Extracting Indexing Information from XML DTDs ¢

Tae-Sun Chung Hyoung-Joo Kim

School of Computer Science and Engineering, Seoul National University
San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, KOREA

{tschung, hjk} @papaya.snu.ac.kr

Keywords: databases, semistructured data, XML, query optimization

1 Introduction

Recently, XML has become an emerging standard for information exchange on the World Wide Web. It has
gained attention in database communities to extract information from XML seen as a database model. That is,
as XML is self-describing, we can issue many kinds of queries against XML documents in heterogeneous sources
and get the necessary information.

As data in XML is an instance of a semistructured data model based on labeled-edge graph, it can be mapped
to a semistructured data model and queries can be processed against it. Though the semistructured data model
is flexible in data modeling, it requires a large search space in query processing since there is no schema fixed in
advance. So, much work has addressed the problem of reducing the search space for evaluating semistructured
queries[1, 2, 3, 4, 5, 6, 7]. Most of these techniques extract schema information from a semistructured data
instance and use it as an index.

In this paper, we propose query optimization techniques for XML queries using DTDs. Our technique extract
information from DTDs statically and provide a query processor with it in run time. Compared to the previous
work, our technique can be applied to arbitrary queries and doesn’t require much additional storage for indexes

themselves.

2 Overview of Our Approach

2.1 Data Model

We assume that data in XML is mapped to an OEM(Object Exchange Model)[9] graph that is the de facto
model for semistructured data. Every object in OEM consists of an identifier and a value, and the nodes in
the graph are objects and the edges are labeled with attribute names. The OEM objects are classified as the

following two kinds of objects, according to their values.

e Atomic objects: The value of the atomic objects is an atomic quantity, such as an integer, a string, an

image, a sound, and so on.

TThis work was supported by the Brain Korea 21 Project.

<AGroup>
<person id="&1" company="&2">
<name> park </name>
<e-mail> park@papaya </e-mail>
</person>
<company id="&2" person="&1">
<name> cnn </name>
<url> http://www.cnn.com </url>

</company>
<person id="&3" school="&4">
<name> kim </name> fam name baseball-team
</person>
<school id="&4" person="&3"> &) (g
<name> snu </name> park park @papaya cnn = Kim snu lions
<baseball-team> lions </baseball-team> http://www.cnn.com
</school>
</AGroup>

Figure 1: An Example of XML Data and OEM Graph

e Complex objects: The value of the complex objects is a set of <label, id> pairs.

Figure 1 shows an XML data and a corresponding OEM graph. Here, &0, &1, etc. are object identifiers.

Objects such as &5 and &6 are atomic objects and those such as &1 and &2 are complex objects.

2.2 Key Idea

From the flexibility of XML data, we can classify each element using DTDs and give a hint to a query proces-
sor in run time. For example, let’s assume that a DTD declaration for the person element in Figure 1 is as follows.
<!ELEMENT person (name, e-mail*, (school]|company))> (1)
From the DTD, we can classify the person element into four groups: 1. ones who have one or more e-mail ad-
dresses and work for companies, 2. ones who have no e-mail address and work for companies, 3. ones who have
one or more e-mail addresses and are students, and 4. ones who have no e-mail address and are students. When
each element is classified in this way, the search space can be reduced. For example, when the query that is
related to students who have e-mails is processed, the nodes denoting persons who have no e-mail and work for

companies need not be traversed.
In this paper, we present a method of classification of DTD elements(section 3), and query optimization

techniques using this information(section 4).

3 Classification of DTD elements

DTDs provide structural information about elements by regular expressions. So, we can classify DTD elements

from DTDs. First, we make some assumptions about DTDs as in [8], i.e., XML documents always have DTDs,

a
sur—(30)———(®)

Figure 2: r=a

and do not have attributes other than the ID attribute, and so on. Let N be a set of element names, we abstract
a DTD as a set of (n: r) pairs, where n € N, r is either a regular expression over N or PCDATA which denotes

a character string.

3.1 DTD automata

We construct DTD automata from each regular expression r for corresponding element n to classify elements in
DTDs. When a regular expression has the form of r*, this means that a particular attribute or a composition
of attributes exists more than once. This kind of information is not necessary in reducing the search space
because we should process all the attribute values when an attribute exists more than once. So, we define the
following relaxed regular expression to extract only the necessary information during the query processing.

Definition 1 (Relaxed Regular Expression) A relazed regular expression is constructed from a given reg-
ular expression as follows.

1. ri,ry = 711,72

2. rilra = ri|ra

3. r+=>r

4. rx=> r+|L = r|L(by rule 3)
5

.r?= r|l

Example 1 The DTD declaration in formula (1) is abstracted to (person: (name, e-mail*, (schoollcompany))),

and the corresponding relaxzed regular expression is (person: (name, (e-mail| L), (schoollcompany))).

