operator called s-NFA which attaches the signature in-
formation to NFA and is used to prune s-DOM as early
as possible while traversing s-DOM to evaluate an RPE.
It is explained how an RPE can be transformed to an
NFA in Section 5.1. In Section 5.2 we explain how to
make s-NFA, and describe the pruning mechanism in
Section 5.3. To avoid confusion of the node in DOM
and NFA, we call the node of DOM as an object, and
the node of NFA as a state node.

5.1. Query evaluation using NFA

A regular expression can be represented by an auto-
mata which is deterministic or non-deterministic (Linz,
1990). An RPE is a regular expression as well. In this
paper an RPE is translated to an NFA. Any complex
NFA can be constructed by composition of L(r1)L(r2),
L(r1 þ r2), L(r�) depicted as in Fig. 3 (Linz, 1990). If the
regular expression is person, then the NFA is an
L(person) as in Fig. 3(a). The NFA of person.name

is a concatenation of L(person) and L(name); that is,

Fig. 3. NFA.
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L(person)L(name) as in Fig. 3(b). An RPE, per-

son|company, is an L(person + company) as in Fig. 3(c),
and L(r?), L(r+) is the variation of L(r�). L(r?) can be
derived by removing an edge k from state q to state p in
Fig. 3(d). L(r+) is an L(r�) in which an edge k is from
state s to state f in Fig. 3(d). The following definition is
given to explain the query processing.

Definition 5.1 (state set). The state set is a set of state
nodes of NFA, elements of which are the results of
transition in NFA by a certain label path.

Every RPE can be represented as an NFA, and is
evaluated by moving the state nodes in NFA while
traversing objects in the DOM tree. When the DOM tree
is traversed from a given object to its sub-tree, a label
path is made. If the state set is empty by a given label
path, then query evaluation will be stopped because
state transition in NFA cannot have occurred again. If a
final state node in the NFA is an element of the state set
of the object, by which the label path is made, it is ac-
cepted as an element of the query result set. Example 5.1
shows how to make an NFA of an RPE, and Example
5.2 shows the evaluation mechanism using the given
NFA.

Example 5.1. The NFA of RPE AddrList.((per-

son.*)|company).name is made by Fig. 3, and the re-
sult is shown in Fig. 4. In this case, any label can be
accepted by *, so * is the same as (any label)*. By
merging each NFA, the NFA of the query is constructed
with a start state node and a final state node.

Example 5.2. We can obtain a result set R¼ {&5, &7,

&27, &10} of the RPE AddrList.((person.*)|

company).name, which is processed in Fig. 2. First,
the state set SS is {1}, of which an element is the start
state node of NFA in Fig. 4. When the root object &1 is
fetched from the DOM tree, the label path is Addr-

List, so SS is {4, 10}. Then object &2 is fetched, the
label path is AddrList.person and SS becomes {7,
13}. After node &5 is fetched, SS becomes {7, 13, 14}.
Because the state node 14 is a final state node, object &5
is accepted as the result, (R¼ {&5}). Continuing this
operation, the result R of the RPE can be obtained. The

tree is traversed by a depth-first search method. 2 In this
query, almost every object that is a child object of
person has to be visited because of person.*. This
operation will be stopped when SS is empty.

As seen in Example 5.2, if one of the elements of the
state set is a final state, then the object is accepted as the
result of the query. Otherwise, if the state set is empty,
then query processing will be stopped.

5.2. s-NFA

State transition in the NFA in Section 5.1 is deter-
mined by the label of the edge. When arriving at the final
state by transition, the object in DOM is accepted as an
element of the result set. However, we cannot determine
which labels appear along the path from the current
state node to the final state node. So we have to change
state nodes at each step. We have to arrive at the
final state node in NFA to accept the objects as a result.
Therefore, all labels L which come out from the current
state node to the final state node must appear when
evaluating the queries.

The labels L appearing in NFA should be existed in a
sub-tree of DOM. If any label in L does not exist in the
sub-tree, the objects in the sub-tree cannot be the result
of the query, and subsequently, the sub-tree does not
need to be traversed. The following definitions are used
in making the signature in the NFA for pruning un-
necessary sub-tree.

