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Classification and Compilation of Linear 
Recursive Queries in Deductive Databases 

Cheong Youn, Hyoung-Joo Kim, Member, ZEEE, Lawrence J. Henschen, and Jiawei Han 

Abstract-In this paper, we present a graph model which is 
powerful in classifying and compiling linear recursive formulas 
in deductive databases. The graph model consists of two kinds of 
graphs: I-graph and Resolution Graph. We can extract essential 
properties of a recursive formula from its I-graph and can easily 
figure out the compiled formula and the query evaluation plan of 
the recursive formula from its resolution graph. 

We demonstrate that based on the graph model all the linear 
recursive formulas can be classified into a taxonomy of classes 
and each class shares some common characteristics in query 
compilation and query processing. The compiled formulas and 
the corresponding query evaluation plans can be derived based 
on the study of the compilation of each class. 

Index Terms- Deductive database, graph model, knowledge 
base, linear recursive query, query evaluation plan, recursive 
query compilation. 

I. INTRODUCTION 
OGIC provides a convenient formalism for studying L relational database problems as the semantics of relational 

databases rely upon the first-order logic. Logic also has been 
used as an inference system and as a representation language 
in Artificial Intelligence applications. The major advantage of 
the logic paradigm is in its declarative semantics in that a user 
can represent programs declaratively without concern about 
control flow during execution. 

Deductive databases are more toward the logic paradigm 
than relational databases in the sense that the user can specify 
queries in a declarative manner and an inferencing mechanism 
is necessary in processing queries of deductive databases. 
Deductive databases have been a great research topic in the 
past decade because of the two converging phenomena [ l ] :  

the desire to merge database technology and artificial 
intelligence technology, i.e., to extend database systems 
to provide them with the functionality of expert systems 
(namely, inference mechanism) thus creating “Knowledge 
Base Systems” 
the desire to merge logic programming technology and 
database technology, i.e., to extend the power of the data 
language of the database system to that of a general 
purpose programming language. 
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Among the numerous research issues in deductive databases, 
our study is focused on classifying and compiling recursive 
formulas. Classifying recursive formulas has been known to 
be a hard problem. Therefore, researchers have considered 
certain specific patterns of recursive formulas that are easily 
recognizable and compilable [6], [9], [16]. For example, most 
recursive formulas considered are chained rules [2],  [SI, [7 ] .  
In this paper, we will use a graph model which is useful 
in classifying and compiling linear recursive formulas in 
deductive databases. The graph model consists of two kinds of 
graphs: I-graph and Resolution Graph. We can extract essential 
properties of a recursive formula from its I-graph and can 
easily figure out the compiled formula and the query evaluation 
plan of the recursive formula from its resolution graph. 

We demonstrate that based on the graph model all the linear 
recursive formulas can be classified into several classes and 
the formulas in each class share some common characteristics 
in compilation and query processing. The compiled formulas 
and the corresponding query evaluation plans can be derived 
based on the study of the compilation of each class. Our goal 
is to show a general and uniform query evaluation planning 
mechanism for each of several important classes of recursive 
formulas which can map an arbitrary query of that class to a 
compiled formula. This will illustrate the power and utility of 
the graph model. 

In Section 11, after providing a brief introduction to de- 
ductive databases, we define the target class of recursive 
formulas that we deal with in this paper. In Section 111, 
we introduce a graph model that can be used to classify 
recursive formulas. The I-graph will be used to express and to 
classify recursive formulas. We also introduce the resolution 
graph that shows the recursive formula after IC expansions. 
In Section IV, we introduce new terms used in our study 
and also give an overview of the classification of recursive 
formulas from a syntactic approach based on the I-graph. 
In Section V, recursive formulas with one-directional single 
cycles will be discussed. Most recursive formulas discussed in 
the literature belong to this class. Recursive formulas having 
multidirectional single cycles will be dealt with in Section VI. 
Recursive formulas with acyclic paths (no nontrivial cycles) 
will be considered in Section VII. Recursive formulas with 
multiple cycles will be discussed in Section IX. The recursive 
formulas with one connected component in their I-graphs 
are studied in Section IV to Section VIII. Recursive formulas 
having multiple components in their I-graphs will be discussed 
in Section IX. Section X is allocated for discussing several 
relevant issues of our study. Section XI concludes the paper. 
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11. OVERTURE: DEDUCTIVE DATABASES 

A. First-Order Databases 

A first-order database is a deductive database consisting 
of first-order clauses. We follow the lead of [12]-[14] 
for preliminaries concerning the terminology and notation 
of first-order deductive databases. The following sym- 
bols will be used in the rest of this paper: Variables: 
x, y, z ,  U ,  ‘U, w.z1, y l , z l r  ....,.., Constants : a. h. c ,  d , j ohn .  
......., Predicates : A,  B ,  C, D.  E ,  P, Q ,  R, ....... The following 
example illustrates major concepts of deductive databases. 

Example 2.1: Let us discuss an example from [ l ] .  Consider 
the following first order database regarding ancestor and parent 
relationships. 

1) Ancestor(z.  y)  : -Paren t ( z ,  z )  A Ancestor(z.  y) 
2 )  Ancestor(x,  y) : -Parent(z .  y) 
3) Parent(h,  a )  
4) Parent( c, a )  
5 )  Parent (d ,  h )  
6 )  Parent(e.  h ) .  
In this database, we have a set of predicate or relation names 

{Parent, Ancestor}, and a set of constants { a ,  h. c, d. e }  and 
a set of variables {x,y,.z}. The database consists of a set of 
rules {1,2} and a set of facts {3,4,5,6}. 

Let us associate a meaning to the database. We first as- 
sociate each constant an object from the real world: thus, 
to a “a” we associate the individual whose name is “a.” 
Then, we can interpret intuitively each fact and each rule. 
For instance, we interpret “Parent(h,  a)” by saying that the 
predicate Parent is true for the pair ( b .  a), and we interpret 
the rule Ancestor(z,  y) : -Parent(z .  z )  A Ancestor(z,  y)  
by saying that if there are three objects x.y and z such 
that Parent(z.2) is true and Ances tor(z ,y )  is true then 
Ancestor(z,  y)  is true. This leads to the interpretation that 
associates with each predicate a set of tuples. For instance, 
with the predicate Ancestor we associate the interpretation 
{ ( b , ~ ) .  ( c , a ) ,  ( d , b ) ,  ( e .  h ) .  ( d . a ) .  ( e .a ) } .  The problem is to 
answer queries given to the logical database. For instance, 
for a query of the form ? - Ancestor(?.a), how do we find 
the reply and the Ancester set { b .  c, d, e}?. Q.E.D. 

B. The Target Class of Recursive Formulas 

We say that a formula is recursive if the formula is of 
the form P ( z )  : - . . . , P ( x ’ ) > . . .  [l] where 5 and d are 
a vector of variables. Among recursive formulas, we restrict 
our attention to linear recursive formulas where the recursive 
predicate appears only once in the antecedent. Many database 
researchers believe that most of the recursive formulas in the 
real world have the recursive predicate appearing only once 
in the antecedent. We enforce some assumptions on linear 
recursive formulas, 

Rigid Assumptions: Rigid assumptions mean that these as- 
sumptions will not be relaxed in this study. 

We deal with only recursive formulas which are range 
restricted. We assume that there are no arithmetic pred- 
icates, function symbols and negation symbols in the 
recursive formulas. 

Recursive formulas with repeated variable are excluded 
because some results without repeated head variables do 
not hold in the presence of such variables. Furthermore, 
many proofs of undecidability use such repeated vari- 
ables, and cannot be carried through without them 1191. 
Another side of the coin is that repeated variable in the 
consequence force us to remember equality. However, the 
EQ predicate does not come for free. More dicussion on 
the EQ predicate is provided in Section X. 

Many database researchers have been using a set of assump- 
tions on linear recursive formulas which is similar to the rigid 
assumptions of ours [ l ] ,  141, [9]-1111. 
Soft Assumptions: We shall relax these soft assumptions 

later. 
We assume that there are no constant symbols in the 
recursive formula. This restriction “constant-free’’ is for 
generality. The variables in the statement can be easily 
replaced by constants at query evaluation time or from 
the definition of rules. 
We assume there is only one recursive formula for a 
given recursive predicate and one or more nonrecursive 
statements (exit rules) for the given recursive predicate to 
make our discussion simple. If there are n exit rules and 
their bodies are El ,  Ez, . . . , E,, then the exit rule E for 
the recursive predicate will be E : -El U &U, . . . , UE,. 

There are basically two categories for processing recursive 
queries: the interpretation approach [ 141 and the compilation 
approach (81, [20]. They are well described in [23] .  

Our goal is to develop compilation techniques for recursive 
formulas in general. The basic concepts of classification of 
recursive formulas can be applied directly to the compilation 
techniques. The graph model used in our research gives us 
a clear view of recursive rules and shows the connectivity 
between variables. In compilation techniques, the connectivity 
of variables is the critical part to reduce query execution time. 
If variables are connected and one of them is determined (the 
value of the variable is known at query evaluation time), we 
can apply selection and join operations to derive values of the 
remaining variables. 

C. The General Compiled Formula 

For some typical linear recursive rules, their compiled 
formulas have been well known from the existing literature 
such as [6] and 181. For example, consider the exit rule (r.2.1) 
and the linear recursive rule (r.2.2). 

