
Efficient processing of regular path joins using PID

Jongik Kim*, Hyoung-Joo Kim

School of Computer Science and Engineering, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, South Korea

Received 3 May 2002; revised 7 October 2002; accepted 27 November 2002

Abstract

XML is data that has no fixed structure. So it is hard to design a schema for storing and querying an XML data. Instead of a fixed schema,

graph-based data models are widely adopted for querying XML. Queries on XML are based on paths in a data graph.

A meaningful query usually has several paths in it, but much of recent research is more concerned with optimizing a single path in a query.

In this paper, we present an efficient technique for processing multiple path expressions in a query. We implemented our technique and

present preliminary performance results.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: XML query; Multiple regular paths; Path identifier

1. Introduction

As XML [6] has become a new standard for data

representation and exchange on the Web, storing and

querying XML data is an active research area in the

database community. Unlike HTML, an XML document has

the structure information in itself (self-describing). Though

one can retrieve the structure information from an XML

document, it is hard to design a fixed schema to store and

query the document for the irregularity of the structure.

These features show that XML is an instance of semi-

structured data. The graph based data model is widely used

to represent the structure of XML and semi-structured data.

The graph based data model is classified into the edge-

labeled graph model and the node-labeled graph model.

These two models have the same semantics. Though almost

XML documents are represented in node-labeled graph, we

use edge-labeled graph as the data model for descriptive

purpose. Conversion one into the other is relatively simple.

We describe this conversion in Section 3. Fig. 1 shows

movie XML data represented by a graph model.

Query languages for XML [10,12] use graph models to

query XML data, and queries on XML are expressed as

paths in a data graph. Because of the irregular structure of

XML, it is hard to know whole structure of an XML

document. To query an XML data with the knowledge of

partial structure of it, query languages support regular

expressions on the paths. Regular expressions are also

useful for representing arbitrary paths (a path can be infinite

due to a cycle) in a data graph. The following example is a

query that finds all movies and dramas in which Brad Pitt

acted.

kresultl
{

for $m in //(movieldrama)

where $m//actor//name ¼ “Brad Pitt”

return $m

}

k/resultl

We use the query language, XQuery [10], for the

example (the query language used in this paper is presented

in Section 3). This query contains two regular path

expressions; //(movieldrama) and //actor//name. The first

path indicates the result nodes and the second path plays a

role of a constraint for the first path. Unlike queries on

value-based traditional data, queries on XML data fre-

quently require intermediate nodes as its results. When a

query requires intermediate nodes as its results, the query

tends to use another path as a constraint, like the one above.

A query which has multiple paths can be processed as

following strategy. Starting at the root of the data graph,

0950-5849/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 2 08 -2

Information and Software Technology 45 (2003) 241–251

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ82-2-888-7527; fax: þ82-2-882-0269.

E-mail addresses: jikim@oopsla.snu.ac.kr (J. Kim), hjk@oopsla.snu.

ac.kr (H.-J. Kim).

http://www.elsevier.com/locate/infsof

the query searches for paths satisfying the regular

expression //(movieldrama), and from the retrieved nodes,

searches paths which satisfy the other regular expression

//actor//name. This is because not every node that satisfies

the regular path //(movieldrama) has the paths satisfying

//actor//name as its descendant, and that is the reason the

path //actor//name can be a constraint for the path

//(movieldrama). A naive evaluation that traverses all

possible paths in the data graph is obviously inefficient.

Optimizing regular path expressions is the main research

issue in query processing for XML and semi-structured data.

However, most of the work is more concerned with

processing a single regular path expression and is

inadequate to a query that has multiple path expressions.

Current state of the art suggests three plans to process a

query that has multiple regular path expressions.

Plan 1: using an index for a single path. Find the extents

that satisfy the regular path //(movieldrama) using or an

index for a single paths (e.g. Dataguide, 1-index, Index

Fabric). From each node in the retrieved extents, search

the data graph for the regular path expression //actor/-

name (¼ “Brad Pitt”). To evaluate the second path

expression, this plan traverses the data graph, so it does

not work efficiently.

Plan 2: using the 2-index. Using the 2-index, we can find

the pairs (a, b)s that satisfy the regular path expression,

//(movieldrama). Again, we can find the pairs (c, d)s that

satisfy //actor/name using the 2-index. Project (a, b)s

with the condition, a ¼ root, and project (c, d)s with the

condition, d ¼ “Brad Pitt”. And then, we can obtain (a,

m, b)s by (a,b)s nb¼c (c, d)s. Finally the m’s are the

result. This plan is simple and easy to use, but this plan is

not preferable because the size of the 2-index can grow

quadratic to the size of the data graph in the worst case,

and always grow much larger than 1-index. Actually, for

the same data graph, the 2-index has the same structure

of the 1-index as its subgraph.

Plan 3: using the T-index. The T-index is the

alternative of the 2-index for the index size of the

2-index. Using the T-index, we can get the result of a

query directly, but the T-index cannot be used in the

case where appropriate templates have not been built.