DTD automata are constructed in the following ways. Let (n;: r;) be an expression which is obtained
by applying relaxed regular expressions to each DTD declaration (n;: ;). We construct automation A; by
Algorithm 1 with a new regular expression nir;l. Algorithm 1 is similar to the standard automata construction
for a regular expression. However, in our technique, since the input regular expression is a relaxed regular
expression, it directly derive a deterministic finite automaton. On the other hand, in the traditional technique,
first, an NFA with e-transitions is constructed. For a given regular expression, Algorithm 1 makes an automaton
for each label(in line 4) and merges automata for each operator(in line 7 and 10). So, the running time of

Algorithm 1 is in O(n — 1) + O(n), where n is the number of operators.

Theorem 1 There always exists an automaton My(for 1 < k < n) constructed by Algorithm 1 for the input
regular expression nkr;c(l < k <n), and if L(My,) is the language accepted by My, and L(nkr;c) is the language

which is describable by the regular expression nkr;c , then L(M}y) = L(nkr;c).

. ' ’
!In this paper, we occasionally omit concatenation operator, that is, T, =N, T,

Algorithm 1 The construction of DTD automata

Input: A relaxed regular expression r = ngr'y(for 1 <k < n)
Output: An automaton My(for 1 <k <mn)
if r=a(a€))) then
Construct an automaton as shown in Figure 2;
else if r =r|ry then

Construct the automata M; = (Q1,Y_,,01,¢1,F1) and My = (Q2,) ,,02,92, F>) by Algorithm 1 with

input regular expressions r1 and ry respectively;

7: Construct the new automaton M = (Q1—{q:1}UQ2—{q2},>°, U> 5,0, [q1, g2], F1 UF>) from the automata
M; and Ms, where § is defined by

1.
2.
3.
4.

(S(Q, a) = 6l(q7 a) fOI' q € Ql - {(h} and ac E]_:
6((], a) = (52((], a) fOI‘ q € Q2 - {Q2} and ac 223
0([q1,¢2],a) = 61(¢q1,a) wherea € 3,

(

o [41,(12],61) = (52(q2,a) where a € 22;

8: else{rzrl,rg}

9: Construct the automata My = (Q1,>.1,01,¢1,F1) and My = (Q2,) 5, 02,¢2, F») by Algorithm 1 with
input regular expressions r; and ry respectively;

10: Let the final states Fy of M; be states fi, f2,..., fm (m > 1). Construct the new automaton M =

(Ql - Fl U Q2 - {CI2} U {[f15q2]3 [f2;(I2]; seey [fm;q2]}521 U22763 CI1,F2) fI‘OI’I’l the automata Ml and M2;
where § is defined by

1.
2.
3.
4.

11: end if

d(g,a) = 01(g,a) for g € Q1 — F1, di(g,a) # fr 1 <k <m),and a € 3,

0(q,a) = d2(g,a) for g € Q2 — gz and a €) _,,

O([fx, 2], a) = 62(g2,a) for all k(k =1,2,...,m)and a €) ,,
(

0(qy,a) = [fr,q2] for all gy which satisfies 6, (gs,a) = fr(1<k<m)and a €) ,;

school

company

Figure 3: A DTD automaton

0 | {e-mail, school}

1 | {e-mail, company}
2 | {school}

3 | {company}

Figure 4: A classification tree and a classification table

We omit the proof for lack of space.

Example 2 Figure 8 shows an automaton constructed by Algorithm 1 for the person element in example 1.

3.2 Classification of DTD elements

In this section, using the DTD automata constructed by Algorithm 1, we classify each element of DTDs. As
the DTD automata are constructed from relaxed regular expressions, they contain information only about
concatenations and unions. Here, the diverging points in automata become those of the query search. So, by
recording the labels at diverging points we can classify the DTD elements. Algorithm 2 shows the construction
of classification trees having labels at the diverging points of the DTD automata. It traverses from the start
state to the final states of an automaton My, and constructs the classification tree recursively. In Algorithm 2,
as each transition is processed exactly once, the complexity of it is in O(m), where m is the number of transitions
in the automaton.

In Algorithm 2, the function tramsition(q) returns p when there is a transition function dx(q,a) = p.
No_ef fect_labely, stores the set of labels which do not affect the classification of the DTD elements, and it is
used when we restructure the OEM graph in the next section. For instance, the No_ef fect_label for the DTD

element of the person is {person, name}.

Example 3 Figure 4 shows a classification tree and corresponding classification table constructed from the DTD

automaton of the person element in Figure 3 using Algorithm 2.