Definition 5.2 (NFA path). The NFA path Pn is a path
from a state node n to the final state in an NFA.

Definition 5.3 (path signature). The path signature PSn of
a state node n in NFA is defined as

PSn ¼ fx jx is a value which is ORing hash values of

all the labels along an NFA path Pn in NFAg:

The path signature is a bit value which is merged by all
hash values of the labels of an NFA path. There are

AddrList λ

λ

λ λ anyperson λ

λ

λ
λ

λ
company

name

λ

λ

1 2 3

4 5 6 7 8 9

10 11

12 13 14

Fig. 4. The NFA of AddrList.((person.*)|company).name.

2 The tree can be visited by breadth-first search. A queue that stores

the nodes is used to visit sub-tree nodes. However, sibling nodes of a

node could be much larger, so the queue size cannot be inferred.
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several NFA paths in a state node n because there are
several paths from the state node n to the final state
node. Therefore, the path signature PSn of a node n is a
set. The s-NFA is an NFA of which each state node has
a path signature.

The s-NFA proposed in this paper is an NFA of
which state nodes have signatures to speed the evalua-
tion of queries. The signatures of the s-NFA are gen-
erated by ORing the hash values of all labels that have
to be met when moving from the current state to the
final state in the NFA. We can examine the existence of
the labels that appear from a certain state node n to the
final state in the sub-tree of object &i in s-DOM. Let the
path signature of the state node n be PSn and the sig-
nature of the object &i be Si. Let one signature of PSn be
Sj. If Sj ^ Si � Sj, then we may guess that we can arrive
the final state node when traversing the sub-tree of ob-
ject &i. If not, the final state node cannot be arrived
when traversing all objects in the sub-tree of object &i.
Therefore, we can prune the s-DOM graph by checking
the signature when we are evaluating the queries.

The query is evaluated with the signatures of s-NFA
and s-DOM. The signature of s-DOM implies which
labels exist in the sub-tree of a specific object and the
signature of s-NFA implies which labels have to be met
to accept the query. We compare two types of signatures
to decide whether to visit a sub-tree or not.

Fig. 3 describes how to build various types of NFA.
Therefore, if path signatures of that NFA in Fig. 3 can
be made, then path signatures of any complicated NFA
can be built. The rules for making path signatures are
described below.

Rule 5.1 (L(a)). An NFA which has an atomic value as
in Fig. 3(a) has a start state s and a final state f. If the
hash value of label a is Ha, the path signature of PSs, PSf
of s and f state nodes, respectively, are

PSs ¼ fHag;

PSf ¼ f0g:

Rule 5.2 (L(r1 + r2)). The path signatures PSs and PSf are
shown in Fig. 3(c), in which two NFAs are concatenated
by union:

PSs ¼ PSp [ PSq;

PSf ¼ f0g:

Rule 5.3 (L(r�)). The values of the path signatures PSs
and PSf of Fig. 3(d), of which operator is �, are 0:

PSs ¼ f0g;

PSf ¼ f0g:

Rule 5.4 (L(r+)). L(r+) can be made by removing an
edge k from s to f in Fig. 3(d). Hence, the rules for
making path signatures are the same except for PSs:

PSs ¼ PSp;

PSf ¼ f0g:

The path signature of L(r?) is same as Rule 5.3.

Rule 5.5 (L(r1)L(r2)). L(r1)L(r2) is the concatenation of
two NFAs. While traversing from the start state node to
the final state node, the state node p in M(r2) should be
visited. So a path signature PSi of a state node i in M(r1)
has to be changed by ORing PSp; that is, PSi ¼
PSi �_ PSp. It is the Cartesian product ORing with the
path signature of each state node in M(r1) and PSp. It is
called as signature propagation. The path signatures of
M(r2) are not changed. Therefore, the path signature PSi
of each state node i in M(r1) is

PSi ¼ fðx _ yÞ jPSi0 is the path signature of a state

node in Mðr1Þ; x is an NFA path of PSi0 ;

y is an NFA path of PSpg:

Example 5.3 (path signatures in NFA). Fig. 5 shows how
to apply the above rules to the s-NFA which is made
from the query of Example 5.2. The inner box in the
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Fig. 5. Applying rules to s-NFA.
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figure is applied ahead of the outer box. After applying
the rules, the path signature of each node in s-NFA can
be obtained, and the results are shown in Table 2.