We propose a new query processing scheme that can

handle multiple regular path expressions in a query

efficiently. The proposed scheme uses an index structure

for a single regular path, and does not traverse the data

graph at all. The following roughly describes the strategy of

our techniques.

1. Find the union of extents e1 satisfying the regular path

//(movieldrama) using any index structure for a single

path.

2. Find the union of extents e2 satisfying the regular path

//(movieldrama)//actor.name (¼ “Brad Pitt”) using the

index structure for a single path.

3. If there is a path between an object in e1 and an

object in e2; add the pair of these two objects into the

result set.

To figure out whether two given nodes lie on the same

path in data graph, we define the path identifier (PID)

and assign the PID to each node in the data graph. In

addition to path identification, we can use the PID for

supporting order-based query. We discuss the PID in

Section 4.

The followings describes main contribution of this paper:

† The PID described in Section 4 can determine the path

relationship (ancestor–descendant relationship) between

two nodes in a data graph, where the data graph can be

Fig. 1. Movie database.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251242

not only a tree but also an arbitrary directed graph which

can contain cycles.

† The proposed PID can be used for order-based queries.

† We proposed an efficient algorithm which can evaluate a

query with multiple path expressions in it. Our algorithm

uses an index graph for a single path with the PID.

The paper is organized as follows. Section 2 lists related

work. In Section 3, we describe data model and query

language used in this paper and review an index structure for

a single regular path (Dataguide) which is used in this paper

for the descriptive purpose. In Section 4, we define the PID

and present the algorithm for PID construction. A proces-

sing algorithm for multiple path expressions is presented in

Section 5. Section 6 shows preliminary results and we

conclude the paper and give an outlook to future work in

Section 7.

2. Related work

The similarities and differences between XML data and

semi-structured data are described in Ref. [23]. In spite of

some differences, XML data can be viewed as an instance of

semi-structured data.

The most significant difference between XML data

and semi-structured data is that XML data has the order

information in it. The PID proposed in this paper can be

used for a query which uses order information in XML

data.

Query languages for XML can be found in Refs. [10,

12]. Those languages use regular path expressions to

express a query like the query languages used in semi-

structured data [3,7]. In particular, the XQuery [10] uses

XPath [25] as its path expression. Our techniques can be

applied to all of the query languages which use the

regular path expressions.

The structural summary (or data guide) [2] plays the role

of a schema of semistructured data. Refs. [15,21,24] present

techniques to extract the schema graph from the data source.

Specially Ref. [15] describes the Dataguide, a structural

summary, as an index of paths in a data graph.

Query processing for semi-structured data is focused

on optimizing the regular path expressions. Optimizing

techniques for the regular path expressions are presented

in Refs. [1,8,13,14,18,19,22]. In Ref. [13], query pruning

and query rewriting techniques using graph schemas [7]

are introduced and it is shown that graph schemas can be

used as an index for paths. The 1-index, 2-index, and T-

index are proposed in Ref. [19]. This index family uses

language equivalent relation for paths to construct

indexes. In Ref. [4], the Index Fabric is presented

which uses the patricia trie for indexing paths of XML

and semi-structured data.

The 1-index is somewhat like the Dataguide without

the nondeterministic feature. Any two out-going edges in

the Dataguide which point to different nodes have

different labels. The size of the Dataguide can grow

exponential order of the size of a data graph due to the

deterministic feature of it. But the index graph of the 1-

index is nondeterministic. That is, more than two edges

which point to different nodes can have the same label.

So the size of the 1-index grows linear to a data graph.

Because of the nondeterministic feature, the 1-index

cannot play a role of the data guide.

However, these techniques are more concerned with a

single path expression, and cannot be used for optimization

of multiple regular path expressions in a query.

To process multiple path expressions efficiently, the

2-index and T-index are proposed, but the 2-index can

grow quadratic to the size of a data graph in the worst

case and the T-index can only be used in the case where

appropriate templates have been already built. Fernandez

and Suciu [13] presented a query pruning technique for

multiple regular paths but they only focused on query

pruning so the inefficiency still remains to traverse a data

graph.

The numbering scheme proposed in Ref. [17] is a method

for detecting the ancestor–descendent relationship between

two nodes in a tree. They assign numbers at each node in the

data tree and store them in relational index for processing

single regular path expression. The numbering scheme, PID,

proposed in this paper can detect ancestor–descendent

relationship not only in a tree but also in an arbitrary

(directed) graph. Moreover, we can use the PID for

supporting order-based queries. An apparent difference

between this paper and Ref. [17] is that we use PID to

process multiple regular path expressions using an existing

index for a single path.

3. Background

3.1. Data model

XML can be modeled by a graph. Let O be an infinite

set of object identifiers and C be an infinite set of constants.

O and C are disjoint sets. We define our data model as

follows.

Definition 3.1. Data graph DB ¼ ðV ;E;RÞ is a rooted

graph such that V # O is a set of nodes, E # V £ C £ V

is a set of directed edges and R [V is a root node.

