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Abstract

Distributed shared memory (DSM) provides trans-
parent network interface based on the memory abstrac-
tion. Furthermore, DSM gives us the ease of program-
ming and portability. Also the advantages offered by
DSM include low network overhead, with no explicit
operating system intervention to move data over net-
work. With the advent of high-bandwidth networks and
wide addressing, adopting DSM for distributed systems
seems to be attractive. In this paper, we propose two
alternative distributed system architectures which are
attempts at adopting DSM for distributed object man-
agement systems. The two proposed architectures are
distributed shared cache (DSC) architecture and dis-
tributed shared recoverable virtual memory (DSRVM)
architecture. We address several major issues in the
proposed architectures.

1 Introduction

The growth of computer hardware and software
technology extends database application areas, such
as CAD/CAM, knowledge base, office information sys-
tems, and engineering applications. In these new ap-
plications, object management systems become essen-
tial. The rapidly increasing demands of managing dis-
tributed artifacts, together with the growth in the ob-
ject technologies, have brought us to the development
of distributed object management systems.

In general, the popular programming paradigm of
current distributed systems is the message-passing
paradigm. Message passing interface, however,
forces the programmer to use different paradigms
than shared memory interfaces used in a single
site. Therefore, it is well known that the program-
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ming in distributed systems difficult to perform and
inefficient[16][2].

Distributed shared memory (DSM) provides trans-
parent network interface based on the memory ab-
straction. DSM, which has been an active area of
research since the early 1980s, gives us the ease of
programming and portability. Also the advantages of-
fered by DSM include low network overhead, with no
explicit operating system intervention to move data
over networks. But, so far, only a few experience with
applications using DSM exist.

Nowadays, with the advent of high-bandwidth net-
works and wide addressing, adopting DSM for dis-
tributed systems seems to be attractive.

In this paper, we propose two alternative dis-
tributed system architectures which are attempts at
adopting DSM for distributed object management sys-
tem and address some of the major issues in the
proposed architectures, which are distributed shared
cache (DSC) architecture and distributed shared re-
coverable virtual memory (DSRVM) architecture.

2 Distributed Shared Cache Architec-
ture

Contemporary relational database systems support
client-server environment which is typically based on
query-shipping architecture where the server part pro-
cesses queries which are shipped from clients. In
this approach, page cache in a server machine should
be shared so that multiple instances of the database
server run in parallel. In contrast to traditional
database systems, object-oriented database systems
usually ship data (namely data-shipping) from servers
to clients so that clients can navigate data and per-
form query processing by itself(5]. Although this type
of client-server architecture is emerging as a popular
paradigm to support data sharing over computer net-
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Figure 1: Distributed Shared Page Cache Architecture

works, some problems like concurrency control and
cache consistency make the implementation of object
management systems (OMSs) difficult.

We take the view that sharing cache over dis-
tributed shared memory may lessen the difficulty of
the development of OMSs, since underlying DSM sys-
tem takes all responsibility of maintaining cache con-
sistency. And yet, because data manipulation require-
ments of object management systems are quite differ-
ent from those of traditional systems, many existing
systems maintain a separate object cache in addition
to a conventional page cache[5].

Along this line, three architectures can be consid-
ered: distributed shared page cache (DSPC) where dis-
tributed OMSs share data in the granularity of pages
and distributed shared object cache (DSOC) where sys-
tems share individual objects. Figure 1 and 2 show the
corresponding architectures. Also both caches may be
shared as the third.

There are tradeoffs in the use of DSM as an object
cache relative to DSM as a page cache. In DSPC archi-
tecture, the granularity of a DSM is usually the same
with the size of the unit of page caching — a multiple
of hardware page size. So, there is no false sharing
and smaller ping-pong effect(thrashing) than DSOC
architecture. But because this architecture doesn’t
share an object cache, there must be a protocol among
OMSs to ensure that the object caches of each site re-
main consistent with the shared database[18][4]. Also,

object fault and swizzling[19][15] must be handled on
each site.