For example, if we do not visit edge name, we cannot
go to the final state from state node 13. As can be seen
from Table 2, the path signature PS13 of state node 13 in
s-NFA is {10001000} which is the hash value of name.
Because state node 14, the final state, does not have an
edge to proceed, then PS14 is {00000000}. PS11 is the
same as PS13 because state node 13 should be visited
from state node 11 to go to the final state. PS10 is
{10001001} which is the ORing value between hash
values of company and name because the edge com-

pany and name has to be visited in order to arrive at the
final state from state node 10.

5.3. Query evaluation using s-NFA

This section describes query processing using s-NFA.
The path signature of s-NFA describes what labels have
to be visited in order to arrive at the final state from a
specific state node in s-NFA. Conversely, the signature
of s-DOM shows which labels exist in the sub-tree of a
specific object in s-DOM. Before traversing the sub-tree
of object &i in s-DOM, we change the state set SS of
s-NFA by label l of object &i. When we traverse the
s-NFA from one of the state nodes n in SS, we compare
the signature Si of object &i and one of the signature Sj
in PSn which is path signature of one of the state node in
the state set SS. If Si ^ Sj � Sj, then we can go forward
from state node n and search the sub-tree of &i.

Algorithm 2 is a scan operator that returns a node
which is accepted by the RPE. The function next calls
Algorithm 3. In this function, the signatures of s-DOM
and path signature of s-NFA are compared to determine
whether or not the state of s-NFA can go forward. The
meaning of if in Algorithm 3 is whether the labels
which exist along the current state node to final state in
s-NFA exist in the sub-tree of a node in s-DOM. If not,
the sub-tree does not need to be visited the remaining
sub-tree. The function ForwardLabel in Algorithm 2
changes the state set only by the labels of s-NFA with-
out signature information.

Algorithm 2 (next( )).

1. /* SS is the state set of s-NFA */
2. node get next node by DFS from s-DOM

3. while node is not NULL do
4. ForwardLabel(SS, node)
5. ForwardLambda(SS, node) /* using Signature */
6. if there is a final state in SS then
7. return node
8. end if

9. /* sub-tree of node cannot be query result */
10. if SS is empty then
11. node  get next node by DFS from s-DOM
12. end if

13. end while

The state node m in Algorithm 3 is the state node of
which a certain signature is Si. The node of s-DOM has
the signature Snode and Si ^ Snode � Si. Therefore, it is
possible to reach the final state of s-NFA when navi-
gating the sub-tree of node.

Example 5.4 (query evaluation). When we translate the
query of Example 5.2 to s-NFA, the s-NFA can be de-
picted as in Fig. 4, of which each node has a path sig-
nature as described in Example 5.3. When object &1
is read, state set SS ¼ f2g. If we apply Algorithm 3
to progress to states, the labels of which are k, then
SS¼ {3} because the bit operation AND between the
signature of &1 and 10001001 which is one of the sig-
nature of the path signature PS2, is 10001001. If we
apply this operation to object &2, then S will be {7, 13}.
In this situation, AND operation between one of the
signature of PS7 (10001000) and the signature of &5
(11100010) cannot be 10001000. In spite of the query
person.*, the sub tree of &5 does not need to be
visited. We can obtain results by iterating this operation.

Algorithm 3 (ForwardLambda(S, node)).

1. for each state node n in SS, which can go forward by
k do

2. for each signature Si of PSn do
3. if Si ^ Snode � Si then
4. m the state node moved from n by k
5. add m to SS
6. break
7. end if

8. end for

9. remove n from SS
10. end for

Table 2

Path signatures

1 {11101010, 11001001} 2 {10101010, 10001001} 3 {10101010, 10001001}

4 {10101010} 5 {10001000} 6 {10001000}

7 {10001000} 8 {10001000} 9 {10001000}

10 {10001001} 11 {10001000} 12 {10001000}

13 {10001000} 14 {00000000}

S. Park, H.-J. Kim / The Journal of Systems and Software 61 (2002) 91–103 99



5.3.1. Insert and update
When an object n is inserted or updated in s-DOM,

we have to change the signatures of the parent objects of
n. The signature of the parent node will be rebuilt by
ORing of all labels of child objects of n. The signature is
propagated recursively to an upper object until the root
is reached. The overheads are greater than for the non-
signature method. However, the purpose of this paper is
to increase performance by pruning the graph to eval-
uate the RPE. As the update operation of XML appears
infrequently, it is reasonable to ignore the cost of the
update operations.

