
Using genetic algorithms to work out index con®gurations for the
class-hierarchy indexing in object databasesq

H.-J. Song*, J.-H. Ahn, H.-J. Kim

School of Computer Science and Engineering, Seoul National University, Shilim-Dong Gwanak-Gu, Seoul 151-742, South Korea

Received 2 January 1999; received in revised form 15 March 2000; accepted 31 March 2000

Abstract

Ef®cient indexing on a class hierarchy is essential for the achievement of high performance in query evaluation for object databases. In this

paper, we present a practical indexing scheme, Partition Index Con®guration Scheme (PINS), which provides good index con®gurations for

any real database environment. PINS considers the distribution of key values, as well as query patterns such as query frequency on each class.

PINS can easily be applied to any database system, since it uses the B1-tree structure. We develop a cost model and, through experiments,

demonstrate the performance of the proposed policy over various class hierarchies. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Partition index con®guration scheme; Class-hierarchy index; Genetic algorithm; Object database

1. Introduction

1.1. Problems of indexing in object databases

The commercial success of a data model depends on how

well the underlying system is able to support it. It is also

well known that indexing is the key to achieving high

performance in query evaluation. For instance, the value

of the relational data model would be diminished without

the ef®ciency of B1-Tree index structures [6] used to

evaluate declarative queries.

However, while they provide optimal performance for

queries in one-dimensional space, single-attribute B1-

Trees are not suitable for an object-oriented data model.

That is, B1-trees cannot ef®ciently support queries on

class hierarchies, since their answer must be restricted to

target classes as well as to search predicates.

To support queries on class hierarchies, several index

structures, including the H-tree [15] and the HcC-tree

[17], have been proposed. However, these new structures

are seldom used, since they are complex and require new

concurrency mechanisms. A practical alternative was

proposed, namely, an indexing scheme based on class

division [16], in which the basic concept is time-space

tradeoff. Although indexing by class division has the advan-

tage of ease in applicability, it takes little notice of the

number of instances, and not at all of the distribution of

key values. Thus, this approach offers no guarantee of

performance enhancement for all cases.

As a result, we set out to develop a new indexing scheme,

Partition Index Con®guration Scheme (PINS), that over-

comes the above problems and gives maximal performance

gain with minimal space and update overhead.

1.2. Related work

There have been many studies concerning indexing for

object databases [1,2,12±17]. The simplest approach for

class-hierarchy indexing is the class-hierarchy index [14].

This method maintains only one index on an attribute of all

classes in the class hierarchy. This approach is based on the

fact that one index may in general be more ef®cient in

evaluating a query whose access range spans most of the

classes in the class hierarchy, than single-class indexes on

each class. The class-hierarchy index has the advantage that

it is easy to implement since the structure is based on the

B1-tree. However, it may show critical degradation of

performance for a query against a leaf class, since it has

to read many unnecessary index pages.

Some studies have attempted to solve this problem by

introducing links or chains in the B1-tree structure. Exam-

ples are the H-tree [15], the HcC-tree [17], and the CG-tree

[13]. However, as mentioned above, these approaches are

new and it is unclear whether the performance gains justify

the nonstandard data-structure introduced by them. In addi-

tion, they are lacking for concurrency control and recovery

Information and Software Technology 42 (2000) 731±741

0950-5849/00/$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.

PII: S0950-5849(00)00113-0

www.elsevier.nl/locate/infsof

q This research was supported by the Brain Korea 21 Project.

* Corresponding author. Fax: 1 82-2-882-0269.

E-mail address: hjsong@oopsla.snu.ac.kr (H.-J. Song).

schemes that are essential for them to be accepted in

commercial database systems. Therefore, only the class-

hierarchy index based on the B1-tree structure has been

widely used in real object database systems [16].

Ramaswamy and Kanellakis [16] proposed a practical

indexing scheme by class division, which is a variation of

the class-hierarchy index. It divides a class hierarchy into

several class divisions by their division algorithm and heur-

istics, and builds indexes on each class division. Here, a

class can be included in several divisions simultaneously.

That is, the class-division scheme enhances the performance

through the replication of indexes. However, the class-divi-

sion algorithm is not applicable to class hierarchies with

multiple inheritance. In addition, like all other indexing

schemes, it is not designed to consider the number of

instances or the distribution of key values.