On the other hand, object cache coherence prob-
lem does not occur in DSOC architecture. Underly-
ing DSM maintains the consistency of object cache
automatically. This makes it easy to support inter-
transaction caching. Object fault handling and swiz-
zling overhead can be diluted with sharing it, since
fault handling and swizzling are needed to be done
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Figure 2: Distributed Shared Object Cache Architec-
ture

only once for each object.! DSM system fetches a re-
mote memory in the unit of memory coherence. It
means that DSOC architecture transfers a group of
objects rather than one object at a time. This may
lead to less communication overhead than pure ob-
ject server architecture due to clustering objects. But
DSOC architecture has a few disadvantages. One of
them is that DSOC may cause more false sharing,
where two sites compete for access to different data
items in a single DSM coherence unit. The other is
that it is difficult to implement than DSPC architec-
ture, since object cache sharing is a difficult problem
naturally.

However, it has a potential poor performance prob-
lem to simply extent a single-site multiprocess archi-
tecture to distributed one by adopting pure DSM. In
the following two subsections, we address two major
issues that might otherwise lead to poor performance
and give some feasible solutions to them.

2.1 Cache Replacement

The cost of maintaining the strict memory coher-
ence of DSM is likely to cause the overhead of the
cache replacement. Therefore, special care must be
exercised for cache management in DSC architecture.
For example, when a site A selects a victim v kept in
another site B by its own replacement algorithm, the
cache replacement sequence is as follows:?[6]

e If the page selected for replacement has been
modified, it has to be written back to disk before
the new page is read into it. However because
the page is owned by a site B, flushing the page
requires a remote paging from a site B to A. At

LAll of the object caches should be mapped at the same
virtual address to exploit these advantages

2We concern only about page cache whose page frame size is
the same with the size of DSM memory coherence unit.



this point, a site A has got the page with read-
only mode, since DSM memory fault is occurred
by read operation.

The request page is fixed in the victim by read-
ing disk and marking its cache control block.
But disk read operation calls for another net-
work traffic to get the write ownership for the
page. What is worse, all of the shared copy of

the page should be invalidated to get the exclu-
sive ownership for it.

As this example shows, selecting a remote victim
requires higher network overhead than local page re-
placement. Now, we suggest two replacement strate-
gies exploiting with tight cooperation between DSM
and the cache management module of OMS.?

The first one is to use a new explicit remote paging
interface. The way to make a shared memory seg-
ment accessible to an execution site can be implicit
and explicit. Implicit method is based on page fault
of operating system. The explicit one uses DSM in-
terface directly. Implicit remote paging requires the
cost of handling page-fault by virtual memory of op-
erating system. But explicit remote paging may avoid
the cost and also can give useful hints easily.

Because a victim will be overwritten as soon as it
is shipped from its previous owner, transferring the
page is not necessary. Thus, a new explicit interface
which does not make unnecessary remote paging can
be added for reducing the performance degradation.
Addition to ‘get’ primitive for getting a page in the
specified mode from its owner, we propose a new in-
terface ‘get new’. It gets a page in the exclusive write
mode without transferring page itself. Figure 3 shows
how the ‘get_new’ operation works.

The second one, we propose, is replacement-cost
hints algorithm. This replacement strategy partitions
cache space by their ownership and gives priorities to
each of them according to their replacement costs. Re-
placement cost of each set shows how costly to replace
a victim on a distributed shared memory space.*

The basic idea underling replacement-cost hints is
the following;:

1. Pages are organized into victim sets, where a
victim set consists of all of pages which have a
same replacement cost. Victim sets are arranged
by their replacement-cost order.

. Cache searches its victim sets in inverse order,
starting from the lowest replacement cost victim
set.

3In this work, we assume that all site are sharing disks

“When using a non-shared disk architecture, it includes the
cost of flushing out
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3. The first found favored page is selected as victim.
A favored page in a victim set ¢ is a page which
has not been accessed for a certain time ¢;, where
€ < €i+1, 1 <2< n-—1, and n is the number of
victim sets and ordered by replacement costs.

In this algorithm, it is trivial that any remote vic-
tim, which has higher replacement cost, is not gone
out of the cache as long as there is any other favored
page. And also, threshold ¢; for each set i prevents
the pages in a working set from being replaced.

2.2 False Sharing

If the memory coherence unit of DSM is larger than
transactional unit of OMS, it is likely that more than
one site will write access to a single coherence unit.
This is called false sharing and may induce thrashing,
where a memory unit moves back and forth at such
a high rate that any work cannot be done[16]. The
granularity of DSM sharing should be same or smaller
than the granularity of locking to avoid this kind of
false sharing. But otherwise, mechanisms to reduce
thrashing are require to assure reasonable performance
of systems.