Each element in XML can be mapped to V. The

relationships, element to element, element to sub-

element, and element to attribute can be mapped to E.

References between elements can also be mapped to E.

There are many sorts of nodes in XML. For example,

there can be an element node, an attribute node, a text

node, and so on. But we do not distinguish the type of a

node, because our technique is neutral to node types.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251 243

In this paper, we use the edge-labeled graph, such that

E # V £ C £ V ; as the data model, because it is convenient

for describing an index graph such as the Dataguide and

the 1-index. It is easy to convert an edge-labeled graph into

a node-labeled graph. Without concerning references, the

conversion can be done by labeling a node with the label of

its incoming edge. If there exist some references, then

the incoming edges of a node can have different labels. In

such a case, we can redirect a reference edge by inserting a

node. For example, a node labeled by A has a reference

labeled by B. The conversion can be done as follows. First

we insert a node labeled by B, and then make the reference

edge which point to the node A to point the node B. Finally

we make an edge between N and A.

In XML, a reference between nodes can be represent as

an attribute. In the edge labeled graph model, we can omit

such an attribute node in a data graph. When we convert an

edge labeled graph to a node labeled graph, a node inserted

for a reference is actually an attribute node which represents

reference relationship.

3.2. Query language

Queries for XML are based on paths in a data graph,

which are expressed using regular expressions. To describe

our optimization technique, we define a simple query

language used in this paper as follows.

Definition 3.2. Query language

Query < ¼ bind BindList return VarList

Bind < ¼ var in Path Predicate

BindList < ¼ BindlBind, BindList

Predicate < ¼ Yl [predicate]

VarList < ¼ varlvar, VarList

Path < ¼ /l/RPathl//RPathlvar/RPath

RPath < ¼ labellRPath/RPathlRPath//RPathl(RPathlR-

Path)lRPath*

All variables denote nodes in a data graph. We can

express a path expression with RPath. RPath is recursively

constructed by the concatenation (/) and the alternative (l) of

two RPaths, and Kleene star (*) of an RPath. Actually, it is a

regular language with labels in a data graph as its alphabet.

The target application of our technique is a path join query

(Definition 3.3), and a path join query can appear in many

different forms in the XQuery [10]. We make above query

language by simplifying and modifying the XQuery to

represent a join query in a single form. The following is the

definition of a path join query.

Definition 3.3. With two variable bindings, ‘v1 in P1; v2 in

v1=P2’, we define the regular path join as the procedure of

finding the pairs, (v1; v2)s, such that there exsits a path from

the node, v1; to the node, v2; which satisfies the regular path

expression, P1; and there exists a path which satisfies the

regular path expression, P2; as a descendant of v2: We define

the n-way path join as the query in the form of ‘bind v1 in

P1; v2 in v1=P2;…,vn in vn21=Pn return…’.

3.3. Dataguide as an index for a regular path

We develop the PID and the join algorithm to process a

path join query. Our algorithm uses an index structure for

processing a single path. From the results of processing each

single path, our algorithm generates final results using PID.

We did not develop an index for a single path. Instead, we

use an external index structure for a single path. By using an

external index structure, our algorithm can be applied to

many systems which use different index structures, and if a

more efficient index structure is proposed, our algorithm can

cooperate with that index.

We use dataguide [15] as our index for a single path for

convenience, and with the term, index graph, we assume the

dataguide hereafter. However, we present a join algorithm

which is independent of a specific index graph, and any

index structure for a single path can works with our

algorithm without performance degradation.

Creating a dataguide over a source database is equivalent

to the conversion of a non-deterministic finite

automation (NFA) to a deterministic finite automation

(DFA) [15,16,21]. Fig. 2 shows a data graph and its

corresponding dataguide. Each node in a dataguide has an

Fig. 2. Index for a single path (the Dataguide).

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251244

extent for the corresponding nodes in the data graph. For

example, the extent in the node 16 is the set of {6, 10, 11},

where each element can be reached by the path Restaurant.

Entree in Fig. 2.

4. Path identifier

PID is information stored in each node of the data

graph to identify whether two given nodes in the data

graph lie on the same path or not. In Section 4.1, we

describe PID and present a PID construction algorithm.

We describe the incremental maintenance of PID in

Section 4.2.

4.1. Definition and construction

We give several simple definitions useful for describing

the PID.

Definition 4.1. Range consists of two integers. The first

integer in a range is called the start point and the other

integer the end point. The relationship such that ‘start

point # end point’ must be satisfied in a range.

Definition 4.2. With the two ranges r1 ¼ ðs1; e1Þ and

r2 ¼ ðs2; e2Þ;

† r1 and r2 are continuous if s2 2 e1 ¼ 1:

† r1 and r2 are overlapped if s1 # s2 and e1 $ s2 and

e2 $ e1:

† r1 includes r2 (or r1 and r2 are inclusive) if s1 # s2

and e1 $ e2:

For example, (2,5) and (6,8) are continuous ranges, (2,6)

and (4,7) are overlapped ranges, and the range (1,5) includes

the range (2,4).