Many indexing techniques for queries on composite hier-

archies have also been studied. Bertino and Kim [2]

proposed the nested index, the path index, and the multi-

index for queries on composite objects, and compared their

performance. Ishikawa et al. [12] suggested an indexing

scheme using the signature ®le technique, and Bertino and

Foscoli [1] proposed an index structure that combined the

class-hierarchy index and the nested index.

1.3. Paper organization

The rest of the paper is organized as follows: In Sections

2 and 3, we introduce our new indexing scheme, PINS, for

indexing on class hierarchies and a method of using the

genetic algorithm to support PINS. Section 4 describes

the cost model used in this study, and Section 5 presents

the results of the performance evaluation. Finally, conclu-

sions from our study and areas for future research are given

in Section 6.

2. The partition index con®guration scheme

A query on a class hierarchy may be formulated as a

problem of external searching in two-dimensional spaces:

one is the attribute against which a predicate is put and the

other is classes to which the target objects belong.

Example 1. A query ªFind all students who are 21 years

old'' on the class hierarchy of Fig. 1 has the search condition

that he or she should be a Student as well as the predicate

that he or she should be 21 years old. Here, all TAs can also

be considered Students by the IS±A relationship

imposed on the class hierarchy. Therefore, objects of all

classes in the hierarchy rooted at Student should be

searched for this example query.

To enhance the performance of this kind of queries on

class hierarchies, it is necessary to investigate a new index-

ing technique that considers class hierarchies. However, as

we have mentioned above, it is dif®cult to introduce a new

data structure. In addition, a general multi-key indexing

structure like the R-tree [10] does not provide satisfactory

performance with the query on a class hierarchy, which is a

special case of two-dimensional search [16]. Thus, we are

sure that the practical alternative is to index using B1-tree

indexes with little modi®cation, since the B1-tree index is

the best general-purpose index structure for one-dimen-

sional queries.

Fig. 2 shows the leaf record structure of the modi®ed B1-

tree which is used in the proposed scheme. It was ®rst intro-

duced in Ref. [14], and used in Refs. [1,16]. Since only the

leaf records are slightly modi®ed, the modi®ed B1-tree does

not require a new concurrency control and recovery scheme.

As far as retrieval performance alone is concerned, the

best solution is to build indexes on the full extent of each

class. The full extent of a class is the set of instances of the

class and all of its subclasses. Therefore, the best index

con®guration for Example 1 is the set of indexes on the

full extent of each of Person, Faculty, Student,

and TA; a set of indexes (Ifull)

Ifull � {{Person} {Faculty}

{Student} {TA} {Faculty TA} {Student TA}

{Person Faculty Student TA}}

Here, {C} denotes an index on the extent of class C, and

{Ci¼Cj}, an index on the union of extents of class Ci,¼,

and Cj, respectively.

Using this index con®guration, an index that covers the

target class and all of its sub-classes can be used to process a

query on a class. However, this solution naturally requires a

high storage overhead in return for improving the retrieval

performance. That is, in Example 1, the instances of TA
should be replicated in the full indexes on Person,

Faculty, and Student, as well as TA. Moreover, if

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741732

Fig. 1. An example class hierarchy.

Fig. 2. The leaf record structure of a modi®ed B1-tree index.

there is any new TA object created (or deleted), or the index

®eld has been changed, four indexes must be updated

instead of one. Considering that index objects are frequently

used and have high update costs, this kind of index

con®guration will decrease the performance of DBMS

signi®cantly.

As an alternative, we introduce PINS as a new indexing

scheme for object databases, which signi®cantly improves

the retrieval performance without additional update costs

and high storage overhead. PINS uses several indexes,

each of which consists of instances of groups of classes in

a class hierarchy, but with no instance of a class being

duplicated. PINS takes the class hierarchy, key distribution,

query frequency on classes, and number of indexes to be

used as input, and returns an index con®guration that mini-

mizes the expected retrieval cost. Given a class hierarchy

with N classes, and the maximum number of indexes to be

used, imax �1 # imax # N�; PINS partitions the N classes into

imax, or less than imax disjoint subsets, and builds an index for

each subset so that the expected retrieval cost is minimized.1

Example 2. For a class hierarchy in Fig. 1, we can obtain

15 possible partition index con®gurations as follows:

I1 � {{Person} {Faculty} {Student} {TA}}

I2 � {{Person Faculty} {Student} {TA}}

I3 � {{Person Student} {Faculty} {TA}}

I4 � {{Person TA} {Faculty} {Student}}

..