Two existing DSM systems|8][3] give solutions to
this problem at the DSM level. Mirage system|8] guar-
antees that a reader or a writer possesses the sharing
unit without interrupt for a specific time window A.
This prevents the sharing unit from being stolen away
before any work can be done. Although optimally
tuned value for A may give high throughput decreas-
ing network traffic, it is difficult to choose an appropri-
ate value for A dynamically. Munin system[3] employs
another solution to reduce thrashing. It uses different
coherence protocols for each shared data type. Type
information specified by a programmer may improve
overall system performance. But it imposes a heavy
burden on a programmer to predict the type of every
shared data.

It is well known that sequential consistency is too
restrictive and weakening the coherence requirement
makes adopting DSM more viable. We can also get
performance gain by combining two separate synchro-
nization activities — memory coherence control of DSM
and concurrency control of OMS[14].

While above two systems do not fully use the appli-
cation specific knowledge in maintaining coherence of
DSM, our new loose coherence protocol exploits syn-
chronization activities of transaction manager. This
method grounds on that the relaxed coherence seman-
tic will allow more efficient shared accesses and concur-
rency control will synchronize access to shared data.
It is described briefly as follows:

1. Addition to READ and WRITE modes, there are
SHARED-READ and SHARED-WRITE modes in the
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@ invalidate its own copy
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if it’'s modified
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adjust the memory protec-
| tion and return
—

Requesting Site

Figure 3: get_new protocol

distributed shared memory space. As the strict
coherence protocol, multiple readers may exist
at any instant for a single memory coherence
unit, but only one writer may exist at any in-
stant. Unlike these two basic modes, there can
exist many shared-readers or shared-writers for
a unit at the same time.

2. Initially, strict coherence protocol is used for
each coherence unit. But if thrashing is likely
to occur,’ coherence protocol is weakened to re-
duce thrashing. There are two cases where the
protocol is loosed.®

(a) WRITE — WRITE : When an exclusive owner
receives ‘get_with_write_mode’ request for
a unit, the owner looses WRITE mode to
SHARED-WRITE and returns SHARED-WRITE

ownership to the request site instead of ex-
clusive one.”

(b) WRITE — READ : As the case 1, the owner
changes the mode to SHARED-WRITER and
returns SHARED-READ capability to the re-
quest site.

. Once the protocol is weakened,
get with writemode or get with read mode

requests are handled by returning SHARED-READ
mode or SHARED-WRITE for each.

. When a transaction ends, all of the SHARED-READ
or SHARED-WRITE units should be invalidated. If
a unit is owned with SHARED-WRITE mode, it

SThrashing can be detected by monitoring the transfer rates
for each unit.

®This work excludes ‘READ — WRITE’ case for simplicity. But
it can be done easily as other cases

"Data is also transfered.
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should be merged with other copies before in-
validation. Data merging can be done by DSM
server or by other shared owners distributively.
It is worth to note that modified portion of data
can be identified easily by recovery scheme.

In this protocol, because SHARED-READ or
SHARED-WRITE mode does not incur any conflict for
a shared unit, each site can service all conflicting ac-
cesses to it, but consistency is preserved by concur-
rency control mechanism. Thus, on the assumption
that all shared data accesses should be done in well-
formed concurrency control protocol, the suggested
protocol works correctly.

3 Distributed Shared Recoverable Vir-
tual Memory Architecture

Many researchers have studied issues in using op-
erating system’s virtual memory as caches in ob-
ject management systems|7]|[17]. In this approach,
databases are directly mapped into virtual memory
and OMSs use persistent objects as transient mem-
ory objects. DSRVM approach is a sort of natural
extension of this approach — mapping databases into
DSM[12][13].

In DSRVM architecture, OMS never worries about
where objects are and how to access them because ob-
ject accessibility is governed by DSM system. Also,
it does not have to implement distributed caching
management and concern some aspect of cache co-
herency problem. As such, this architecture fully uti-
lizes the advantages of DSM. Moreover, since most
typical OMS applications show tighter working set
than traditional ones, only little performance degra-
dation is expected from using less DBMS-optimized
caching.