Definition 4.3. With the two sets, R1 and R2 whose

elements are ranges, if every element in R2 can find an

element in R1 which includes that element, then R2 is a

path subset of R1; and likewise R1 is a path superset of

R2: We call such a relationship a path relationship.

For example, R2 ¼ {ð2; 4Þ; ð7; 9Þ} is a path subset of

R1 ¼ {ð1; 4Þ; ð7; 9Þ}; because the range (1,4) in R1 includes

the range (2,4) in R2 and the range (7,9) in R1 includes the

range (7,9) in R2:

Definition 4.4. PID is a set of range, which satisfies

following PID constraint.

PID constraint. The two PIDs of any two given nodes

have the path relationship if and only if the two nodes

have the ‘ancestor–descendant’ relationship such that

the PID of the ancestor node is a path superset of the

PID of the descendant node.

Using the PID defined above, we can see that if the PIDs

of any two given nodes have the path relationship, then the

two nodes lie on the same path.

Algorithm 1. PID construction

Algorithm 1 is a PID construction algorithm. This

algorithm constructs PID in each node of the data graph,

which satisfy the PID constraint. The skolem function f

used in this algorithm is the function such that fnþ1 ¼

fn þ 1 and f0 ¼ 0: We assign a range (such that the start

point equals to the end point) to each node using the

skolem function by traversing the data graph in depth

first manner. So each node has a PID which contains

only one element created by the skolem function. We

call this PID in each node as initial PID. A PID of a leaf

node is not change, that is, a PID of a leaf node has only

one element which is created by the skolem function. A

PID of a non-leaf node is created by the following

strategy. First, unite the PID of each child node of a non-

leaf node. And then unite the initial PID of that non-leaf

node and union of the PID of each child node. Finally

merge elements which are continuous or overlapped or

inclusive.

With the PID construction algorithm, we only consider

the case where a data graph is a DAG. If a data graph has

cycles, we make the condensation [5] of the data graph,

and we construct the PID of each node in the

condensation. And then every node in a strongly

connected component has the same PID. It is easy to

see that this technique constructs the PID which satisfies

the PID constraints in any cyclic graph.

Fig. 3 shows the PIDs in a data graph when a data

graph is a tree, a DAG, and a cyclic graph. In case that a

data graph has the cycle as (c) of Fig. 3, every node in a

strongly connected component has the same PID. In Fig.

3(a), the union of the PID of n4 and the PID of n5

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251 245

is{(3,3), (4,4)}, and the two ranges (3,3) and (4,4) are

continuous, so we can merge the two ranges into (3,4),

and then we unite{(3,4)} and{(2,2)} which is initial PID

of n2; and merge the set {(2,2), (3,4)}, into{(2,4)} as the

same way, which is the PID of n2: A PID of an non-leaf

node can only be created by the PIDs of its children and

its own PID, so this allows Algorithm 1 to satisfy PID

constraint.

If a data graph has heavy reference structure, PIDs of

some node can grow large. For a data which has heavy

reference structure, we assume that references tend to either

make many cycles or be destined for some specific nodes. In

the former case, the condensation of the data graph tends to

have light reference structure when there are many cycles

(strongly connected components) in the data graph. So the

PID in each node of the data graph can be created with a few

elements. In the latter case, the size of the PID of a node is

not affected by its descendant because most of references in

the descendant nodes tend to destined for the same nodes.

So the size of the PID can be bounded on a constant. Much

work for XML data assumes that XML data is a tree

structure. But such an assumption is not true. Many XML

data cannot be a tree because of its reference structures.

Though XML data can be an arbitrary directed graph, it still

has tree-like structure in many cases. So our PID keeps

reasonable size. In particular, every PID in a data graph has

one element when the data graph is a tree.

To construct the PID in each node of the data graph,

Algorithm 1 visits each node once by traversing the data

graph in depth first search. Let the maximum number of

children of a node be m and the size of data graph be n. To

merge elements in the PID construction strategy, each

intermediate node has the cost of m2 under the assumption

that the size of the PID of a node is a constant. So the

construction algorithm has the time complexity, Oðm2nÞ:

Because m is much smaller than n, we consider it is a

constant, so the time complexity of PID construction

algorithm is linear to the size of the data graph.

A PID in each object (node) of the data graph can be

stored in the extent of an index graph with an object

identifier. If the size of a PID is too big to be stored in an

extent, the PID can be retrieved from the data graph

dynamically when the PID is required.

4.2. Order support

Order information is one of the unique features of XML

data. XQuery has before(p) and after(q) clause to

represent order-aware queries. To use before and after

clause, XQuery defines document order [10], a total

ordering among all the nodes in an XML document. Briefly

speaking, given two distinct nodes, A and B in an XML

document, A is before B if and only if A occurs before B in

the textual representation of the XML document. In graph

representation of XML, we can get the same ordering as the

document order by traversing the graph in depth first

manner. We can use the PID for supporting order-aware

queries, cause the initial PID of a node is assigned by depth

first traversal of the data graph. When we make initial PIDs

on a data graph, we should not traverse reference edges,

because references can make invalid document order. Fig. 4

shows valid and invalid initial PID. In Fig. 4, the dashed

edge is a reference edge.