.

I14 � {{Person Faculty} {Student TA}}

I15 � {{Person TA Faculty Student}}

Assuming that I14 is selected as the optimum partition

index con®guration, the index {Student TA} can be used

for looking up the class Student and TA, and both

{Person Faculty} and {Student TA} for the class

Person and Faculty, respectively.

However, it is intractable to traverse the entire search

space since there are a huge number of cases.2 Therefore,

we have devised a genetic algorithm to ®nd a near optimal

partition index con®guration.

3. PINS using genetic algorithm

In this section, we describe the genetic algorithm brie¯y

and explain how we con®gured it to ®nd the near optimal

partition index con®gurations.

3.1. Genetic algorithm

Genetic algorithms (GAs) are search algorithms based on

the mechanics of natural selection and natural genetics

[8,18]. An individual corresponds to a solution for a

problem, and consists of an array of gene values, its `chro-

mosome', and as in nature, an individual that is optimized

for its environment is created by successive modi®cation

over a number of generations. Fig. 3 and Algorithm 1 illus-

trate the process of genetic algorithm. A algorithm starts

with a set of initial individuals, called a population. This

population then evolves gradually into different populations

for several (typically hundreds of) iterations. At the end of

the algorithm, it returns the best individual of the population

as the solution to the problem [4]. In each iteration or

generation, the evolution process is carried out in two

steps, crossover and mutation. Firstly, with a prede®ned

probability, some individuals of the population are selected,

and they produce offspring by the crossover operator.

Secondly, with a very low probability, these offspring are

modi®ed by the mutation operator. The mutation operator

expands the search space by increasing the diversity of the

individuals in the population. Then, by the replacement

scheme, the modi®ed offspring replace some of the indivi-

duals in the population, forming a new generation: the new

population. This process is repeated until a certain condition

is met. The number of iterations is frequently used as the

termination condition.

Algorithm 1 Genetic algorithm

1: create initial population of ®xed size;

2: repeat
3: choose parent1 and parent2 from population;

4: offspring� crossover (parent1, parent2);

5: mutation (offspring);

6: replace (population, offspring);

7: until (stopping condition);

8: report the best individual.

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741 733

Fig. 3. Evolution process of genetic algorithm.

1 Notice that PINS with imax � 1 is the same as the class hierarchy index

(CH) because in both cases only one index is maintained for a class

hierarchy.

2 Let P(N) denote the number of possible partitioning with N classes in a

class hierarchy. P�N� � D�N�f �0�; where f �x� � eex21 and D�N�f �x� is the

N-th derivative of f(x).

Genetic algorithms have been frequently accepted as

optimization methods in various database areas such as

query optimization [9,11], database design [19], and mining

[7]. Genetic algorithms have also proved their excellence in

solving partitioning problems [3±5], and this is why we use

GA to implement PINS.

3.2. Implementation

In this subsection, we describe the details of the genetic

algorithm tailored to solve PINS.

3.2.1. Problem encoding

Individuals consist of an array of integers, of which the

size is the same as the number of classes in the class hier-

archy. The i-th array item corresponds to the i-th class in the

hierarchy in depth-®rst order, and it contains an integer from

1 to the maximum number of indexes to be used (imax). The

integer denotes the index that the corresponding class

should use. Thus, an individual denotes a partitioning

(index con®guration) of the classes in a class hierarchy.

Fig. 4 illustrates an individual that denotes a possible parti-

tioning in a class hierarchy composed of ®ve classes. In this

®gure, the classes C1, C2, and C3 use INDEX1, and classes

C4 and C5 use INDEX2.

3.2.2. Initialization

We con®gure the genetic algorithm so that it creates a

®xed number of initial individuals at random. Hence, every

element in an individual is set to an integer value of which

the range is between 1 and the number of indexes to be used.