P ( J . ~ )  : - A ( s . y )  (r.2.1) 
P ( s .  y )  : -B(z-, 2 )  A P ( z .  tu)  A c ( w .  y) (r.2.2) 

where A, B ,  and C are base relations. Consider a recursive 
query ? - P(a,  y )  where n is a constant and y is the variable 
to be retrieved. Using stepwise recursive calls on the recursive 
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rules, we obtain a sequence of expressions 

P ( x .  y) : -B(x .  Z )  A B(z .  21) A P ( z ~ .  W I )  A C ( W 1 .  w ) A  

C ( W .  y) 
. . .  
P ( z .  y) : -B(T,  Z )  A .  ' .  A B ( Z k - 1 .  ZI;) A P ( z ~ .  w ~ ) A  

C ' ( ~ k ~ w k - 1 )  A . . . A C ' ( u l . y )  . 

Using the exit rule on the above sequence, the solutions are 
obtained by processing the following sequence of formulas 
and unioning the results. 

4 a .  Y) 
B(u. z )  A A(z. %U) A C ( w .  y) 

B(u. Z )  A B ( z ,  21) A A(z1.7~1) A c(~1.7~) A c(ul .  y) 
... 
B(u,  Z )  A . . . A B ( Z k - 1 ,  Zk) A A(zk .  7 u k )  

A " .  A C(Wk. 7 1 ' k - I )  A ' .  ' A G(w. y). 

The expansion sequence terminates when no new values for 
Z k  are found in the database. The sequence can be represented 
with a compiled formula aUBk w A w C k  where a,B 
means the selection of n on the corresponding attribute of 
relation B, w means the join operation on the corresponding 
attributes, and Bk means the join formed by k B relations. 
Join attributes are omitted in the formula for simplicity, and 
the range of index k is from 0 to n where n is the number 
of iterations up to the termination point, i.e., up to the first 
k where a,Bk is empty as long as the given relation B is 
acyclic. In what follows, when no ambiguity results, we can 
simply write aBkACk. In this paper, we shall use this general 
compiled formula notation to express the flow of information 
and query evaluation plans. 

111. THE GRAPH MODEL 
Several graph models have been proposed for understanding 

behaviors and various properties of recursive formulas: I-graph 
[9], A N  graph [16], Augmented A/V graph [18], Substitution 
graph [ll], RuleiGoal graph [23], and etc. 

Our graph model consists of two kinds of graphs: I-graph 
and Resolution graph. In this section, we give definitions of 
I-graph which will be used as a tool to represent and analyze 
recursive formulas. The I-graph was invented originally by 
Ioannidis [9], but he used this graph model only to derive the 
condition of boundness (to be defined shortly) for recursive 
formulas. For studying the generic properties of recursive 
formulas we shall use the I-graph in a broader way than 
Ioannidis did. We also introduce the resolution graph that is 
used to derive compiled formulas and query evaluation plans 
of recursive formulas. 

A .  The I-graph 

Definition 3.1: Suppose we are given a recursive statement 
F .  We will associate a labeled, weighted, hybrid graph G1 = 
(V, E,. Ed. W. L )  to F .  Since the graph construction was 
originally introduced by Ioannidis, from now we call this 

variable connection graph, I-graph. Following is the definition 
of I-graph. 

I/ is a finite, nonempty set of nodes such that a node is 
defined and labeled by x if 2 is a variable in F .  
E, is a finite, nonempty set of undirected edges such 
that an undirected edge, referred to as an undirected 
self-loop, is defined, denoted by (z-z), and labeled by 
Q if z is a node in V corresponding to the variable of a 
unary, nonrecursive predicate Q; and an undirected edge 
is defined, denoted by (x-y), and labeled by Q for each 
pair of nodes x, y in V corresponding to a pair of distinct 
variables IC. y of an n-ary nonrecursive predicate Q for 
n > 1. 
Ed is a finte, nonempty set of directed edges such that 
for each pair of (nonnecessarily distinct) nodes x , y  in 
V a directed edge is defined, denoted by (z -t y), and 
labeled by P if x,y are nodes in V where x and y 
correspond, respectively to the ith variable of the the 
recursive predicate P in the head and in the body. When 
z = y, the directed edge is referred to as a directed 
self-loop. For each directed edge (x + y) that is not 
a directed self-loop, the implicit reverse directed edge 
(y + z) is defined. 

Comment: E,  n Ed = 4 and E, U Ed = E.  
d) W : E + (0, l}. W is a weight function that associates 

a weight to each edge. If x occurs in the consequent and 
y in the antecedent, then the directed edge (x -+ y) 
has weight 1 and its reverse edge (y - z) has weight 
-1. Each undirected edge (2-y) has weight 0. 

e) C : E --f L where C is a label function that associates 
a label to each edge. An undirected edge has a label Q if 
two nodes of the undirected edge are in the nonrecursive 
predicate Q. Each directed edge has a label P where P 
is the recursive predicate. 

Definition 3.2: The weight of a path (cycle) in the graph 
is defined as the algebraic sum of the weights of the edges 
along the path (cycle). Regarding undirected edges, they can 
be traversed in either direction. Traversing a directed edge in 
the opposite direction of the arrow is the same as traversing 
the implicit reverse edge and contributes -1 to the weight. 

Remark: For a variable in a unary, nonrecursive predicate, 
there is an undirected self-loop (z,~). 

Example 3.1: Consider the following two recursive formu- 
las. 

P ( x .  y) : - A ( x ,  Z )  A P ( z ,  y) (r.3.1) 
P(x ,  g. z )  : -A(z,  y) A P(u. z ,  w) A B(u,v) .  (r.3.2) 

The corresponding I-graphs of the rules (r.3.1) and (r.3.2) are 
in Fig. l(a) and (b), respectively. We do not write down the 
label P for directed edges because there is only one recursive 
predicate for each formula and all directed edges have the 
same label P. Q.E.D. 

B. The Resolution Graph 

We introduce the resolution graph to represent formulas 
obtained by repeated application of recursive formulas. These 
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(a) (b) 

Fig. 1. I-graphs of the rules (r.3.1) and (r.3.2). 

graphs contain extra information that is useful in analyzing 
recursive query plans. 

Definition 3.3: For a given recursive formula F ,  the re- 
cursive formula made by expanding the recursive predicate k 
times is called the kth expansion of F .  The original recursive 
formula is the first expansion of F .  

Remark: We can consider the exit rule as the 0th expansion 
of F .  

Clearly, the kth expansion ( I C  1 2) is formed by resolving 
the ( k  - 1)st expansion with the original rule. This involves 
renumbering the original rule and unifying its consequent with 
the recursive predicate in the antecedent of the ( k  - 1)st 
expansion. In order to easily draw graphs for the expanded 
formulas, we choose to unify by substituting for the variables 
in the renumbered rule, leaving the ( k  - 1)st expansion 
unchanged. 

Definition 3.4: The formula obtained by renumbering and 
unifying the original recursive formula which is used for the 
kth expansion of F is called the kth unified formula of F .  The 
original formula is the first unified formula of F. 

Definition 3.5: The I-graph drawn from the kth unified 
formula is called the kth I-graph. The I-graph from the original 
formula is the first I-graph or simply, I-graph. 

Definition 3.6: Let us consider a graph for the kth ex- 
pansion of a formula F .  The kth resolution graph, Gk = 
(V, E,, Ed, W, L )  of F is defined recursively in the following 
manner. 

1) The I-graph of F is the first resolution graph. 
2) The kth resolution graph, G k ( k  2 2) of F is obtained 

from the ( k  - 1)st resolution graph, Gk-1, by the 
following process. 

2.1) Form a kth I-graph from the kth unified formula. 
2.2) Append the kth I-graph to the ( k  - 1)st resolution 

graph using common variables. 

The above definition on the resolution graph is actually 
only for recursive formulas without repeated variables. The 
kth resolution graph retains all the arrows from the ( k  - 1)st 
I-graph. Further, the kth resolution graph is formed directly 
from the ( k  - 1)st resolution graph without the need to actually 
form a resolvent. These retained directed edges give a better 
picture of the derivation. 

Example 3.2: Consider the following recursive formula. 

P ( x ,  p) : -A(z ,  2) A P(z .  U )  A B(u,  1~). (r. 3.3) 

The I-graph is shown in Fig. 2(a). By renaming the variables 
in the rule (r.3.3), we have 

P ( z , u )  : -A(z,  z1) A P(z1, ~ 1 )  A B(u1.u). (r.3.4) 

(a) (b) (c) (b) 

Fig. 2. I-graphs and resolution graphs for (r.3.3). 

By unification, we get the second expansion of the rule (r,3.3). 
[This is shown in Fig. 2(c)]: 

J ' ( ~ , Y )  : -A(z ,  ~ ) A A ( ~ , ~ ~ ) A P ( ~ ~ , ~ ~ ) A B ( U ~ , ' U . ) A B ( U , ~ ~ ) .  
(r.3.5) 

The second I-graph of the rule (r.3.3) is in Fig. 2(b). The 
second resolution graph G2 in Fig. 2(c) can be drawn by 
appending Fig. 2(b) to 2(a). In Fig. 2(c), the weight from z 
to z1 is two. That means, in the second expansion of the 
rule (r.3.3), z appears under the recursive predicate P in the 
consequent and z1 appears in the corresponding position of 
the recursive predicate in the antecedent. We have Fig. 2(d) 
by considering the rule (r.3.5) as a formula by itself as opposed 
to a second resolution graph. Q.E.D. 