Initial PID can be changed by merging it with the ranges

from the PID of children. Recall that the start point equals to

the end point of the range in an initial PID. We call the value

(either start point or end point) of the range in an initial PID,

the anchor value of the node. To support order-aware

queries, we can keep the anchor value of a node in its PID.

So A PID consists of the pair {anchor, a set of range}. By

comparing anchor values, we can compare the order of two

nodes. If two nodes are in the same connected component,

the two nodes have the same anchor value and it is

impossible to compare the order between the two nodes. We

Fig. 4. Initial PID assignment.

Fig. 3. PID in data graphs.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251246

must assign additional value to each node in the same

strongly connected component. We can assign this

additional value by traversing each strongly connected

component by depth first manner. Therefore, the final

format of a PID is the triple {anchor, ssc, a set of range}.

The ssc field in a PID is meaningless in a node which does

not participate in a strongly connected component.

4.3. Incremental maintenance

It is not necessary to update the PID in the data graph

when a node is deleted from the data graph, but when a new

node is inserted to the data graph, we should assign a new

PID to the node and sometimes PIDs in other nodes of the

data graph need to be updated. A naive updating scheme is

to reconstruct the PIDs in the data graph using Algorithm 1,

but this is obviously very inefficient. In this section, we

present a simple scheme to maintain the PID incrementally.

For a newly inserted node, a room for the PID is required.

We can get the room for the PID by modifying the skolem

function f in Algorithm 1 such that fnþ1 ¼ fn þ m and f0 ¼ 0:

Now, we can get the room for the PID of size m between two

incident nodes in document order. The definition of

continuous in Section 4.1 should be changed such that if s2 2

e1 # m; then the two nodes are continuous.

Insertion takes place in the condensation of a data graph,

and we assume that a newly inserted node is a leaf node of

the data graph. So the inserted node has the PID which has

one range with the same value for the start point and the end

point. We can assign a PID to the newly inserted node as

following strategy.

1. Find the node, Np; which is the very previous to the

inserted node in document order. Let the anchor value of

Np be Ap:

2. Find the node, Nn; which is the very next to the inserted

node in document order. Let the anchor value of Nn be

An:

3. If the difference between An and Ap equals to 1, then

reconstruct whole the PID in the data graph.

Else, insert a range (Ap þ 1; Ap þ 1), to the PID of the

newly inserted node.

Note that we can always find the node Np; unless the

inserted node is the only node of the data graph. When a node

inserted as the first child of a node or the last child of a node,

ancestors of the newly inserted node are updated to preserve

the path relationship.

When a sequence of nodes is inserted, we can insert the

nodes one by one using above procedure. But if a sequence of

nodes is about to be inserted at the position of the first or the

last child of a node, it is inefficient to insert the nodes one by

one, because the PIDs of ancestors can be updated repeatedly.

In such a case, we can process the insertion as follows.

Actually, the sequence of nodes being inserted forms a graph

structure. First, we make the PID in each node of the graph to

be inserted. And then add up ðAp þ 1Þ to every value in all

PIDs of the graph to be inserted. Finally, insert the graph to the

target node of the data graph. Now, update for ancestors

occurs only once. Of course, the number of nodes in the

sequence is less than the difference between An and Ap:

Otherwise, whole PIDs in the data graph must be recon-

structed. We omit the anchor value and ssc value in a PID in

the further discussion, because it is not used in regular path

join procedure.

5. Regular path join

As illustrated in Section 3.2, we define a regular path

join query used in this paper as follows.

bind v1 in P1; v2 in v1=P2;…,vn in vn21=Pn return

x1;…; xk ðxi [{v1;…; vn}Þ

To illustrate the join procedure, we explain how to process

a query which has two regular paths, and then present a

generalized processing algorithm. We denote the path

expression in the form of ‘xn in xn21=P1; xnþ1 in xn=P2’ as

‘P1xnP2xnþ1’ for simplicity. And with the term, index graph,

we mean a index graph for a single path. Suppose P1 and P2

are paths which do not use regular expressions. There is only

one node for P1 in the index graph, and also, there is only one

node for P1·P2 in the index graph.1 So, we find one extent, ep1
;

for P1 and one extent, ep2
; for P1·P2 in the index graph. With

these two extents, we perform join processing as follows. If

the PID of an object o2 in ep2
is the path subset of the PID of an

object o1 in ep1
; add the pair (o1; o2) into the join result. It is

easily seen that the join condition is the path relationship

between the PID of an object in ep1
and the PID of an object in

ep2
: We evaluate this procedure efficiently using the sort-

merge style processing scheme as follows.