Usually a larger population implies a better ®nal solution

and a longer running time. Rather than using a ®xed initial

population size, we perform several experiments with vary-

ing the initial population, and select the best one.

3.2.3. Fitness function

The ®tness of an individual is a measure of quality of its

adaptation to the environment, and is calculated by the

®tness function. In GAs, the optimization goal is to ®nd

the individual that has the highest ®tness value, in other

words, the ®ttest individual for the environment. The ®tness

value Fi of an individual i is calculated as follows:

Fi � �ARCRw 2 ARCRi�1 �ARCRw 2 ARCRb�=3;
where ARCRb, ARCRw and ARCRi denote the average retrie-

val cost ratio (ARCR) of the best individual, the worst indi-

vidual, and individual i, respectively. Therefore ®tness

de®nition gives individuals with the higher ®tness to be

selected more often than the ones with the lower ®tness,

resulting in a proportional parent selection scheme. A

clear de®nition of ARCR will be given in Section 4.

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741734

Fig. 4. An example of an individual.

Fig. 5. Single point crossover operator.

3.2.4. Crossover operator

The crossover operator is the basic search method of GAs

that produces offspring by combining parts of the chromo-

somes of the parents. We have used the single-point cross-

over operator. The single-point crossover operator randomly

selects one cut point in the parent chromosome. The cut

point divides the chromosome into two disjoint parts: the

left and the right part. The left (right) part of the father

chromosome and the right (left) part of the mother chromo-

some form a new offspring. Fig. 5 illustrates the process of

crossover. In this ®gure, the point between the second and

the third elements is selected as a crossover point. The

graphs beside the individuals denote the corresponding

partitioning before and after the crossover. We have used

the proportional selection scheme to select the individuals to

be used as the parents.

3.2.5. Mutation operator

Using only the crossover operator often results in prema-

ture convergence. Therefore, we applied the mutation

operators to offspring produced by the crossover operator.

The mutation operator visits array items in the chromosome

and determines whether it should be changed or not, using a

prede®ned mutation probability. When one item is selected,

a randomly generated index number (or a partition number)

is assigned to it. Although the mutation operator prevents

premature convergence, if the probability of mutation is too

large, the genetic algorithm becomes a random search algo-

rithm. Therefore, the mutation probability must be a rela-

tively small valueÐusually less than or equal to 1%.

3.3. Post-processing using the greedy algorithm

Generally, GAs are ef®cient at global search, but have

poor performance in ®ne-tuning around a local optimum.

Therefore, we post-processed the result of the genetic algo-

rithm by the greedy optimization algorithm. Algorithm 2

shows the greedy algorithm we used for the post-processing.

The greedy algorithm starts from the index con®guration

produced by the genetic algorithm. It then calculates

ARCR of merging some of the indexes. We have used the

term `merging the indexes' when we built one index on all

classes on which merged indexes are built. For each index

merging, the greedy algorithm compares the retrieval cost

and selects the cheapest one. If the selected merging helps,

then the greedy algorithm repeats the same process from the

new index con®guration. This process is continued until

there is no improvement. The resulting partition index

con®guration is the greedy optimum.

Algorithm 2 Greedy algorithm

1: Onew U {{C1}{C2}¼{Cn}}

2: repeat
3: Oold U Onew

4: for all I, J such that I; J [Oold and I ± J do
5: O U �Oold < {I < J}�2 {I J}

6: if ARCRO , ARCROnew
then

7: Onew U O

8: end if
9: end for
10: until Oold U Onew

11: return Onew as the greedy-optimum

3.4. Parallel genetic algorithm

Since our genetic algorithm spends most of the time in the

evaluation step, we parallelize the evaluation step. Our

parallel genetic algorithm works as follows: If there are N

available processors in a system, we select one master

processor and let it process the selection, crossover, and

mutation steps. Thereafter, it spreads all the individuals

that must be evaluated to other processors, including itself.

After each processor ®nishes calculating the evaluation, the

master gathers the results and performs the next iteration

based on them.