Example 3.3: Consider another linear recursive rule. 

P(z , y .  z )  : -A(z,  y) A P(u,  z , ~ )  A B(u,  U). (r.3.6) 

The second expansion of the rule (r.3.6) is 

P ( Z , Y , Z )  - A(Z,Y) A(u ,z )  AP(Ul,U,Vl) 
A B(ui,  v i )  A B(u, U). (r.3.7) 

Fig. 3(a) and (b) are the first and second resolution graphs. 
The third resolution graph is easily drawn by appending an 
isomorphic renumbered copy of the graph in Fig. 3(a) to the 
variables u l ,  U ,  ~1 in the second resolution graph. Q.E.D. 

This graph model is a powerful tool for explaining and for- 
malizing recursive formulas. Based on the resolution graph, we 
can easily detect the flow of information which is essential in 
finding out query evaluation plans. Undirected edges are used 
to send information from one variable to another. Therefore, 
we can easily derive compiled formulas and query evaluation 
plans from the resolution graph. 

Iv. CLASSIFICATION OF RECURSIVE FORMULAS 

In this section, we define new terms we use to classify 
recursive formulas. A classification taxonomy of recursive 
formulas is introduced. 

A. New Terms 

Definition 4.1: The dimension (0) of a recursive formula is 
the number of variables in the recursive predicate. If there are 
n variables in the recursive predicate, we call the formula an 
n-D recursive statement. 

Remark: There are 2" different query forms possible on an 
n-D recursive formula by assigning a constant or a variable 
in each position. 
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X X 

Fig. 4. Trivial and nontrivial cycles 
(b) 

Fig. 3. Resolution graphs for (1.3.7). 
X 

Definition 4.2: A variable in the recursive formula F (after 
kth expansion) is a determined variable for a given query if 
the value of the variable is given in the query or derivable 
from a query constant by selection and join operations over 

X 

only the nonrecursive predicates in the (kth resolution) graph. 
If II: is a determined variable and L( ... z..y..) is a nonrecursive 
predicate, then y is also a determined variable [8]. 

Definition 4.3: We can define connected by the following: 
1) Two variables are connected if there is an undirected 

2) If variables z and y are connected, and variables y and 

Definition 4.4: A nontrivial component is a component of 
the I-graph with at least one directed edge. Otherwise, the 
component is a trivial component. 

Definition 4.5: A cycle is trivial if it has no directed edges. 
Otherwise, the cycle is nontrivial. 

Example 4.1: For example, the component in Fig. 4(a) is a 
nontrivial component (cycle) and the component in Fig. 4(b) 
is a trivial component (cycle). Q.E.D. 

Remark: If there is a trivial component, this component will 
be used only for existence checking, and we will not consider 
the trivial component in our discussion. 

Definition 4.6: A nontrivial cycle is pure if i t  is not con- 
nected to any other nontrivial cycles nor to any other directed 
edges. Otherwise, the cycle is dependent. 

Example 4.2: For example, the cycles in Fig. 4(a) and 
Fig. 5(a) are pure cycles and the cycle in Fig. S(b) is a 
dependent cycle. It is assumed in Fig. S(a) that A and B 
can be reduced to C where G(T ,  y) = A ( z .  y) n B(x.  y) .  
More detailed simplification of nonrecursive components can 
be found in [24] Q.E.D. 

Definition 4.7: A pure cycle is one-directional if all the 
directed edges along the cycle have the same direction. Oth- 
erwise, the pure cycle is multidirectional, 

Example 4.3: For example, the cycle in Fig. 6(a) is a pure 
one-directional cycle and the cycle in Fig. 6(b) is a pure 
multidirectional cycle. Q.E.D. 

Definition 4.8: A pure one-directional cycle is rotational 

edge between the two variables. 

z are connected, then variables z and z are connected. 

(a) (b) 

Fig. 5.  Pure and dependent cycles. 

(a) (b) 

Fig. 6. One-directional versus multidirectional cycles. 

X 

(b) 

Fig. 7. Nonunit and unit cycles. 

cycle, all the variables of the recursive predicate in the 
antecedent are from the variables of the recursive predicate in 
the consequent, and we call this pattern permutational because 
the recursive predicate in the antecedent is made by simply 
changing the order of the variables of the recursive predicate 
in the consequent. 

Definition 4.9: A pure one-directional cycle is a unit cycle if 
the weight of the cycle is 1. Otherwise, the cycle is a nonunit 

Example 4.5: For example, the pure one-directional cycles in 
Fig. 4(a), Fig. 5(a), and Fig. 7(b) are unit cycles and the pure 
one-directional cycles in Fig. 6(a) and Fig. 7(a) are nonunit 
cycles. Q.E.D. 

cycle. 

if there is at least one undirected edge as a part of the 
nontrivial cycle. Otherwise, the pure one-directional cycle is 
permutational. 

the cycle in ~ i ~ .  6(a) is a pure 
one-directional rotational cycle and cycles in Fig. 7 are pure 
one-directional permutational cycles. Q.E.D. ( 2 )  Pure Cycles 

Remark: If there is no undirected edge as a part of the 

B. A Classification Taxonomy 

If we look at the I-graphs from the syntactic view point 
using the definitions above, we can have the following cases. 