4 Query Optimization

Using the classification tables, we restructure an input OEM graph, and provide a query processor with infor-

mation about reducing the search space. Here we propose two techniques. One is that the query processor keeps

Algorithm 2 The construction of classification trees from DTD automata

1: IHPUt: Mk = (Qk:zkaékaqk;Fk) (fOI' k= 1725 an)

2: Output: The classification tree T, (for k =1,2,...,n)

3: procedure Make_classification_tree(state ¢, automaton Mjy)
4: if ¢ € F}, then

5: make a vertex ql corresponding to a state g;

6: return q’;

7: else

8: if transition(q) has more than two states then

9: make a vertex q' corresponding to a state g;
10: let T be a tree rooted ¢ and having children of Make_classification_tree(w,M}) for all w where w €

transition(q) with edges labeled a in the transition;

11: return 77
12: else
13: q < k(g a);
14: No_ef fectlabely, = No_ef fectlabely U a;
15: Make_classification_tree(q, My);
16: end if
17: end if

classification information only about each object and the other is about all objects under the target object.

Before we describe our techniques, we define path expressions that occur in queries.
Definition 2 (Regular Path Expression) A regular path expression is a form of H.P where
1. H is an object name or a variable denoting an object,

2. P is a regular expression over labels in an OEM graph. Namely, P = label|(P|P)|(P.P)|Px.

Definition 3 (Simple Regular Path Expression) A simple regular path expression is a sequence H.pi.ps.....pp

where
1. H is an object name or a variable denoting an object,

2. pi (1<i<n)isalabel in an OEM graph or wild-card “«” which denotes any sequence of labels.

4.1 Nodelnfo

The Nodelnfo technique gives classification information about each object to a query processor. For example,
the person element is divided into four groups as in Figure 4, and the object &1 in Figure 1 belongs to 1:{e-mail,
company} and the object &3 to 2:{school}. The variable node_info in the NodelInfo technique stores the index
of the label set to which the corresponding object belongs in the classification table. For example, the object
&1 has node_info of 1 which is an index of a label set {e-mail, company}.

The construction cost of NodeInfo in the worst case is in O(kn) where k is the maximum number among the
number of groups for each DTD element, and n is the number of nodes. So, it is superior to DataGuides[5, 6] of
exponential cost in the worst case. Moreover, in average case, it is usually superior to 1-index[7] of O(mlog n)

construction cost under a graph with m edges and n nodes.

The Nodelnfo technique can process the queries that only have simple regular path expressions. First, we

define a variable classification_info for simple regular path expressions.

Definition 4 Let H.pi.ps.....p, be a simple regular path expression. For each p;(i = 1,2,....,n — 1), the value

of p;’s classification_info is
1. {} where p;y1 = *, or piy1 # * and piy1 € No_ef fect_label?, and
2. {pi+1} where piy1 # * and piy1 € No_ef fect_label.

Example 4 Consider the simple regular path expression ‘AGroup.person.*.e-mail’. Here, py = person and

p2 = *. So, the classification_info of py is {} and that of p2 is {e-mail}.

Query processing in the Nodelnfo technique is performed as follows. To find all objects reachable by a sim-
ple regular path expression H.p;.ps.....p, a query processor begins searching the graph. When the query
processor searches an object v which has a directed edge to an object w and the corresponding label is
pi(1 < i < m—1), the search should be expanded to the object w when the condition classi ficationinfo of p;—

classi fication_table[element label of w][w.node_info] = ¢ holds.

Example 5 Consider the simple regular path expression ‘AGroup.person.company.url’ against the data graph in
Figure 1. In o naive method, the objects &1 and &3 should be traversed. However, in the Nodelnfo technique,
when the query processor searches the object &0 and reads the values for the object &3, p; = person, and
classificationsinfo of p; — classification_table[person][w.node_info] = {company} — {school} # ¢. So it

doesn’t traverse the object & 3.

4.2 MergeNodelnfo

The MergeNodelnfo technique provides classification information about all the objects that are reachable from
the target object. That is, in the MergeNodelnfo technique, the variable merge node_info has the union of all
node_info of its descendants. For example, merge node_info of the object &1 is {e-mail,company,url}.

The size of MergeNodelnfo is in O(tn) where ¢ is the cardinality of a difference in set between the set of
labels which exist in a DTD and the set of labels in No_ef fect_label, and n is the number of objects in the
OEM graph. In DataGuides, the size may be as large as exponential in that of database.

The MergeNodelnfo technique can process the queries that have simple regular path expressions and regular
path expressions. First, we define a variable merge_classification_info of p; for simple regular path expressions

in queries.

Definition 5 Let H.p;.ps.....p, be a simple reqular path expression that exists in a query. The merge_classifi-

cation_info of p; (1 = 1,2,n — 1) is defined by

2No_ef fect_label is an union set of No_ef fect_labely, for all k.