4. The cost model

In this section, we present a cost model that evaluates the

retrieval and storage costs of an index con®guration. We

®rst describe the basic assumptions on our cost model and

preliminary parameters. Then we derive the retrieval cost

and the storage cost from them. Finally, we show the results

of a few experiments for the veri®cation of our cost model.

Our index con®guration uses the structure of the class-

hierarchy index for each member index, which is a variation

of the B1-tree structure where class identi®ers are stored

with index entries in the leaf nodes. Therefore, we have

developed our cost model based on the discussion in

Ref. [14].

We make the following assumptions for our cost model:

² All key values have the same (average) length.

² The key values of an attribute are uniformly distributed

among the instances of a class.

² Leaf-node records are either all smaller or all larger than

the size of an index page.

4.1. Parameters

4.1.1. Database parameters

² Dcj
Ðnumber of distinct index key values in class Cj

² DiÐnumber of distinct index key values in index i

² Ncj
Ðcardinality of class Cj

² NiÐsum of the cardinalities of classes in index i

² NÐtotal number of instances in the database

N �
X

for all classes

NCj

² KiÐaverage number of elements contained in an

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741 735

attribute of index i

Ki � Ni=Di

² NCiÐaverage number of classes for an index key value

of an index i

NCi �
X

for all classes Ci in index i

DCj

Di

:

4.1.2. Index parameters

² PÐsize of an index page

² fÐaverage fanout of an internal node

² klÐaverage length of a value for an indexed attribute

² XLiÐaverage length of a leaf-node record for index i

XLi � header_length 1 kl 1 �sizeof �CLASSID�
1sizeof �offset�1 sizeof �number_of_OIDs�� £ NCi

1sizeof �OID� £ Ki;

where header consists of record_length, key_length,

over¯ow_page_id and number_of_classes

² LPiÐnumber of leaf-node pages for index i (excluding

over¯ow pages)

² OPiÐnumber of over¯ow pages for index i

if XLi # P LPi � d�Di £ XLi�=Pe
if XLi . P LPi � Di

LPi 1 OPi � Di £ dXLi=Pe

² HiÐinternal height of index i (excluding the leaf-node

level)

Hi � the number of terms in

�LPi 1 dLPi=f e 1 ddLPi=f e=f e 1 ¼ 1 1�:

4.2. Storage cost model

The storage cost for index i is given by the following

equation:

SCi �

8>><>>:
LPi 1 �dLPi=f e 1 ddLPi=f e=f e 1 ¼ 1 1� if XLi # P

LPi 1 OPi 1 �dLPi=f e 1 ddLPi=f e=f e 1 ¼ 1 1� if XLi . P

Therefore, the total storage cost required for an index

con®guration is given by

SC �
X

for all indexes in the index confiugration

SCi:

4.3. Retrieval cost model

4.3.1. Single key query evaluation

The number of index pages accessed to evaluate a single

key query is obviously the height of the index used. There-

fore, the retrieval cost for the index i is

RC
single
i �

Hi 1 1 if XLi # P

Hi 1 dXLi=Pe if XLi . P

(

Thus, the average number of pages accessed for an index

con®guration for a query q is

RCsingle �
X

for all indexes used by q

RC
single
i :

4.3.2. Range query evaluation

The retrieval cost for a range query is proportional to

the range speci®ed for a given query. Thus, we can

formulate the number of pages to be fetched for the

index i as follows:

RC
range
i � Hi 1 dquery_range £ LPie if XLi # P

Hi 1 dquery_range £ �LPi 1 OPi�e if XLi . P

(

The total retrieval cost for query q is given by

RCrange �
X

for all indexes used by q

RC
range
i :

4.4. Average retrieval cost ratio

The performance of an index con®guration is very depen-

dent on the target classes. Therefore, we need to introduce a

single metric for performance comparison between index

con®gurations. For this consideration, we de®ne the aver-

age retrieval cost ratio (ARCR), which is the ratio of the

average retrieval cost provided by an index con®guration

to that of the full index con®guration (without considering

the storage cost of the latter). The full index con®guration

here is a set of indexes on the full extent of each class and

therefore, it is the upper bound of the performance of

PINS.

Retrieval performance is very dependent on query

patterns in a real computing environment. This means that

we should apply query patterns in real world situations to

ARCR. Important considerations in the cost evaluation are

the ratio of the single-key queries and the query frequency

on each class.