(1) Acyclic Paths 
~~~~~l~ 4.4: F~~ 

(2.1) Pure One-Directional Cycles 
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(2.1.1) Pure One-Directional Unit Rotational Cy- 

(2.1.2) Pure One-Directional Unit Permutational 

(2.1.3) Pure One-Directional Nonunit Rotational 

(2.1.4) Pure One-Directional Nonunit Permuta- 

cles 

Cycles 

Cycles 

tional Cycles 
(2.2) Pure Multidirectional Cycles 

(3) Dependent Cycles 
(4) Heterogeneous Components 
Category (1) is for recursive formulas whose I-graphs have 

one or more components having no nontrivial cycle (i.e., an 
acyclic path). Category (2) is for recursive formulas whose 
I-graphs have one or more components having a pure cycle. 
Category (3) is for recursive formulas whose I-graphs have one 
or more components having a dependent cycle. If an I-graph 
has components which are composed of disjoint combinations 
of different categories, we classify the I-graph into (4). At the 
first glance, we can say that the taxonomy is exhaustive. In the 
later section, we will show the completeness of our taxonomy. 

We can classify all possible linear recursive formulas using 
the taxonomy above. There are different properties (semantics) 
for each of the classes, i.e., compiled formulas and query 
evaluation plans are quite different. Properties of each class 
will be fully discussed in the following sections. 

Even though the taxonomy is syntactic, the order of our 
presentation is based on the semantic significance of each 
class. Since the cases in (2.1) “Pure One-Directional Cycles” 
are the most important subset of real-world linear recursive 
formulas, we start with (2.1) in Section V. Then we will 
discuss (2.2) “Pure Multi-Directional Cycles” in Section VI. 
After that, we will discuss 1 “Acyclic Paths” in Section VII. 
Then we will cover 3 “Dependent Cycles” and (4) “Hetero- 
geneous Components’’ in Sections VI11 and IX, respectively. 
Some similar limited classification can be found in [17] and 
P I .  

V. PURE ONE-DIRECTIONAL CYCLES (2.1) 

Many recursive formulas in real world applications are 
classified as pure one-directional cycles. In this section we 
investigate the properties of linear recursive formulas whose 
I-graphs form pure one-directional cycles. 

A. Pure One-Directional Unit Cycles (2.1.1 and 2.1.2) 

There are two different kinds of pure one-directional unit 
cycles; one is the class of pure one-directional unit rotational 
cycles [class (2.1.1)] and the other one is the class of pure 
one-directional unit permutational cycles [class (2.1.2)]. A 
pure one-directional unit rotational cycle is a unit cycle with 
at least one undirected edge and by recursive expansions, 
new variables will be generated for the recursive predicate. 
A pure one-directional unit permutational cycle is a directed 
self loop and by recursive expansions, no new variables will 
be generated for the recursive predicate. 

Definition 5.1: A recursive formula is strongly stable if 
there are only disjoint pure one-directional unit cycles in the 
corresponding I-graph. 

Theorem 5.1: A recursive formula is strongly stable if and 
only if the determined variables of the recursive predicate 
in the consequent and in the antecedent occur in the same 
positions for any query. 

Proof: (Only-If part): A unit cycle can be a directed 
self loop (permutational) or a cycle with undirected edges 
(rotational). Recall, such a cycle has only one directed edge, 
and, since it is a cycle, must therefore have at least one 
undirected edge or be a self loop. In both cases, if a variable 
in the consequent is determined, then the variable in the same 
position in the antecedent will be determined, and no variables 
in other positions in the antecedent will be determined because 
all cycles are disjoint. By induction on number of expansions, 
we can easily see that stability will be preserved for arbitrary 
numbers of expansions. 

(Ifpart): Suppose the graph is not stable because of a one- 
directional cycle of length two, say P ( x , y )  : -A(z . z )  A 
P ( y .  z ) .  A query in which only z is determined gives a 
determined variable z in a different position in the antecedent. 
A similar nonsatisfactory query form can be found if the cycle 
is not one-directional or fails the stability condition in any 
other way. Thus, if the determined variables of the recursive 
predicate in the consequent and in the antecedent occur in the 
same position on arbitrary queries, then there are n disjoint 
connections for n-D recursive formula and each connection is 
made between variables in the same position of the recursive 
predicate in the consequent and in the antecedent. Therefore, 
there are n disjoint unit cycles. Q.E.D. 

Thus we have equivalent syntactic and semantic character- 
izations for strongly stable formulas. 

Remark: Note that this definition of strongly stable is 
stronger than that given in [8]. Here, the condition on de- 
termined variables holds for all query forms. From now on, 
we call a strongly stable formula simply a “stable formula.” 

An n -D stable recursive formula can be viewed as in Fig. 8. 
There is one relation for each disjoint cycle and they are named 
Al .  A 2 .  . . . A , .  (Any A; will be an empty relation if the 
corresponding cycle is permutational, otherwise the cycle is 
rotational.) Each relation A; (1 5 i 5 n)  is connected only 
to the exit relation E.  If a query is given, selection operations 
can be applied to all the A,  relations which have determined 
variables. If the corresponding Ai is empty, then selection is 
applied to the exit relation. The A, that are so determined will 
then be written on the left of E and the remaining ones on the 
right in the evaluation plans described below. 

Many recursive formulas in real systems are 2-D stable 
formulas. The compiled formula of a 2-D stable formula can 
be expressed as 

(r.5.1) 

A’ and B’ are the combined relations from the two disjoint 
components respectively (any one of them can be an empty 
relation). The symbol “-” is used for the connectivity between 
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Fig. 8. An 77-D stable recursive formula. 

literals and can be omitted in the expression. The symbol ‘‘U” 
is used for the union of all possible answers for different IC’s. 

Example 5.2: Consider the following recursive rule. 

P(x .  y) : -A(x ,  z )  A P ( z .  U )  A B(u. 9) .  (r.5.2) 

There are two disjoint pure one-directional unit cycles in the 
corresponding I-graph, and the formula (r.5.2) is a 2-D stable 
formula. The corresponding resolution graphs are shown in 
Fig. 2 in Section 111. If a query ? - P ( a . Y )  is given, we 
can easily see the flow of information based on the resolution 
graphs. The variable z is known from the query, and all the 
variables in the predicates A are determined (because all the 
variables of A are connected to the variable x). We can apply 
the selection operation (the symbol “8) on the relation A 
followed by join operations. The evaluation plan for this query 
is Ur=o=,nAk w E w Bk.  The notation gAk  w E w B k  
means that the evaluation will be done from left to right. 
If a query ? - P ( X ,  b )  is given, all the variables in B are 
determined and the evaluation plan for the given query is 
U T = o o B k  w E w A k .  We note that, independent of the 
query, each kth expression will have Ak and Bk plus E.  Thus, 
we may write B k E A k  (or lJ~xo=, A k E B k )  without any 
selection or any implied order of evaluation as the general 
compiled formula. Then, given a query, the actual evaluation 
plan can be easily derived. Q.E.D. 

Definition 5.2: A transitive closure rule is a linear recursive 
rule whose I-graph contains exactly one pure one-directional 
unit rotational cycle and zero or more unit permutational 
cycles. 

If we consider the transitive closure formula P ( x , y )  : 
- A ( x , z )  A P(2 .y )  by removing the relation B from the 
formula (r.5.2), the compiled formula is: A*E and the query 
evaluation plan for the query ? - P ( x ,  b )  is aEA*. 

Many recursive formulas in real systems are 2-D stable for- 
mulas. Researchers have considered some of them as chained 
rules. The join operation is considered as a chain that connects 
two neighboring relations, and if there are shared variables in 
neighboring relations, join operations can be made at query 
processing time. 

Example 5.2: Consider the following recursive formula. 

use “-” for the join operation because of the difficulty to use 
the symbol “w”), and the results are then combined with E.  
We can find evaluation plans for other possible queries (e.g. 
? - P ( x ,  b. c) and ? - P ( x ,  a ,  z ) )  in a similar way. Q.E.D. 

For recursive formulas of this class, the compiled formulas 
are easily obtained and query evaluation plans for all possible 
queries are also easily found. As such, we are dealing on 
the higher level logical form so that the global query plan 
can be optimized. Once a compiled formula is obtained, 
actual query processing can be done in many different ways 
such as Henschen-Naqvi method, Counting method, Magic 
set method, etc [l]. 

B. Pure One-Directional Nonunit Cycles (2.1.3 and 2.1.4) 

Classes (2.1.3) and (2.1.4) consist of recursive formulas with 
pure one-directional nonunit cycles, which are rotational or 
permutational, respectively. Interestingly, the recursive formu- 
las in pure one-directional nonunit cycles can be transformed 
into recursive formulas with pure one-directional unit cycles. 
The idea is that even if a recursive formula is not stable itself, 
the recursive formula can be transformed to an equivalent set 
of recursive formulas which does represent stable recursion 
and the query compilation techniques of stable formulas can 
still be applied. To that end, we show general methods by 
which recursive formulas in (2.1.3) and (2.1.4) can be so 
transformed. 

Theorem 5.2: Suppose there is a pure one-directional cycle 
of weight n in the I-graph for an n-D recursive formula, F .  
Let F’ be the result by expanding F n times. Then 

1) F’ is a stable formula. 
2 )  F’ along with additional exit rules is equivalent to F .  

Proof: 1): If two directed edges share a variable, we can 
assume there is a nonrecursive predicate “EQUAL” between 
the shared variable (this is only for the theoretical develop- 
ment). If there is a trivial cycle or if there is more than one 
undirected edge shared by the same variables, we can collapse 
them into a single undirected edge. Therefore, without loss of 