6. Experimental results

The simulation program in this paper is coded in Java
and evaluates queries in main memory. Each node of
s-DOM is stored as an object and fetched by scan oper-
ator, of which the parameter is an RPE. The scan op-
erator requests an object from the object cache, which is
built on the buffer manager. The object cache requests a
page from the buffer manager. The size of each object in
the page is not the same for its different length of ele-
ment name. The object cache and buffer manager use the
LRU replacement algorithm. Two clustering methods
are used in this paper, which are depth-first and breadth-
first. The methods are fully clustering algorithms, but
real objects may be scattered in the database. Therefore,
we shuffle the objects over the database and count the
number of page I/O in the buffer manager. Because all
operations are executed in main memory, we calculate
the disk operation time using the parameters in Ruem-
mler and Wilkes (1994). The comparison between sig-
natures is bit-wise operation. Therefore, the cost of the
CPU time can be ignored, and we just calculate disk
operation time. Table 3 shows all parameters used in
this paper.

This paper compares clustering mechanisms to de-
termine which is better in traversing the nodes using
signatures. Comparing the number of fetched objects
and the number of page I/O is the extreme case from the
view point of clustering. The number of fetched objects
is the performance criterion of a fully unclustered case,
while the number of page I/O is that of a fully clustered
case. When each node is stored as an object in a data-
base, fetching each object requires a disk operation in
the unclustered case. However, when the objects are

clustered, fetching each object is not a disk operation.
Traversing the tree, several objects near a specific object
may be stored on the same page. The clustering methods
are BFS and DFS as used in this paper, and the objects
are completely clustered. However, after many deletion
and insertion operations, objects may be scattered and
the clustering status is between clustered and unclu-
stered. In this paper, we show which clustering method
is better when signature is used. The data used in this
paper are Shakespeare, The Book of Mormon, and
part of Michael Lay’s bibliography, which are all
translated into XML. The statistics of the data are
shown in Table 4.

Six queries are used in the experiment as described in
Table 5. In these queries, *[2] means two paths whose
label is an arbitrary string. The first query for each XML
data retrieves the data that are located in a specific path.
The next query retrieves the data located at any depth of
the tree for each data file. Fig. 6 shows the number of
objects fetched, and Fig. 7 shows the number of page I/
O. The time used in disk operations is shown in Fig. 8,
which is similar to Fig. 7.

For the number of retrieval of objects in Figs. 6(a)
and (b), the signature-based query evaluation has better
performance in all cases. Queries Q1, Q2 and Q6 fetch
many more objects than do queries Q3, Q4 and Q5.
Therefore, separate graphs are used to distinguish the
results. In these figures, zero size of signature means that
the signature method is not used. The better perfor-
mance is obtained by decreasing the search space of
trees by comparison of signatures between s-DOM and
s-NFA. If each node is stored as an object in an object

Table 3

Parameters used in simulation

Page size 4K bytes Number of buffer 20

Object cache size 500 Seek time 3.45 + 0.597
ffiffiffi
d
p

ms

Sector size 256 bytes Cylinders 1449

Tracks per cylinder 8 Data sectors per track 113

Revolution speed 4002 rpm Controller overhead 1.1 ms

Table 4

Characteristics of the XML files

No. nodes File size

Shakespeare 537,621 7.5 Mbytes

Bibliography 19,854 247 Kbytes

The Book of Mormon 142,751 6.7 Mbytes

Table 5

Queries used in simulation

Q1 Shakespeare PLAY.*[2].PERSONA

Q2 Shakespeare *.TITLE

Q3 Bibliography bibliography.paper.*[1].pages

Q4 Bibliography *.author

Q5 The Book of Mormon tstmt.*[1].(title – ptitle)

Q6 The Book of Mormon *.chapter
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repositories, the number of fetched objects can be de-
creased by the signature method. The larger the signa-
ture size, the better the performance. However, when the
signature size reaches 4 bytes, performance improve-
ment ceases. This varies with the number of element
names in the XML documents. If the number of element
names increases, we have to extend the signature for
better performance.