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741736

The retrieval cost ratio RCi of each class Ci is given by

RCi
�

X
for all index Ij used for a query on Ci

HIj

H
I

full
Ci

£ single point query ratio

1

X
for all index Ij used for a query on Ci

LPIj

LPI
full
Ci

£�1 2 single point query ratio�
where I

full
Ci

is the index on the full extent of a class Ci.

By applying the query frequency, we formulate the

ARCR as follows:

ARCR �
X
;Ci

RCi
£ query frequency on Ci:

4.5. Veri®cation of the cost model

We performed several experiments for the justi®cation of

our cost model. In these experiments, we examined the

number of index pages accessed for queries on three classes

with 100,000 instances each. We ran the queries using two

different index con®gurations, one index on all three classes

and three single-class indexes on each class, varying the

distribution of key values, the number of instances, the

single key query ratio, and the query range. Table 1 shows

one of the results: the performance ratio of two index con®g-

urations. The results were almost the same for the other

experiments with various con®gurations. The table also

includes the expected ratio that is calculated with our cost

model. Here, the error ratio is computed by

experimental result 2 expected result

expected result
£ 100:

As seen in Table 1, the error ratios between the experi-

mental and the expected results are always within 5%. The

error ratio increases somewhat in the cases where the query

range is narrow or the single-key query ratio is low. This is

due to the assumption of uniform distribution, which is not

met when the size of an answer for a query is small.

5. Performance analysis

We evaluated the performance of PINS mainly on the

class hierarchy depicted in Fig. 6. This class hierarchy

(Hierarchy H16) consists of 16 classes. The number in

each parenthesis denotes the number of instances of the

class. In addition, we used class hierarchies that have

eight classes: 8 (H8), 24 (H24), 40 (H42), 48 (H48), 56

(H56), and 60 (H60). We designed the class hierarchy

roughly so that leaf classes and classes close to leaves

have more instances than the classes close to the root, and

classes in the same depth have the same number of

instances. We examined the retrieval cost and storage cost

while varying the number of indexes. We also compared

performances of PINS with CH. Finally, we tested time-

saving by parallelizing the genetic algorithm.

For each indexing con®guration, we computed the retrie-

val cost ratio for a query on each class, ARCR, and the total

storage cost ratio against the full index con®guration. Table

2 lists the parameter settings used in the experiments. In all

cases, the single key query ratio is 10% and queries are

distributed uniformly over all classes. The distribution of

key values was totally inclusive in the range of 1±10,000.

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741 737

Table 1

The veri®cation of our cost model

Single-key query ratio (%) 5 10 95

Query range (%) 1 5 10 1 5 10 1 5 10

Expected result 1.63 1.63 1.63 1.71 1.71 1.71 2.93 2.93 2.93

Experimental result 1.71 1.61 1.61 1.75 1.70 1.68 2.90 2.90 2.90

Error ratio (%) 14.9 21.2 21.2 12.3 20.6 21.8 21.0 21.0 21.0

Fig. 6. Test class hierarchy H16.

Table 2

Parameters used in the experiment

p 4096

f 255 � �4096=�8 1 4�� £ �3=4��
kl 8

sizeof(OID) 8

sizeof(CLASSID) 4

sizeof(Page_id) 4

sizeof(offset) 2

sizeof(number_of_OIDs) 2

sizeof(record_length) 2

sizeof(key_length) 2

sizeof(number_of_classes) 2

We performed our experiment on an IBM SP2 parallel

processing system.3

As a preparation for the main experiments, we performed

the following experiments to ®nd the adequate population

size, the replacement ratio, the crossover ratio, and the

mutation ratio. We determined these parameters by varying

one parameter while keeping the other three parameters

®xed.4 Fig. 7 shows the best and ARCR of each generation

(iteration) when the parameters are varied. We used a popu-

lation size of 100 and a replacement ratio of 70%, because

with these values the experiments do not take a long time,

and the best-of-generation does not converge prematurely.

We selected 0.9 for crossover probability and 0.01 for muta-

tion probability because in most experiments these values

produced the best results, and did not introduce premature

convergence. All experimental results are performed with

these parameter settings.