generality, we can assume that there is exactly one undirected 
edge (nonrecursive predicate) between directed edges in the 
cycle of weight n. Let us call the variables in the consequent 
xl. x2 , . . . , x, (by the traversal order of the cycle) and the 
corresponding variables in the antecedent y1, y2 , . . . ? yn. In the 
first expansion, xn is connected to y1 and to no other y. By 
the following expansion, new variables z1,z2 , 2 3 ,  . . . ? z ,  will 
be produced and x, is connected with z2 and to no other z .  
By induction on the number of expansions, we can easily find 
that after n expansions, x, will be connected to the variable 
in same position and will not be connected to the variables in 
any other positions. The second resolution graph is in Fig. 10, 
and the connection from x, to 22  is shown in the figure. 

P ( z ,  y, z )  : -A(.u. u)AB(y, v)AP(u, U. w ) ~ C ( m .  z ) .  (r.5.3) 

The corresponding I-graph shows that there are three disjoint 
pure one-directional unit cycles. Therefore, the rule (r.5.3) is a 
stable formula. The compiled formula and the evaluation plan 
for the query ? - P(n. b . z )  are in Fig. 9. A branch such as 
E $  > means that Ak and Bk are evaluated independently (we 

2):  From Property (11, we find the Cyclic behavior of the 
formula. Generate the first (n - 1) expansions of F and replace 
the recursive predicate in the antecedents by the exit relation 
and leave the nth expansion of F as a new recursive formula. 
The new recursive formula with n exit relations is stable and 
produces the same answers as the original formula. It is in 
fact, logically equivalent to the original set. Q.E.D. 
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Fig. 9. The compiled formula and an evaluation plan for (r.5.3). 
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Fig. 10. Resolution graph pattern for recursive formulas with pure 
one-directional cycles. 

We now know that a formula F with a pure cycle of weight 
n becomes a stable formula after n expansions, and we can 
consider that the nth resolution graph of F has n disjoint unit 
cycles. Sample rules are mentioned in the following. 

Corollary 5.1: A recursive formula with pure one-directional 
nonunit rotational cycles can be transformed to a stable recur- 
sive formula. 

Proof: From the Theorem 5.2. Q.E.D. 
Example 5.3: Consider the following rules. 

P ( X , . Y )  : - E ( X , Y )  (r.S.1) 
P ( x ,  y) : - A ( x ,  U )  A P(v .  U )  A B(v.  y) .  (r.5.2) 

The I-graph of the recursive formula (r.5.2) shows that the 
cycle is rotational with weight 2 and the recursive formula is 
nonstable. The resolution graphs after the first, second, and 
third expansion are in Fig. l l(a),  (b), and (c), respectively. 
As we can see in the graph, the formula becomes stable 
after every two expansions. Formulas (r.5.3) and (r.5.4) can 
be transformed to an equivalent stable formula by unfolding 
exactly two times. Therefore, the original rule is equivalent to 
one recursive rule (r.5.3), and two exit rules (r.5.4) and (r.5.5). 

P ( x ,  y) : - A ( x ,  U )  A B(v1, U )  A P ( v ~ .  211) 

A A ( w ,  U I )  A B(v. y) (r.5.3) 
P(xl  y) : -A(x,  U )  A E ( v ,  U )  A B(v ,  y)  (r.5.4) 

P ( X , Y )  : - E ( X , Y ) .  (r.5.5) 

The I-graphs for rules (r.5.2) and (r.5.3) are in Fig. l l (a )  and 
Fig. l l(b),  respectively. The compiled formula of rules (r.5.1) 
and (r.5.2) is U E o ( A B ) k  - ( E  U AEB)  - ( A B ) k  and the 
evaluation plan for the query ? - P(x ,  b )  is UTzo c ~ ( B A ) ~  w 
( E  U BEA)  w ( B A ) k .  In the compiled formula, the notation 
“AB” indicates the connectivity of two relations and does 
not indicate any particular order. In a query evaluation plan, 
however, order of the predicates is the actual order to be used 
in the evaluation process. 

We can consider an example where the number of undirected 
edges is less than the number of directed edges. For example, 

B A 

Fig. 11. Resolution graphs for (r.5.2) 

the recursive formula P ( x ,  y)  : - A ( z ,  U )  A P ( y ,  U )  has the 
compiled formula: U;=o A k ( E  U A E ) A k .  Q.E.D. 

We need to introduce the notion of boundness because, 
if the I-graph of a recursive rule consists of only pure one- 
directional permutational cycles, the corresponding recursion 
is bounded. Some recursive formulas have an upper bound on 
the number of iterations necessary to form a virtual relation 
(i.e., to answer a given recursive query), independent of the 
contents of the base relations [9], [16]. More discussion on 
bounded recursions will be given in Sections VI1 and VIII. 

A popular example of bounded recursion is Spouse, where 
Spouse(x, y) : -Spouse(y,x). The I-graph [in Fig. 12(a)] 
has one permutational cycle of weight 2, and it is bounded 
since no new tuples can be generated after one expansion. 

Corollary 5.2: A recursive formula with a pure one- 
directional nonunit permutational cycle can be transformed to 
a stable formula. 

Proof: From the Theorem 5.2. Q.E.D. 
Example 5.4: Consider the following recursive formula. 

P ( x ,  y. z )  : - P ( y ,  z ,  x). 

The corresponding I-graph in Fig. 12(b) shows that there 
is a cycle of weight three. The recursive formula can be 
transformed into a stable formula. But there is no nonrecursive 
relation involved in the expansions, and after two expansions, 
the formula cannot produce any new values (or tuples). As we 
mentioned above, we call such recursive formulas bounded. 
Bounded formulas will not produce any new tuples (values) 
after certain expansions regardless of the contents of the 
database. The above formula has no new variables in the 
antecedent; all the variables are from the consequent. This 
is called a “permutational pattern” to distinguish it from 
rotational formulas. Q.E.D. 

VI. PURE MULTIDIRECTIONAL CYCLES (2.2) 

In this section, we will discuss recursive formulas that 
have pure multidirectional cycles. As we discussed before, 
to be transformed into a stable formula, a recursive formula 
should have a pure one-directional unit cycle after some finite 
expansions. As we can see by the following theorem, pure 
multidirectional cycles cannot be transformed into pure one- 
directional unit cycles. Therefore, recursive formulas with 
pure multidirectional cycles cannot be transformed into stable 
formulas. 
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Fig. 12. I-graphs with permutational cycles. 

Theorem 6.1: A recursive formula with pure multidirectional 
cycle cannot be transformed to a strongly stable formula. 

Proof: A pure multidirectional cycle has at least one 
(possibly compressed) undirected edge whose two nodes each 
are used as the tail of directed edges. By the expansion of the 
resolution graph, the two nodes can never be split, and the 
resolution graph cannot be expressed as disjoint unit cycles 
(refer to the Theorem 6.2). Therefore, the formula cannot be 
transformed to a stable formula. Q.E.D. 

Corollary 6.1: A recursive formula with pure cycles can be 
transformed to a strongly stable formula (or is stable) if and 
only if it is one-directional. 

Proof: From the Theorem 6.1. Q.E.D. 
Recursive formulas with pure multidirectional cycles can 

be semantically divided into two subclasses: Pure Multidirec- 
tional Bounded Cycle and Pure Multidirectional Unbounded 
Cycle. 

Q.E.D. P ( z ,  y) : -A(z, y) A E(u,  V )  A B(u,  v). 

A. Pure Multidirectional Bounded Cycle 

Definition 6.1: A pure cycle is called a bounded cycle if 
the weight of the cycle is 0. 

Definition 6.2: The rank of a recursive formula is defined 
to be the smallest i such that the (i + 1)st expansion and all 
succeeding expansions do not produce any tuple not found in 
the first i expansions. 

Definition 6.3: A recursive formula is called bounded if and 
only if there exists a finite upper bound on its rank independent 
of the contents of the relations involved in the formula. 

Ioannidis’s Boundness Theorem [9 ] :  Let F be a recursive 
formula with no permutational patterns. Then F is bounded 
if and only if the corresponding I-graph contains no cycle of 
nonzero weight. In that case a tight upper bound on the rank 
of the recursive formula is given by the maximum weight of 
any path in the I-graph. 

Corollary 6.2: A bounded cycle is bounded. 
Proof: From the Ioannidis’s boundness theorem. Q.E.D. 

A pure multidirectional cycle in the I-graph of a recursive 
rule indicates that we will encounter directed edges in different 
directions when traversing a cycle in one way. Since we 
assume that there are no repeated variables in the recursive 
predicate, a pure multidirectional cycle must contain at least 
one undirected edge (otherwise, there must be a vertex being 
the tails (heads) of two directed edges, which violate the 
assumption). This implies that a pure multidirectional cycle 
has at least one undirected edge in it. 

S A Y  

Fig. 13. I-graph for (r.6.1). 

Example 6. I : Consider the following recursive formula. 

P(x.y)  : -A(z,y)  A P(u.u) A B(u,v) .  (r.6.1) 

The corresponding I-graph is shown in Fig. 13. There are no 
cycles of nonzero weight in the I-graph of the rule (r.6.1) 
including those formed through the negative directed edges, 
which according to our convention are not drawn (going 
along a negative edge can be thought of as going along 
a positive edge in the opposite direction and inverting the 
weight). Therefore, the formula (r.6.1) is bounded and the 
least upper bound is 1 (because the maximum weight of any 
path in the I-graph is 1). Recursion of bounded formulas is 
sometimes called “pseudo recursion” because the answers to 
the bounded formulas are obtained without actual recursion. 
If a recursive formula is bounded, there is an equivalent finite 
set of nonrecursive formulas, e.g., the formula (r.6.1) has the 
least upper bound 1, and will be expressed as nonrecursive 
formula(s) by replacing relation P in the antecedent by the 
exit relation E :  P ( z ,  y) : -A(x, y) AE(u, v)  A B(u, v).Q.E.D. 

Another general characteristic of the graphs of the bounded 
statements is that the last expansion that is significant (regard- 
ing the production of new tuples) is the first one with the 
maximum weight of any path in its graph being 1 [9]. 

Theorem 6.2: A formula constructed by a disjoint combina- 
tion of bounded cycles is bounded. 

Proof: All the disjoint components will be expanded 
independently, and all the components are bounded. Therefore, 