First, sort the two extents of ep1
and ep2

: To sort an

extent, we divide each element, e ¼ ðoid; {r1;…; rn}Þ in the

extent into (oid, r1),…,(oid, rn). For example, extent

{(o1;{(2,4),(7,8)}), (o2;{(2,6),(9,10)})} will be divided into

{(o1;(2,4)), (o1;(7,8)), (o2;(2,6)), (o2;(9,10))}. Then, we sort

the divided extent by the start point of each element in

increasing order (note that each divided element has only one

range). When the start points of two elements have the same

value, sort the elements using the end points. The above

example can be sorted to be {(o1;(2,4)), (o2;(2,6)), (o1;(7,8)),

(o2;(9,10))}. The following is the join strategy using the

sorted extent ep1
and ep2

:

1. Suppose r ¼ (sp, ep) is the range of the first element, oi; in

the sorted extent ep1
; remove every element of which

1 1-Index may have several nodes in this case because of its

nondeterministic characteristics. Here, we assume the dataguide as the

index graph for the purpose of explanation, but we present a generalized

algorithm for regular path joins which is not dependent of a specific index

graph, later in this section.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251 247

the start point is less than r.sp from the sorted extent ep2
:

2. For each element oj of which the end point is less than or

equal to r.ep in the extent ep2
; if the PID of oj is a path subset

of the PID of oi then add (oi; oj) into the result of the join.

3. Remove the first element, oi; in ep1
; go to step 1.

When we check the path relationship between two

objects in step 2, we use the original PID of each object, not

divided one. The above procedure halts when the sorted

extent ep1
or ep2

is empty. Fig. 5 shows the join procedure of

the two sorted extents.

Algorithm 2. Regular path join algorithm

There can be several nodes for P1 in the index graph

when P1 uses regular expressions. Also, there can be several

nodes for P1·P2 in the index graph when P2 uses regular

expressions. That is, there can be several extents for each

regular path. We can perform (the union of the extents for

P1) n (union of the extents for P1·P2), using the procedure

explained above, but this causes false hits. For example, in

Fig. 6, a query with the path expression a·apxa·ðbldÞy
produces false hits. The graph in Fig. 6 is a index graph and

e1;…; e5 is the extent in each node (for convenience, we also

use them as node identifiers). There is no node which

satisfies a·ðbldÞ from e3; but this query produces false hits of

e3 n ðe4 < e5Þ; because e4 and e5 which satisfy a·ðbldÞ from

e2 happen to lie on the same path as with e3:

To prevent false hits, we evaluate the query as follows.

Find each extent ei which satisfies the path P1: Perform

ei n (the union of the extents which satisfies P2 from ei).

Merge the results for each ei: For example, in Fig. 6, there

are two extents, e2 and e3 which satisfy the path a·ap: There

are two extents, e4 and e5 which satisfies the path a·ðbldÞ
from e2; so perform e2 n e4 < e5: There is no extent that

satisfies the path a·ðbldÞ from e3; so evaluate e3 n Y to

produce Y. Merge the two results to yield ðe2 n e4 < e5Þ<
Y; which is the correct result.

Algorithm 2 is a multi-way regular path join algorithm.

Multi-way means that there exists more than two relevant

path expressions in a query. The function processingJoin

evaluates each path in a query recursively to join k paths. At

line 18, Algorithm 2 performs merge sort by the first

element of each tuple in the operands of the union operator.

The function extentJoin join the two extents which are given

as arguments. The first argument of extentJoin is the extent

of the current node to process (ei of the above explanation)

and the second argument is the result of processing the

subtree (subgraph) of the current node. The second

argument has the form of

{½ðoid11; range11Þ;…; ðoid1n; range1nÞ�;…;

½ðoidm1; rangem1Þ;…; ðoidmn; rangemnÞ�}

The function, extentJoin, joins the first argument with first

element of each tuple in the second argument, which is

{ðoidi1; rangei1Þl1 # i # m}: This function evaluates the

very procedure which is shown in Fig. 5. It is easy to see that

paths are joined in the order of Pk21;…;P0:

Fig. 5. Extent join procedure.

Fig. 6. False hit.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251248

To describe how the algorithm works, we use the simple

data graph and the corresponding index graph depicted in

Fig. 7. For the data graph in Fig. 7, we want to evaluate the

following regular path join query.

bind v1 in //a, v2 in v1/(blc), v3 in v2//e return v1; v2; v3

Let the path, //a, be P0;(blc) be P1; and //e be P2: First we

call processJoin(N1, 0). Subsequent calls for processJoin

are as follows.

1. processJoin(N1, 0) ¼ N1 n processJoin(N2, 1)

2. processJoin(N2, 1) ¼ N2 n (processJoin(N3, 2) <
processJoin(N4, 2))

3. processJoin(N3, 2) returns an empty set at line 21 in

Algorithm 2

4. processJoin(N4, 2) ¼ N4 n (processJoin(N5, 3) <
processJoin(N6, 3))

5. processJoin(N5, 3) returns{[o5]} at line 13 in Algorithm

2.