UZ;} classification_info of p;.

Query processing in the MergeNodeInfo technique is as follows. To find all objects reachable by a simple regular
path expression H.p;.ps.....pn, a query processor begins searching the graph. When the query processor searches
an object v which has a directed edge to an object w and the corresponding label is p;(1 < i < n—1), the search
should be expanded to object w when the condition merge_classi fication_info of p; —w.merge_node_info = ¢

holds.

Example 6 Consider the simple regular path expression ‘AGroup.person.*.baseball-team’. To find all objects
reachable by this path in a naive method, the whole graph should be traversed to find the label ‘baseball-team’
which follows the ‘«’ symbol. However, in the MergeNodelnfo technique, when the query processor searches
the object &0 and reads its values for the object &1, p; = {person} and merge_classification_info of p;—
w.merge_node_info={ baseball-team}—{ e-mail,company,url} # ¢. So, the objects under the object &1 is not

traversed.

The MergeNodelnfo technique can be used for queries that have regular path expressions without the ‘)’

operator®. In this case, query processing is carried out as follows. First, we define the following variables.

Definition 6 When a query processor searches an object v which has a directed edge to an object w, the variables

P, Q, and R are defined as follows.

e P: A difference in a set between the set of labels which exist in the query and the set of labels in

No_ef fect_label,
o Q: A set of labels in merge_node_info for the node w,
o R: A set of labels in the path from the root to the node w.
Here, when the condition P — (Q U R) = ¢ is satisfied, the search is expanded from node v to node w.

Example 7 Consider the reqular path expression ‘Bib.paper(.section)*.figure’ with a new bibliography database.
We assume that an object v which denotes a section in the database and all the sub-objects of it have no figure.
Then, when the query processor searches the object v, it is a possible condition that P = {paper, section, figure},

Q = {section}, and R = {paper, section}. So, P — (Q U R) = {figure} # ¢, after which it stops searching.

4.3 An experiment

We have implemented our techniques described in this paper with about 3000 lines of Java code to illustrate their
enhancement in query processing. Our techniques are applied to a MLB database® that is composed of 14646

objects including 60 teams and 2400 players. Figure 5 shows queries used in the experiment and the number of

3The regular path expression which has a |’ operator can be divided into more than one regular path expressions without a |’

operator.
4This is constructed synthetically by programming techniques but it is similar to the real ML B database.

12000

10000)

Q1 MLB.*.Central.player.RBI

00|

Q2 MLB.American.East.player.win

The number of
objects fetched 207

Q3 | MLB.National.West.player.nickname
Q4 MLB.* . West.stadium

a000)

2000)

[i

Figure 5: Queries and the number of objects searched

objects searched to evaluate the queries with three methods. We can see that the NodeInfo and MergeNodelnfo
technique reduce the search space significantly. Additionally, when queries having ‘x’ expression are processed,

the MergeNodelnfo technique outperforms the Nodelnfo technique.

5 Conclusion

In this paper, we proposed two query optimization techniques named Nodelnfo and MergeNodelnfo. From the
DTD automata constructed from given relaxed regular expressions, the techniques captures information about
the structures of data and about the classification of queries, and uses it in pruning the graph traversal. Our
technique doesn’t require much additional storage for indexes, and since the structure of the source database to
which queries are processed is preserved, they can process complex queries such as those that have more than

one regular expressions.

References

[1] Dan Suciu, Mary Fernandez, Susan Davidson, and Peter Buneman. Adding structure to unstructured data
. In Proceedings of the International Conference on Database Theory, 1997.

[2] Jason McHugh and Jennifer Widom. Query optimization for XML. In Proceedings of the Conference on
Very Large Data Bases, 1999.

[3] Mary Fernandez and Dan Suciu. Optimizing regular path expressions using graph schemas. In Proceedings
of International Conference on Data Engineering, 1998.

[4] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language and optimization
techniques for unstructured data. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, 1996.

[5] Roy Goldman and Jennifer Widom. DataGuides: enabling query formulation and optimization in semistruc-
tured databases. In Proceedings of the Conference on Very Large Data Bases, 1997.

[6] Svetlozar Nestorov, Jeffrey Ullman, Janet Wiener, and Sudarshan Chawathe. Representative objects: concise
representations of semistructured, hierarchical data. In Proceedings of International Conference on Data
Engineering, 1997.

[7] Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of the International
Conference on Database Theory, 1999.

[8] Yannis Papakonstantinou and Pavel Velikhov. Enhancing semistructured data mediators with document
type definitions. In Proceedings of International Conference on Data Engineering, 1999.

[9] Yannis Papakonstantinou and Serge Abiteboul. Object fusion in mediator systems. In Proceedings of the
Conference on Very Large Data Bases, 1996.

10