the formula is bounded. Q.E.D. 

Bounded formulas have been considered by many re- 
searchers for optimization because after certain expansions we 
do not need to generate further expansions of the formula nor 
do further query processing. The general solution providing 
the upper bound is fully mentioned by [9]. 

B. Pure Multidirectional Unbounded Cycle 

Definition 6.4: A pure multidirectional cycle of nonzero 
weight is called a pure multidirectional unbounded cycle. 

Query evaluation plans for pure multidirectional unbounded 
cycles are more complicated than the previous cases. In fact, a 
general compiled formula (such as AkEBk for strongly stable 
recursive formulas) is not known for recursive formulas with 
pure multidirectional unbounded cycles at this time. It is not 
likely to find such general compiled formulas. But if we use 
the resolution graph, we can easily derive compiled formulas 
(or query evaluation plans) for individual cases. 

Example 6.2: Consider the following recursive formula. 

P(x.  y. 2 )  : -A(z,  y) A B(u,  w) A P(u. z ,  U). (r.6.2) 
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Fig. 14. I-graph for (r.6.2) 

The first and second resolution graphs are in Fig. 14. Let us 
consider a query of the form ? - P(d, w ,  w ) ,  where 'U stands for 
variables and d for a data value, either from the query or from 
recursive predicates after some expansions. The evaluation 
process will be the following: 

The first expansion [Fig. 14(a)]: The value of x is given 
and we can apply the selection operation to the relation A 
and derive values of y following undirected edges. There is 
no more selection or join operation possible. If there is no 
information available, we will select the exit relation, E,  (this 
strategy is the conventional technique) and derive all the tuples 
of E. Then we can apply the join operation with the relation B 
to find values of z. The answer will be the Cartesian product 
(symbol x will be used) of values of y and z. This evaluation 
step can be expressed as (aA)  x (E w B) .  

The second expansion [Fig. 14(b)]: The value of x is given 
and we can derive values of y following undirected edges 
as in the first expansion. There is no more selection and 
join operation possible. We will derive all the tuples of exit 
relation E. Then we can apply the join operation with B to 
find common tuples (for variables u1 and VI), and apply the 
join with B and A successively to find values of z. Evaluation 
steps will be (aA) x [ ( E  w B)BA]. 

The query evaluation plan for a query ? - P(d ,v , v )  
can be expressed as a E , ( a A )  x (U:="=,(E w B)(BA) ']) .  
For a query of the form ? - P(w,v,d), we have the 
following evaluation plan from the resolution graphs: 
aE, (3 U&[(AB)'(E w B ) ] ) A .  The symbol "3" is used 
for the existence checking for the immediately following 
expression. This means if there is any tuple (not empty) that 
satisfies the expression in the (3 . . .), then all the tuples in the 
relation A will be answers. Q.E.D. 

VII. ACYCLIC PATHS (1) 

In this section, we will consider components with no non- 
trivial cycles (acyclic paths). 

Theorem 7.1: A recursive formula with no nontrivial cycle 
cannot be transformed to a strongly stable formula. 

Proof: 1): Suppose that there is only one directed edge. 
The head and tail of the directed edge are not connected to each 
other by any undirected edge(s). By induction on the number 
of expansions, the head and tail will never be connected. 

2): If there is more than one directed edge, there are two 
possibilities, a) directed edges are one directional, b) directed 
edges are multidirectional. In case a), there is a leftmost (or 
rightmost) node used as a tail of a directed edge. By induction 
on the number of expansions, the node will never be connected 

to any other nodes, and the formula cannot be transformed to 
a stable one. In case b), we can prove as in the previous 
theorem. Q.E.D. 

Corollary 7.1: A component with no nontrivial cycle is 
bounded. 

Proof: There is no cycle of nonzero weight in this com- 
ponent. From Ioannidis's theorem, the component is bounded. 
Q.E.D. 

Example 7.1: Consider the following formula. 

P ( x ,  Y) -B(Y) A C(Z, Y1)  A P(Z1,  Y l ) .  (r.7.1) 

There are no nontrivial cycles in the I-graph (Fig. 15) for 
the formula (r.7.1). If a query ? - P ( z , y )  is given, we 
can derive all the tuples from E(z,y) and from B(y) A 

C(z,yl) A E(z1,yl) and, finally from B(y) A C(Z,YI) A 
%l) A C(a1,ys) A E(~2,YZ). 

Further expansions will not produce any new tuples and the 
upper bound is 2. Q.E.D. 

VIII. DEPENDENT CYCLES (3) 
Although so far there are no complete general techniques 

for finding compiled formulas developed for this class, we will 
show by examples that the I-graph and the resolution graph 
can be very useful in obtaining query evaluation plan for this 
kind of formula. 

A. Properties of Dependent Cycles in Single Component 

Theorem 8.1: A recursive formula with a dependent cycle 
cannot be transformed to a stable formula. 

Proof: Case I :  We already proved that a pure multi- 
directional cycle cannot be transformed to a stable formula. 
Furthermore, any multidirectional cycle cannot be transformed 
to a stable one. Indeed, any multidirectional cycle has at least 
one undirected edge (with two nodes, e.g., XI and XZ), and XI 
and x~ are used as the tails of the directed edge. To be stable, 
the nodes x1 and x2 should be disconnected, but will never be 
disconnected because later resolution graphs are obtained by 
appending the I-graph to the head of directed edges, and nodes 
x1 and xz will never be split. Therefore, a dependent cycle 
with a multidirectional cycle as a subcycle or a dependent 
cycle with an undirected edge, whose two nodes are used as 
the tail of the directed edges is not transformable to a stable 
one. 

Case 2: The same claim can be applied to a component with 
one undirected edge whose two nodes are used as the heads 
of the directed edges. On the next expansion, the two nodes 
of the undirected edge become the tails of the two directed 
edges, and from Case 1 we can easily find that the component 
cannot be transformed to a stable one. 

Case 3 Let us consider the dependent, one-directional cycle. 
Assume that there is an extra undirected edge that makes 
the cycle dependent. We can assume that the node (call the 
node x )  of the extra undirected edge is used as a tail of one 
directed edge, and the other node (called y) is used as a head 
of one directed edge because we already mentioned the other 
possible cases. If the value of z is given on a query (only 
the value of one variable is known), then two variables are 
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Fig. 15. I-graph for (r.7.1) 

determined in the next expansion. On further expansions, there 
is no possibility that only one variable is determined. So the 
formula cannot be transformed to a stable formula. Q.E.D. 

Corollary 8.1: A formula can be transformed to an equiv- 
alent strongly stable formula if and only if it has only pure 
one-directional cycles. 

Proof: From the previous theorems. Q.E.D. 
Remark: We have shown that the “semantic” and the “syn- 

tactic” definitions of strongly stable and transformable to 
strongly stable formulas are equivalent. Therefore, only one- 
directional cycles can be transformed to stable formulas. 

X Y X Y 

(a) (b) 

Fig. 16. I-graph for (r.8.1). 
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Fig. 17. I-graph for (r.8.2). 

B. Query Evaluations m 

A D C E B ,  U ADC - C D A B  - B - 
k=O We begin with several examples for illustrating the use 

of the resolution graph in recursive formulas with dependent 

Example 8.1: Consider the following recursive formula. 
cycles. Fig. 18. Evaluation plan for a query to (r.8.2). 

P(.,y) : - A ( z , x l ) A B ( y > y l )  AC(z l>Yl)AP(r l .Y l ) .  
(r.8.1) 

The corresponding first and second resolution graphs for 
the recursive rule (r.8.1) are in Fig. 16. If a query form 
? - P(d,v)  is given, from the second expansion, all the 
variables in the recursive predicate are determined, and there 
is no nondetermined part. The query evaluation plan for 
7 - P(d,v)  is the following: aE,  aA - C - B - E ,  aA - 
C - B - {g } - C - E.  (The symbol { } is used to express the 
parallel evaluation of relations.) The simplified formula is aE,  uk=o a A  - C - B - [{i} - CIk - E .  Note that the evaluation 
plan form is similar to transitive closure formula because, after 
certain expansion, since two cycles are connected, we can 
consider two variables as one vector and then the rule can 
be thought of as a pure unit cycle that produce a transitive 
closure formula. Q.E.D. 

Example 8.2: Consider the following recursive formula. 

00 

P(x1 ?/. 2) : -A(x.  2 1 )  A B(zi, y) A C(y1. Z )  A D ( y i .  2 1 )  

A P(Z1. y1. z1). (r 3.2) 

The corresponding I-graph is in Fig. 17. If a query ? - 
P(d, U. U )  is given, on the next expansion we have P(u,  d .  d ) ,  
and on third expansion, we have P(d,  d ,  d ) .  From the fourth 
expansion on, all the variables are determined, and data 
retrieval in further expansions can be minimized. We also can 
apply parallel evaluation to reduce the query processing time 
as much as possible. The query evaluation plan for the query 
? - P(d,v ,v)  is shown in Fig. 18. Q.E.D. 

There are many possible connections among cycles and 
acyclic paths. Two or more cycles (each could be a unit 
cycle, one-directional cycle, or multidirectional cycle) can be 

connected by one or more undirected edges, directed edges, 
or a mixture of both. An acyclic path can be connected to a 
pure cycle or a connected graph of cycle(s). Here, we will 
consider one example: two unit, rotational cycles connected 
by one undirected edge. However, we should note that the 
theorem derived from this example cannot be generalized to 
all the cases of complicated connections. 

There are four possible cases of connecting two unit, 
rotational cycles with an undirected edge as in rules (r.8.3) 
to (r.8.6) [Fig. 19(a)-(d)]. 

Example 8.3: 

P ( x .  y) : -A(x,  U )  A B(y,  U )  A C ( x ,  y) A P(u, U )  (r.8.3) 
P(x .  y) : -A(x,  U )  A B(y,  U )  A C(U. U )  A P(u, U) (r.8.4) 

P(xl  y)  : -A(rc, U )  A B(y,  U) A C ( x ,  U )  A P(u, U) (r.8.5) 
P(z .  y) : -A(x,  U )  A B(y,  U )  A C(U,  y) A P(u,  U ) .  (r.8.6) 

The undirected edge C across two cycles indicates that 
a join operation can be applied to the undirected edges 