6. processJoin(N6, 3) returns{[o7], [o10], [o11]} at line

13 in Algorithm 2.

Here, A n B stands for the function call, extentJoin(A, B).

After all possible processJoin are called, extentJoin are

called in the order of (step 4, step 2, step 1). In step 4,

extentJoin joins the two extents, [o4, o6, o9] and [o5, o7, o10,

o11], and the result is{[o6, o7], [o9, o10], [o9, o11]}. In step

2, extentJoin joins the two extents, [o2, o8] and [o6, o9, o9],

and the result is{[o2, o6, o7], [o8, o9, o10], [o8, o9, o11]}.

Note that [o6, o9, o9] is the set of the first element of each

tuple in {[o6, o7], [o9, o10], [o9, o11]}. Finally we can get the

result of the query {[o1, o2, o6, o7], [o1, o8, o9, o10], [o1, o8,

o9, o11]} in step 1. Actually it is unnecessary to evaluate

extentJoin in step 1, because the root element is joined with

every element in the data graph. The second element in each

tuple of the result is bound to the variable v1; the third element

in each tuple of the result is bound to the variable v2; and the

fourth element in each tuple of the result is bounded to the

variable v3:

Now, we analyze the time complexity of the function,

extentJoin. We consider the size of the PID for each node

as a constant, c. Let the size of the first argument be m,

and the size of the second argument be n. By sorting the

first argument at line 30, the size of s_ext becomes cm:

Let each element in s_ext be joined with k elements.

The time complexity of the function is m logðmÞ þ kcm þ

n; where m log(m) is the cost for sorting the first

argument, and kcm is the cost for the comparison to

join each element in s_ext with k elements, and n is the

cost for the comparison to remove each element in the

second argument. By storing extents in the sorted form,

we can make the time complexity of extentJoin to be

Oðkm þ nÞ:

Relation to descendant-or-self axis in XPath. The

descendant-or-self axis (//) searches through all the

descendants of the context node, starting with the context

node itself. For the path expression, /P1//P2; we can use our

technique to support descendant-or-self axis if we can find

all node which satisfy the path, P1; from the root node, and

all nodes which satisfy the path, P2; from any node of the

data graph. For each node, n1; which satisfy P1; and for each

node, n2; which satisfy P2; if n2 is a descendant of n1 then n2

is the result of the above query. Here descendant means that

there exists a path from n1 to n2; and checking the path

relationship between two nodes is what the extentJoin do.

6. Preliminary result

In our experiments, we compared the number of fetched

objects (nodes) between the technique using PID and the

Plan 1 described in Section 1. We did not consider I/O

optimization techniques such as object clustering and

prefetching into consideration. We only use the number of

fetched objects from the disk to the memory as the

performance measure. We applied our technique to the

following data set.

† Astronomical data of NASA [20]. This data set consists of

many small XML files which contain astronomical

information, publications, etc.

† Hamlet. These data are the Hamlet of the Shakespeare’s

Plays [9] in XML format.

† Internet movie data [11]. This data set consists of many

small XML files containing information about movies

and actors.

† Synthetic data for Major League Baseball. These data are

randomly generated data about Major League Baseball.

We merge small XML files into one XML data for the

astronomical data set and the Internet movie data set.

Fig. 7. Example data and index.

Table 1

Experimental results—query 6.3, 6.4, 6.5

Number of objects

in the data

With PID Without PID

Query 6.3 12,158 34 6611

Query 6.4 70,521 373 40,971

Query 6.5 3843 56 1284

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251 249

Specially, we ran experiments consisting of two queries

varying the number of files for the astronomical data set.

We use the following queries in our experiments.

Query 6.1

bind x in //reference//(journallother), y in x//year return x; y

Query 6.2

bind x in //history, y in x//creator return x; y

Query 6.3

bind x in /play//scene, y in x//speaker[text() ¼ “

Francisco”] return x

Query 6.4

bind x in //Movie, y in x//Year[text() ¼ “1975”) return x; y

Query 6.5

bind x in /MLB//EAST/player, y in x//nickname y

return x; y

Query 6.1 and 6.2 are for the astronomical data set,

query 6.3 is for the Hamlet data, query 6.4 is for the

Internet movie data set, and query 6.5 is for the synthetic

data for the Major League Baseball. Table 1 shows the

result of query 6.3, 6.4, and 6.5. And Fig. 8 shows the

result of query 6.1 and 6.2. As depicted in Fig. 8,

the technique without using the PID searches the data

graph to find the answer to the second path expression,

so the number of fetched objects increases rapidly as the

size of data grows, but our algorithm does not depend on

the size of the data graph, and the number of fetched

objects is proportional to the number of result objects as

the size of the data graph is increased.

The performance of our algorithm depends on only

the size of schema graph, and our algorithm always

fetches less than (the size of schema graph þ the number

of result) objects regardless of the size of the data graph

and the number of regular paths in a query. Although the

size of a schema graph can grows greater than or equal

to the size of the data graph, in many cases the size of

schema graph is much smaller than the size of source

data graph as our experiments.