As data are mapped into DSM and are directly ma-
nipulated in DSM, underlying DSM must support re-



coverable manipulations of data. This means, any an-
ticipated crashes cannot violate the consistency of the
data in DSM. To be recoverable, DSM system must be
incorporated with log manager and recovery manager
in OMSs. In the next subsection, we propose a pro-
tocol that integrates the cache coherence, two phase
lock protocol and write-ahead logging protocol[10].

3.1 Transactional DSM for DSRVM

we assume that the system is a client-server ar-
chitecture so that a designated server process (DSM
server) knows the global status of DSM pages® over all
nodes. Also, to provide permanence of DSM, we as-
sume that server has non-volatile storages for backing
DSM memory pages and it logs the changes in DSM
page.

A client is a node participated in DSM complex and
it is composed of application transactions (APT) and
an agent transaction (AT) (see figure 4). An applica-
tion transaction is an application process which is en-
closed in transaction boundary. DSM system provides
access control of DSM pages for their APT. When an
APT tries to read(write) a DSM page which is not
permitted to read(write), a page-fault is trapped. By
this mechanism, DSM manager provides a transpar-
ent way to guarantee cache coherence, serializability,
atomicity, and permanence. AT is a stand-alone pro-
cess and it is only a transaction which interacts with
DSM server so that it receives(sends) valid copies of
DSM pages from(to) a DSM server on behalf of APTs.

According to the lock mode of DSM page, the status
of a page is determined. When AT holds a lock in
exclusive (EX) mode for a page, it implies the node
has the invalid page. When AT has a lock in shared
(SH) mode, the node has a valid copy of the page but
no APTs in the client can write the page. When AT
locks a page in NL mode (i.e. AT does not hold a lock
for the page), the node has a writable valid copy of
the page.

3.2 Client Protocol

The following is the scenario of the integrated pro-
tocol executed in client node.

¢ On client boot up: AT locks all pages of DSM

in EX mode, which implies that all pages are
invalid.

e On APT start: DSM manager of this process
disables the access of all DSM pages so that any
access to the DSM pages traps page fault.

e On read page P fault: Fault handler (FH) tries
to lock the page conditionally in SH mode. If the
request is not granted immediately and the lock

81t means a memory coherence unit of DSM.
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Figure 4: Architecture for Integrated Protocol

holder is AT, FH sends get_with_read.mode
message to AT and locks the page in SH mode
again. After the lock is granted, FH marks the
page readable and resumes the process.

e On write page P fault: FH tries to lock the page
conditionally in EX mode. If the request is not
granted immediately and AT is the one of the
lock holders. FH sends get_with_write_mode
message to AT and locks the page in EX mode
again. After the lock granted, FH marks the
page writable (which also means the page is
readable) and resumes the process.

¢ On APT commit: If APT has any writable DSM
pages, it requests AT to send commit message
to DSM server with modified pages. After AT
completes to send those pages, APT releases the
all locks it holds and disables access to all pages.

e On APT abort: If APT has any writable DSM
page, it requests AT to send discard messages
for those pages. After AT completes to send
messages, APT transfers the all exclusive locks
it holds to AT and disables the access to all DSM
pages. By transferring ezclusive locks to AT,
invalid access from any other lock waiting APT
can be avoided.

¢ When AT receives get_with_read.mode
(get_with write_mode) message from APT: AT



forwards it to the DSM server. After received

the valid copy (acknowledgment) from DSM

server, AT downgrades its lock to SH (NL)
mode.

When AT receives recall (invalidate) mes-
sage from the DSM server: AT tries to lock
the corresponding page in SH (EX) mode.
After the lock granted, AT sends the page
(acknowledgment) to DSM server.

3.3 DSM Server Protocol

The following is the scenario of the server part of
the protocol.

¢ On receiving get_with_read mode message from
a client C: DSM server checks to see DSM server
has a valid copy of it. If server has, it sends
the copy to the client C' (more precisely, to the
AT in the client C'). Otherwise, it sends recall
message to the page owner (say C'), and wait for
valid page arrival. After receiving the valid copy
of it, server marks C' as a page holder (instead
of page owner) and marks also the client C as a
page holder.