A and B to group them together, and the rule becomes 
P(rc,y) : -D(z ,y ,u ,v )  A P(u,u)  where D(z,y,u.w) : 
- A ( z , u ) ~ B ( y , v ) A C ( z , y )  in the rule (r.8.3), D(z ,y ,u ,v )  : 
- A ( z , u ) r \ B ( y , v ) A C ( ~ , w )  in the rule (r.8.4), D ( Z , ~ , U , U )  : 
- A ( z , ~ ) A B ( y , v ) A c ( z , v )  in the rule (r.8.5), D ( z , y , ~ , v )  : 
-A(z .  U )  A B(y, U )  A C(U, y) in the rule (r.8.3). 

If we view x and y as a vector z and U and v as a vector w, 
the rule becomes P ( z )  : - D ( z ,  w) A P ( w )  whose compiled 
formula is D*E which can be processed using the transitive 
closure query processing strategies. Although we take two 
variables z and y as one vector, the evaluation of the vector 
should be treated carefully. Different variables within one 
vector may be instantiated and inquired differently in queries. 
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Fig. 19. I-graphs for (r.8.3). (1.8,4), (r.8.5), and (r.8.6). 

For example, in query ? - P ( a , y ) ,  the two variables in the 
vector z are instantiated differently. Q.E.D. 

Other connections, including multiple connections, can be 
handled similarly. Hence, we have the following theorem. 

Theorem 8.2: If the I-graph of a linear recursive formula 
contains undirected edge connections between unit cycles, 
the connected variables can be collapsed into one vector in 
compilation. 

Proof: The proof can be derived from the study of all 
possible cases. The above example has examined the case of 
two unit cycles connected by one undirected edge. Obviously, 
two unit cycles can also be connected by two or more 
undirected edges, which makes the linkage between two cycles 
even stronger than one undirected edge. Thus, they should be 
treated as joining together and merging two cycles into one by 
vectoring the variables. In the cases that more than two unit 
cycles are connected by undirected edges, the discussion can 
be generalized similarly. In general, an n-D unit cycle formula 
is reduced to an rn-D unit cycle recursion by collapsing two 
or more unit cycles. Q.E.D. 

IX. HETEROGENEOUS COMPONENTS (4) 

In this section, we will consider recursive formulas having 
I-graphs with multiple components which are composed of 
disjoint combinations of different classes. The general method 
for this class is not known at this time. Further studies should 
be done on the recursive formulas in this class. Using the 
properties of each of the classes we discussed so far, we can 
derive the compiled formula and the query evaluation plan for 
particular cases. 

A.  Closure Properties of Recursive Formulas 

Theorem 9.1: A recursive formula with a one-directional 
permutational cycle or disjoint combinations of such cycles is 
also permutational. 

Proof: A disjoint combination of permutational cycles is 
also permutational because there are no new variables in the 
recursive predicates. As soon as the formula becomes stable, 
it is in fact in its original form. Q.E.D. 

Example 9.1: Consider the following recursive formula. 

P ( 5 ,  y, z ,  U, W, w) : - P ( Z ,  y, U ,  2. w, v). (r.9.1) 

The recursive rule (r.9.1) is a permutational formula, and there 
are three permutational cycles in the I-graph with weights 3, 1, 
and 2, respectively. We can easily see that the formula becomes 
stable (comes back to the original formula) after six expan- 
sions and will not produce new tuples by further expansions, 
therefore further expansions are meaningless. Q.E.D. 

Theorem 9.2: A formula constructed by a disjoint combina- 
tion of one or more one-directional cycles can be transformed 
to an equivalent strongly stable formula. 

Proof: If there are IC disjoint independent, one-directional 
cycles GI.  G2, . . . GI, from a recursive formula, and the weight 
of the cycle for each G, is cz, the formula can be transformed 
to an equivalent stable formula by unfolding exactly L times, 
where L is the least common multiple of c l ,  c2, . . . Q.Q.E.D. 

Example 9.2: Consider another recursive formula. 

P(5 ,  y. Z .  U, W. S .  W) : - A ( T .  t )AP( t ,  Z .  y. W ,  S. T ,  w)A\B(u, T ) .  

(r.9.2) 
The corresponding I-graph has 4 one-directional disjoint cycles 
of weights 1, 2, 3, and 1, respectively. We can easily see that 
the formula becomes stable after six expansions. Q.E.D. 

We should point out that there are other recursive formulas 
which may stabilize for particular queries but are not strongly 
stable and are not equivalent to a strongly stable formula. 

Theorem 9.3: A formula constructed by a disjoint combi- 
nation of stable cycles (one-directional cycles) and nontrans- 
formable cycles (at least one nontransformable cycle) is not 
transformed to a stable formula. 

Proof: All the disjoint components will be expanded in- 
dependently (not connected), therefore we can see the property 
easily. Q.E.D. 

From the classification, we can find the following properties 
of recursive formulas. Recall the various cases. 

Theorem 9.4: A formula constructed by a disjoint com- 
bination of classes {acyclic paths (l), pure one-directional 
unit permutational cycles (2.1.2), pure one-directional nonunit 
permutational cycles (2.1.4), pure multidirectional bounded 
cycles [a subset of (2.2)] } is bounded. 

Proof: Each component will be expanded independently, 
and all the components are bounded, therefore the formula is 
bounded. Q.E.D. 

Remark: A formula constructed by a disjoint combination 
of bounded components is bounded. 

Theorem 9.5: If a formula P is constructed by a disjoint 
combination of classes {pure one-directional unit permuta- 
tional cycles (2.1.2), pure one-directional nonunit permuta- 
tional cycles (2.1.4)}, then the tight upper bound of P is the 
least common multiple ( L )  -1 of the weights of all the cycles. 

Proof: After L expansions, the formula comes back to 
the original form. Therefore, the formula is bounded and the 
upper bound is L - 1. Q.E.D. 

Now we can conclude the following theorem. 
Theorem 9.6: The above classification is complete. 

Proof: Our analysis is done on each component. There 
are four possibilities on each component, 1) no nontrivial 
cycle, 2) pure one-directional cycles, 3) pure multidirectional 
cycles, 4) dependent cycles. There is no overlap between each 
pair of these classes. A disjoint combination of cycles in the 
same class will be in the same class. A disjoint combination of 
the different classes will be in the heterogeneous components 
class. Therefore, the classification is complete. Q.E.D. 

X. DISCUSSION 

We discuss a number of issues which are closely related 
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to our methodology. First, we discuss the issue of relaxing 
the soft assumptions that were imposed in Section 11. Second, 
we discuss the use of equality (EQ) predicate in handling 
some complex linear recursive formulas. Third, we discuss 
the possibility of applying our graph model to the class of 
nonlinear recursive formulas. 

A. Relaxing Soft Assumptions 

We can relax two soft assumptions in Section I1 which were 
imposed on the target class of linear recursive formulas in our 
research. 

Relaxing No-Constant Symbol Assumption: We assumed that 
there were no constant symbols in the statement. Constants 
were introduced by the given query. The reason for this 
assumption was for generality. Variables in the statement 
can always be replaced by constants, and a statement with 
constants in it can be considered as an instance of the formula 
which contains only variables. 

If there are constants in the nonrecursive predicate, regard- 
less of the query form, we can apply selection operations using 
those constant symbols. 

Example 10.1: Consider the following recursive formula 
having a constant symbol (here, ‘b’ ) .  

P ( z ,  y) : -A(z .  b. z )  A P(z .  w) A B(w. y). 

If a query ? - P(a.  y) is given, the selection operation on 
relation A is more restrictive, i.e., finding all the tuples that 
satisfy 3: = a and y = b from the relation A(s.  y. 2 )  is more 
restrictive than z = a.  If a query ? - P ( r , c )  is given, we 
can apply selection operations from relation A and relation 
B simultaneously and the results can be merged with the 
exit relation E. The evaluation can be expressed as shown 
in Fig. 20. Q.E.D. 

If there are constants under the recursive predicate in the 
head, the query form should match with the formula. To satisfy 
this condition, the corresponding position of the constant 
symbols from the query should be a variable or exactly the 
same constant. If there are constants under the recursive 
predicate in the body, those constant symbols can be used as 
valuable information from the second expansion for evaluating 
queries. 

If there are constant(s) in the exit rule, for each expansion, 
the recursive predicate in the body of the recursive rule will 
be matched with the head of the exit rule, and the situation 
is similar to the case that allows constant symbols in the 
nonrecursive predicate. 

Therefore, if there are constant symbols in the formula, 
this will not cause any difficulty for our graph analysis. The 
only difference is that we can use the information of constant 
symbols and can make more efficient query evaluation plans. 

Relaxing Single Recursion Assumption: We have assumed 
there was only one recursive statement (single recursion) and 
one or more nonrecursive statements (exit rules) for a given 
recursive predicate to make our discussion simple. If there 
are two or more recursive formulas for a given recursive 
predicate (multiple recursion), the evaluation strategy for a 
query becomes more complicated. 

U Ak 
\ 

I 
U L I  E 

U Bk 

Fig. 20. Evaluation plan for a query in Example 10.1 

Example 10.2: Consider the following recursive formulas. 

P ( z .  y) : -A(z ,  2) A P ( z ,  w) A B(w. y) 

P ( z .  y) : -c(x’. z )  A P ( z ,  w) A L)(w, y). 

(r.lO.1) 
(r.10.2) 

The recursive formulas (r.lO.1) and (~.10.2) are both 
strongly stable formulas. If a query ? - P(a. y) is 
given, the evaluation plan will be: a E ,  aAEB. a C E D ,  
a A A E B B .  a A C E D B .  aCCEDD. a C A E B D , .  . ., and so 
on. Therefore, the evaluation plan can be written as 

where R, is relation A and 
S,  is relation B ,  or R, is relation C and S, is relation D.Q.E.D. 

If there are rn distinct recursive formulas for a recursive 
predicate, for a given query, there are rn distinct evaluations 
by the first expansion, m2 distinct evaluations by the second 