7. Conclusions and future work

Regular path expressions are a useful and necessary

feature of query languages for XML and semi-structured

data. As a query tends to have more than one regular path in

it, the regular path join queries are as important as the join

queries in relational databases.

We define the PID and present a method to identify

whether or not two given nodes lie on the same path

using the PID. Also, an efficient regular path join

algorithm is presented which uses the PID. We

implement our algorithm and show the superiority of

our algorithm from the preliminary results. Our technique

performs better with other research results. For example,

pruning the query [13,15] before the query processing

will apparently decrease the number of fetched objects.

We present a simple scheme to maintain the PID

incrementally in Section 2, but in the case that the input

data is skewed, PIDs in the data graph must be

frequently reconstructed. We plan to modify the method

of incremental maintenance for the PID to be more

suitable in the environment where the data is dynami-

cally updated.

Acknowledgements

This work was supported by the Brian Korea 21 Project,

the Ministry of Information and Communication, Korea

through the ITRC, and the Ministry of Commerce, Industry

and Energy, korea through XDOM project.

Fig. 8. Experimental results—query 6.1, 6.2.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251250

References

[1] S. Abiteboul, V. Vianu, Regular path queries with constraints,

Proceedings of the ACM Symposium on Principles of Database

Systems (1997).

[2] S. Abiteboul, Querying semi-structured data, Proceedings of the

International Conference on Database Theory (1997).

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, The lorel

query language for semistructured data, International Journal on

Digital Libraries (1996).

[4] B. Cooper, N. Sample, J.J. Franlin, G.R. Hjaltason, M. Shadmon, A

fast index for semistructured data, Proceedings of the Conference on

Very Large Data Bases (2001).

[5] S. Baase, Computer Algorithms. Introduction to Design and Analysis,

Addison-Wesley, Reading, MA, 1988.

[6] T. Bray, J. Paoli, C. Sperberg-McQueen, Extensible markup language

(XML) 1.0, Technical report, W3C Recommendation, 1998.

[7] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, A query language

and optimization techniques for unstructured data, Proceedings of

the ACM SIGMOD International Conference on the Management of

Data (1996).

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Rewriting

of regular expressions and regular path queries, Proceedings of the

ACM Symposium on Principles of Database Systems (1999).

[9] R. Cover, The XML Cover Pages, http://xml.coverpages.org.

[10] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, M. Stefanescu,

XQuery: a query language for XML, Technical report, W3C Working

Draft, February 2001.

[11] The Internet Movie Database, http://www.imdb.com.

[12] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, Query

language for XML, Proceedings of the Eighth International World

Wide Web Conference (1999).

[13] M. Fernandez, D. Suciu, Optimizing regular path expressions using

graph schemas, IEEE International Conference on Data Engineering

(1998).

[14] G. Grahne, A. Thomo, An optimization technique for answering

regular path queries, International Workshop on the Web and

Databases (2000).

[15] R. Goldman, J. Widom, DataGuides: enabling query formulation and

optimization in semistructured databases, Proceedings of the

Conference on Very Large Data Bases (1997).

[16] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley, Reading, MA, 1979.

[17] Q. Li, B. Moon, Indexing and querying XML data for regular path

expressions, Proceedings of the Conference on Very Large Data Bases

(2001).

[18] J. McHugh, J. Widom, Compile-time path expansion in lore,

Proceedings of the Workshop on Query Processing for Semistructured

Data and Non-standard Data Formats (1999).

[19] T. Milo, D. Suciu, Index structures for path expressions, Proceedings

of the International Conference on Database Theory (1999).

[20] NASA,AstronomicalDataCenter,http://tarantella.gsfc.nasa.gov/xml/.

[21] S. Nestorov, J. Ullman, J. Wiener, S. Chawathe, Representative

objects: concise representations of semistructured, hierarchical data,

IEEE International Conference on Data Engineering (1997).

[22] Y. Papakonstantinou, V.A. Vassalos, Query rewriting using semi-

structured views, Proceedings of the ACM SIGMOD International

Conference on the Management of Data (1999).

[23] D. Suciu, Semistructured data and XML, Proceedings of the

International Conference on Foundations of Data Organization (1998).

[24] D. Suciu, M. Fernandez, S. Davidson, P. Buneman, Adding structure

to unstructured data, Proceedings of the International Conference on

Database Theory (1997).

[25] W3C, XML Path Language (XPath) 1.0, W3C Recommendation, 1999.

J. Kim, H.-J. Kim / Information and Software Technology 45 (2003) 241–251 251

http://xml.coverpages.org
http://www.imdb.com
http://tarantella.gsfc.nasa.gov/xml/

	Efficient processing of regular path joins using PID
	Introduction
	Related work
	Background
	Data model
	Query language
	Dataguide as an index for a regular path

	Path identifier
	Definition and construction
	Order support
	Incremental maintenance

	Regular path join
	Preliminary result
	Conclusions and future work
	Acknowledgements
	References