Fig. 7 shows the number of disk I/O when XML data
are stored as clustering by DFS and BFS and scattering
over the pages. It shows that disk I/O is reduced very
significantly in each case. In some cases, we can obtain

better performance by BFS such as Figs. 7(e) and (f).
When the query evaluates, the query executor traverses
the tree depth-first. However, as the s-NFA prunes the
sub-tree by the signature method, the possibility of
going to a sibling node is increased. In the case of DFS,
two sibling nodes may be stored in different pages when
there are many child nodes. Therefore, pruning may
cause a page fault and a new page is fetched from the
database. On the other hand, two sibling nodes may be
stored in the same page in BFS. Fetching the sibling
node does not cause a page fault in the case of BFS. As
the objects are shuffled in the object repositories, the
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Fig. 6. Performance evaluation.

Fig. 7. Number of page I/O.
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signature method reduces lots of disk I/O. When the
objects are scattered over the several pages, fetching an
object cause a page fault even it is sibling, parent or child
node of the object in the cache. Therefore, the perfor-
mance gap becomes wider as increasing shuffling ratio.

Fig. 8 shows the calculations of disk operation time.
They are very similar to the figures of number of disk I/
O. DFS of Q3 and Q4 in this graph are better than BFS,
which is different from the others. In spite of decreasing
the number of fetched objects, the performance of disk
operation is not much improved. The characteristic of
the XML document for Q3 and Q4 is that the tree is
very flat and not deep. Therefore, when a disk I/O oc-
curs by visiting a child node, the two tracks are more
widely separated in BFS than in DFS and thus need
more disk operation time.

7. Conclusion and future work

XML is represented as a tree. When each node is
stored as an object in a database, we have to reduce the
number of nodes fetched from the database when the
queries are evaluated. In this paper, we explained Sig-
DAQ which is the signature method for storing XML
documents and evaluating RPEs. The search space of
the graph and disk access can be reduced by s-DOM and
s-NFA. This technique is very useful when an index
cannot be used in query processing. The index of semi-
structured data is another semistructured data. There-
fore, if this technique can be used in a semistructured
index, the search space of the index can be reduced.

Clustering is a very important factor for getting bet-
ter performance when the objects are fully clustered. If
the nodes are clustered by BFS we can obtain better
performance than by DFS. That is, clustering between
sibling nodes outperforms clustering between parent–
child nodes when the graph is traversed based on sig-
nature. The reason is that when the graph is pruned in
the middle of the graph and a sibling node is traversed,
the node may be in the same page when we use BFS.
However, as objects are shuffled, the importance is les-
sen because page faults are increased.

If the number of nodes are increased or the depth of
graph is made greater, then the possibility of saturation
is increased. To solve this problem, new technology such
as signature chopping is needed. The performance may
be improved by using the DTD information of XML.

References

Abiteboul, S., 1997. Querying semistructured data. In: International

Conference on Database Theory.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J., 1997.

The Lorel query language for semistructured data. International

Journal on Digital Library 1 (1).

Abiteboul, S., Vianu, V., 1997. Regular path queries with constraints.

In: ACM Symposium on Principles of Database Systems.

Bertino, E., Kim, W., 1989. Indexing techniques for queries on nested

objects. IEEE Transactions on Knowledge and Data Engineering

1 (2).

Buneman, P., 1997. Semistructured data. In: ACM SIGACT-SIG-

MOD-SIGART Symposium on Principles of Database Systems.

Fig. 8. Time of disk operation.

102 S. Park, H.-J. Kim / The Journal of Systems and Software 61 (2002) 91–103



Buneman, P., Davidson, S., Hillebrand, G., Suciu, D., 1996. A query

language and optimization techniques for unstructured data. In:

SIGMOD.

Cattell, R., Barry, D.K. (Eds.), 1997. The Object Database Standard:

ODMG 2.0. Morgan Kaufmann, Los Altos, CA.

Chang, W.W., Schek, H.J., 1989. A signature access method for the

Starburst Database System. In: VLDB.