expansion, rn3 distinct evaluations by the third expansion, and 
so on. Therefore, the total number of distinct evaluations for 
up to k expansions will be: (rnk+’ - l ) / ( rn  - 1) contrast to k 
distinct evaluations if there is only one recursive formula for 
a given recursive predicate. The complexity of the multiple 
recursion is exponential in the level of expansion I C .  

If there are two recursive formulas which belong to two 
different classes, the query evaluation plans become more 
complicated. 

oRlR2 . . . RkESk . . . 

B. Using the EQ Predicate in the Graph Model 
Since we did not allow arithmetic predicates in Section 11, 

the equality predicate (Ea)  was also discarded. 
Using the EQ predicate can cause difficulties. However, if 

we use the EQ predicate in a restricted manner, it is very useful 
in handling complex linear recursive formulas. Our approach is 
to treat the EQ predicate as a special predicate which has value 
“TRUE’ if its two arguments have same value, otherwise, it 
returns “FALSE.” We can treat the predicate EQ as an EDB 
relation, but the tuples of the relation are not stored explicitly. 
We should point out that the predicate EQ can be evaluated 
only if at least one of its two arguments is determined. 

Handling Recursive Variables with Constant Symbols: By 
introducing the new predicate EQ for the constant symbols 
under the recursive predicate in the head, our graph model 
can cover the recursive predicate with constant symbols. For 
example, P ( a . y )  : -A(u .z )  A P ( z , w )  A B(w.y)  can be 
rewritten using the predicate ’E&’ as P ( T .  y) : -EQ(r .  a )  A 
A(u. z )  A P ( z ,  w) A B(w.  y). 

Handing Recursive Formulas with Repeated Variables: If 
there are variables appearing more than once under the recur- 
sive predicate, in general, the kth I-graph is not isomorphic to 
the original I-graph. Hence, the query evaluation plans using 
the graph model become more complicated and more difficult 
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to analyze. However, if we use EQ properly, we can easily 
cope with recursive formulas with repeated variables. 

Example 10.3: Consider the following recursive variable 
with repeated variable. 

P(x.  x) : -A(r. y) A P(y.  z )  A B(z .  z). (r.10.3) 

The recursive formula (r.10.3) can be rewritten as the formula 
formula (r.10.4) by introducing EQ. 

P(x .w)  : -EQ(w,x)AA(z,y)AP(y.z)AB(z.z). (r.10.4) 

The corresponding I-graphs are in Fig. 21(a) and (b), respec- 
tively. Q.E.D. 

As we can see from the recursive formula (r.10.4), there are 
no repeated variables in the recursive predicate after introduc- 
ing the predicate EQ. Therefore, we can apply our graph model 
to those formulas for classification and query evaluations. The 
recursive formula F’ has the following property. 

Theorem 10.1: A recursive formula F’ derived from a 
formula with repeated variables in the recursive predicate is 
not a strongly stable formula nor can be transformed into a 
strongly stable one. 

Proof: The recursive formula F’ has at least one undi- 
rected edge labeled “EQ” (with two nodes, e.g., .r1 and 
x2), and 5 1  and x2 are used as the tails (or heads) of 
the directed edge. Therefore, the recursive formula F’ has 
multidirectional cycles or acyclic path(s). We already proved 
that a multidirectional cycle or an acyclic path cannot be 
transformed to a strongly stable formula. Q.E.D. 

C. Applying the Graph Model to Nonlinear Recursive Formulas 
In this section, we will consider formulas with more than 

one recursive predicate in the body. For example, P(.r:.y) : 
-A(z,  w)AP(w,  v ) A B ( v ,  u)AP(u .  z)AC(z .  y)  is a nonlinear 
recursive formula. 

To the best of our knowledge, general compilation tech- 
niques for nonlinear recursive formulas have not been pro- 
posed in the literature. If we can transform nonlinear recursive 
formulas into a finite set of linear recursive formulas, we can 
simply apply the evaluation techniques we have discussed to 
the nonlinear recursive formulas. It is known that only a subset 
of nonlinear recursive formulas can be transformed into a finite 
set of linear recursive formulas [6], [21], [22].  

We also do not have complete results on nonlinear recur- 
sive formulas. Here we introduce some of our preliminary 
observations to nonlinear recursive formulas. 

Definition 10.1: The degree of recursive formula is the num- 
ber of recursive predicates in the antecedent. Linear recursive 
formulas are the first degree recursive formulas. 

Definition 10.2: A nonlinear recursive formula is strongly 
stable if determined variables of the recursive predicate in the 
consequent and of all the recursive predicates in the antecedent 
occur in the same position for any query. 

From a recursive formula F with degree k ,  we can get IC 
linear recursive statements RI ~ R2. . . . . RI, that contain only 
one recursive predicate in the antecedent by replacing IC - 1 
recursive predicates using exit rules and leaving one recursive 
predicate. For convenience, we can assume that RI keeps the 

(a) (b) 

Fig. 21. I-graphs for (r.10.3) and (r.10.4). 

first recursive predicate PI, R2 keeps the second recursive 
predicate P2, and so on. The formula R, is the sth simplified 
linear recursive formula of F .  Then we have the following 
theorem. 

Theorem 10.2: A recursive formula F with degree IC is 
strongly stable if and only if each of the recursive formulas 
R I .  R2,  . . . . RI; is a strongly stable formula. 

Proofi (Only I f ) :  If any of RI’s is not strongly stable, 
the formula F is not a strongly stable formula when recursive 
predicate P, is encountered for expansion. Therefore, all R,’s 
should be strongly stable formulas. 

(Zfl: If all the RZ’s are strongly stable formulas, each 
expansion of P, will preserve the property of strongly stable 
and all the expanded formulas are strongly stable formulas. 
Therefore, formula F is a strongly stable formula. Q.E.D. 

Example 10.5: Consider the following nonlinear recursive 
formula. 

P ( T .  1/) . -A(J .  T U )  A P ( w .  V )  A O(?’. U) A P(u. Z )  A C ( Z ,  y). 
(r .10.5) 

To study nonlinear recursive formulas F ,  we will analyze the 
corresponding simplified linear recursive formulas of F .  The 
first and second simplified recursive formula of (r.10.5) are 
(r.10.6) and (r.10.7), respectively. 

P ( z ,  y) : -A(%.  W) A P ( w ,  V )  A B(v, U )  

A E(u .  z )  A c ( z .  y) 

A P(u. z )  A C(2.y). 

(r .lo. 6) 
P(z .  y) : -A(z .  W) A E(w.  U) A B(v, U )  

(r .10.7) 

The corresponding I-graphs for recursive formulas (r.10.6) and 
(r.10.7) are in Fig. 22(a) and (b), respectively. We can easily 
find that the two simplified linear recursive formulas of (r.10.5) 
are strongly stable and hence the recursive formula (r. 10.5) is 
strongly stable. Q.E.D. 

Example 10.5: Let us consider recursive formulas that are 
not strongly stable. For example, 

P ( x 3  y) : -A(z.  z )  A P ( z ,  W) A B(w, U )  A P(w, U )  A C ( V ,  9) .  
(r.10.8) 

The first and second simplified recursive formulas of (r. 10.8) 
are in (r.10.9) and (r.lO.lO), respectively. 

P ( r .  y) : -A(z. Z )  A P ( z .  W )  A B(w. U )  

A E ( v .  U) A c ( v .  y) 

A P(v.  U) A c(?i. y) .  

(r.10.9) 

(r.lO.10) 

The corresponding I-graphs are in Fig. 23. As we can see from 
Fig. 23, the recursive formula (r.10.9) is strongly stable, but 
the recursive formula (r.lO.10) is not strongly stable. Let us 

P ( x .  y) : -A(x.  Z )  A E ( z .  W) A B(w, U )  
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Fig. 22. I-graphs for (r.10.6) and (r.10.7). 

consider the evaluation plan for the query ? - P(c, X). Let us 
assume that the evaluation plan for the recursive predicate 
P ( c , X )  is G, and the evaluation plan for the recursive 
predicate P ( X , c )  is H, where c is a generic constant and 
X is a variable. Then the formula (r.10.8) will be expressed 
in a simplified form as 

G : -A, G, B. H, C 
H : -C, G, B. H, A 
G:-E 
H : - E  

where the order of the predicates in the antecedent expresses 
the order of evaluation because there are common variables 
between adjacent predicates so that join operation can be 
applied, i.e., the evaluation of G will be done by applying 
selection operation to the predicate A,  then join with G where 
G can be expanded again or can be replaced by the exit rule 
E, then the union of intermediate results from G will be 
joined with relation B, the join operation will be applied with 
recursive evaluation predicate U ,  where H can be expanded 
further or can be replaced by the predicate E ,  and finally join 
operation will be applied to predicate C to derive answers. 

The recursive expansion of G and H cannot be expressed 
by direct recursion, i.e., G cannot be expressed in terms of 
G only (with no H involved) and H cannot be expressed 
in terms of H (with no G involved). We call this recursive 
relation, irreducible mutual recursion. Q.E.D. 

We hope a more complete study of nonlinear recursive 
formulas will be forthcoming. 

XI. CONCLUSIONS 
We presented a classification and compilation scheme of 

linear recursive formulas based on a graph model. Our analysis 
of the compilation and query processing of linear recursive 
formulas discloses that the formulas in each class share com- 
mon characteristics in their compiled formulas and query 
processing plans. Therefore, it shows that the I-graph model is 
a valuable tool in the classification of recursive formulas and 
the resolution graph is a powerful tool in deriving planning 
mechanisms for recursive queries. 

We believe that our graph method provides a powerful tool 
in the study of the behavior of linear recursive formulas with 
complex variable patterns as well as linear recursive formulas 
with simple variable patterns. Once such behavior is well 
understood, the compilation and further optimization can be 
explored in depth, which in turn will have strong impact on 

Fig. 23. I-graphs for (r.10.9) and (r.lO.10) 

the further development of efficient recursive query processing 
methods. 

Although we showed some fundamental results on un- 
bounded cycles, dependent cycles, and heterogeneous com- 
ponents, further exploration will produce interesting results. 
Moreover, the exploration of the application of our graph 
model to the compilation of multiple linear recursive rules, 
nonlinear recursive rules, and other kinds of recursion is 
another future research topic. 
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