On receiving get_with write_mode message
from a client C:

1. If there is a page owner node for the page, it
sends recall message to that client. After
receiving the valid copy of it, server marks
that client as a page holder.

. If there are any page holder nodes for
the page, it sends invalidate messages to
those clients. After receiving acknowledg-
ments from all of them, server marks each
clients as ‘invalid-page holder’.

Server sends a valid copy of the page to

the requesting client C' and marks C as the
page owner.

On receiving commit message from a client C:
server receives valid pages from client and saves
them into non-volatile storage of those pages.

On receiving discard message from a client C:
server marks the client C as ‘invalid-page holder’
for that page, and marks itself as a page owner.

Due to space constraints, we omit the correctness
arguments of this protocol. But, since locks hold by a
APT are released only after it commits(or abort), this
protocol is two phase locking protocol. Also, the most
recent page will be accessed by ’recall’ mechanism, this
protocol guarantees sequential memory consistency.
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3.4 Pros and Cons of the Protocol

We believe this protocol has the following advan-
tages. First, it integrates cache coherence protocol
and locking protocol, so that the number of messages
between DSM server and client can be reduced. When
the separated protocol is used, almost two times more
messages are required than the integrated one for APT
to access a page. Second, this protocol takes advan-
tages of data caching and lock caching, which may
reduce the number of messages between clients and a
server to access a page. An application transaction
can read/write a DSM page without any server in-
teractions, if that page is already cached in the client.
Third, this protocol requires any specific interfaces for
DSM manager except transaction commitment and
transaction abort. An application transaction pro-
grammer does not have to lock pages, nor have to
generate log records for DSM page updates. Fourth,
this protocol does not require the complex two phased
commit protocol, which makes transactional protocol
complicated in most existing distributed DBMS.

But, this protocol has a few shortcomings. It
supports only sequential memory consistency which
may be too restrictive for some applications. But we
worry that any relaxed memory consistency will result
in database inconsistency in most OMS applications.
And sometimes transaction concept makes a relaxed
consistency protocol meaningless because locking pro-
tocol, in general, requires very restrictive memory con-
sistency. This protocol supports only FORCE buffer
strategy[11], which reduces transaction throughput.
We understand that most commercial DBMSs having
data shipping architecture use FORCE buffer strat-
egy. Lastly, If some DSM pages are frequently ac-
cessed from several nodes, overall system is likely to
fall into thrashing. We are currently studying to over-
come this problem.

4 Related Works

Most of researches on DSM are emphasized on
memory coherence, granularity of sharing, heterogene-
ity, avoiding thrashing and so on. Only a few works
(Hsu and Tam[14], Hasting[12]) are done in imple-
menting DBMS or atomic transaction using DSM.

Hsu and Tam’s work puts an emphasis on perfor-
mance enhancement by integrating cache coherence
(coherent memory) and concurrency control (process
synchronization). They show the performance en-
hancement using simulation study of two synchro-
nization algorithms: 2PL-MC, which separates trans-
action synchronization from memory coherence, and
9PL* which bypasses memory coherence. Based on
simulation results, they argue that significant per-
formance gain can potentially result from bypassing



memory coherence and supporting process synchro-
nization directly on DSM. Hastings’s work was to pro-
pose transactional distributed shared memory (TDSM)
using Camelot[7] transaction facility, which provides
recoverable virtual memory and Mach external mem-
ory manager (XMM)[9].

5 Conclusion

In this paper, we proposed two alternative dis-
tributed system architectures which are attempts at
adopting DSM for distributed object management sys-
tem: distributed shared cache (DSC) architecture
and distributed shared recoverable virtual memory
(DSRVM) architecture and addressed some of the ma-
jor 1ssues.

In DSC architecture, we explored the tradeoffs in
the use of DSM as an object cache relative to DSM as
a page cache. We also suggested a new replacement
strategy exploiting the knowledge of the ownership of
data items and provide some feasible solutions to false
sharing problem.

The major advantage of DSRVM architecture is
to provide transactional facilities for direct manipu-
lations of data in DSM. We presented a new protocol
for DSM to support transaction concept with minor
additional interfaces. We also discussed the pros and
cons of the proposed protocol.

We currently are studying in relieving contention
for lock and log data by exploiting the semantics of
these data. Also, we are working on the development
of DSM adopted object storage system, SOPRANO[1].
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