Christophides, V., Abiteboul, S., Cluet, S., Scholl, M., 1994. From

structured documents to novel query facilities. In: SIGMOD.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D., 1998.

XML-QL: a query language for XML. Available from http://

www.w3.org/TR/NOTE-xml-ql.

Deutsch, A., Fernandez, M., Suciu, D., 1999. Storing semistructured

data with STORED. In: SIGMOD.

eXcelon 1999. An XML data server for building enterprise Web

applications. Available from http://www.odi.com/products/

white_papers.html.

Faloutsos, C., 1985. Signature files: design and performance compar-

ison of some signature extraction methods. In: SIGMOD.

Fernandez, M., Suciu, D., 1998. Optimizing regular path expression

using graph schemas. In: ICDE.

Florescu, D., Kossmann, D., 1999. Storing and querying XML data

using an RDBMS. Data Engineering Bulletin 22 (3).

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K., 2000.

XTRACT: a system for extracting document type descriptors from

XML documents. In: SIGMOD.

GMD-IPSI 2000. GMD-ISPI XQL engine. Available from http://

xml.darmstadt.gmd.de/xql.

Goldman, R., Widom, J., 1997. DataGuides: enabling query formu-

lation and optimization in semistructured databases. In: VLDB.

Jeong, J.-M., Park, S., Chung, T.-S., Kim, H.-J., 2000. XWEET: XML

DBMS for Web environment. In: The First Workshop on

Computer Science and Engineering, 2000, Seoul, Korea, pp.

16–17 (2000, http://oopsla.snu.ac.kr/xweet/xweet-eng.ps).

Kifer, M., Kim, W., Sagiv, Y., 1992. Querying object-oriented

databases. In: SIGMOD.

Linz, P., 1990. An Introduction to Formal Languages and Automata.

Houghton Mifflin, Boston, MA.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J., 1997.

Lore: a database management system for semistructured data.

SIGMOD Record 26 (3).

McHugh, J., Widom, J., 1999. Query optimization for XML. In:

VLDB.

Mendelzon, A.O., Wood, P.T., 1995. Finding regular simple paths in

graph databases. SIAM Journal of Computing 24 (6).

Milo, T., Suciu, D., 1999. Index structures for path expressions. In:

ICDT.

Papakonstantinou, Y., Garcia-Molina, H., Widom, J., 1995. Object

exchange across heterogeneous information sources. In: ICDE.

Ruemmler, C., Wilkes, J., 1994. An introduction to disk drive

modeling. IEEE Computer 27 (3).

Sacks-Davis, R., Kent, A., Ramamohanarao, K., 1984. Multikey

access methods based on superimposed coding techniques. TODS

12 (4).

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D.,

Naughton, J., 1999. Relational databases for querying XML

documents: limitations and opportunities. In: VLDB.

Shimura, T., Yoshikawa, M., Uemura, S., 1999. Storage and retrieval

of XML documents using object-relational databases. In: DEXA.

Skvarcius, R., Robinson, W.B., 1986. Discrete Mathematics with

Computer Science Applications. Benjamin/Cummings, Menlo

Park, CA.

W3C 2000. Document object model (DOM). Available from http://

www.w3.org/DOM/.

Yong, H.-S., Lee, S., Kim, H.-J., 1994. Applying signatures for

forward traversal query processing in object-oriented databases. In:

ICDE.

Sangwon Park received his BS degree and MS degree in computer
engineering from Seoul National University, Seoul, Republic of
Korea, in 1994 and 1997, respectively. He is currently enrolled in the
Ph.D. program in computer engineering at Seoul National University.
His research interests include semistructured data, multidatabase,
relational and object-oriented databases.

Hyoung-Joo Kim received his BS degree in computer engineering from
Seoul National University, Seoul, Republic of Korea, in 1982 and his
MS and Ph.D. in computer engineering from University of Texas at
Austin in 1985 and 1988, respectively. He was an assistant professor of
Georgia Institute of Technology, and is currently a professor in the
Department of Computer Engineering at Seoul National University.
His research interests include object-oriented databases, multimedia
databases, HCI, and computer-aided software engineering.

S. Park, H.-J. Kim / The Journal of Systems and Software 61 (2002) 91–103 103