We also tested several different schemes of creating

initial population and selected the scheme that creates the

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741738

Fig. 7. Fitness changes of average and best individual with varying parameters: (a) size of population and replacement ratio; (b) crossover ratio and mutation

ratio.

Table 3

PINS with varying number of indexes to be used

imax uIPINSu IPINS ARCR SC

1 1 {{1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16}}

7.13 16,513

2 2 {{1 7 8 9 10 11 12 13}

{2 3 4 5 6 14 15 16}}

3.74 16,568

4 4 {{1 7 8 12 13} {2 3 4 5 6}

{9 10 11} {14 15 16}}

2.04 16,675

6 6 {{1 2 3 4} {5 6} {7 14 15}

{8 12 13} {9 10 11} {16}}

1.60 16,785

8 8 {{1 7 8 13} {2 3 5} {4 6} {9 11}

{10} {12} {14 15} {16}}

1.37 16,893

10 10 {{1 7 8 9} {2 3 4} {5} {6} {10}

{11} {12} {13} {14 15} {16}}

1.26 17,001

12 12 {{1 2 3} {4} {5} {6} {7 14}

{8 9} {10} {11} {12} {13}

{15} {16}}

1.23 17,109

14 12 {{1 2 3} {4} {5} {6} {7 14}

{8 9} {10} {11} {12} {13}

{15} {16}}

1.23 17,109

16 12 {{1 2 3} {4} {5} {6} {7 14}

{8 9} {10} {11} {12} {13}

{15} {16}}

1.23 17,109
3 The SP2 system has 40 nodes and each node is equipped with

266 MFLOPS CPU and 128 MB RAM so that the system as a whole

provides a peak performance of 10 GFLOPS and 4.8 GB of memory.
4 Genetic algorithms can be used to determine these parameters.

initial population at random because it produced the best

result with the minimum time.

Table 3 illustrates experimental results for H16 as we

change the number of indexes to be used. In this table, the

®rst column denotes the maximum number of indexes to be

used (imax), and the other columns show the number of

indexes produced �uIPINSu�; partition index con®gurations

(IPINS), average retrieval cost ratio with full indexes (RC),

and storage cost in pages. Because an index is created for

each partition, the number of indexes can also be considered

as the number of partitions. Table 3 shows that no perfor-

mance gain is achieved using more than 12 indexes �imax .
12�: Therefore, it is optimal to use 12 indexes for H16. Table

3 also shows that as the number of indexes is increased, the

retrieval cost decreases signi®cantly, whereas the storage

cost increases very slowly. This means that splitting a

large index into several small indexes does not require a

signi®cant space overhead. Comparing PINS with imax � 1

(CH) and PINS with imax � 12; we ®nd that there is around

700% performance enhancement, whereas there is only 4%

additional storage cost. So, we can safely use imax � N for a

class hierarchy with N classes, since, in most cases, it can

cover the PINS result with smaller maximum indexes, and

the number of indexes does not have a great in¯uence on the

storage cost.

Fig. 8 illustrates the retrieval cost of every class in H16.

PINS with imax � 1 is drawn in a solid line, and it can be

regarded as CH. CH gives good performance for classes

near the root class, but when it comes to classes close to

leaves and leaf classes, the performance degrades signi®-

cantly. In particular, the retrieval cost of C16 is higher than

other leaves, such as C11;C12 and C15; because it has fewer

instances than others. As the number of indexes used is

increased, the performance of the classes close to leaves

improves greatly, whereas the performance of those around

the root class degrades. This is because we assigned the

same priority (or access ratio) to every class so that PINS

tried to provide equal performance for the classes.

Table 4 shows the optimal number of partition index

con®gurations, the storage cost ratio with full index

(SCPINS/SCfull), ARCR with full index (ARCRPINS/ARCRfull),

the storage cost ratio with class-hierarchy index (SCPINS/

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741 739

Fig. 8. Expected retrieval of classes.

Table 4

PINS result with test hierarchies

Hierarchy uIPINSu SCPINS/SCfull ARCRPINS/ARCRfull SCPINS/SCCH ARCRPINS/ARCRCH

H8 5 0.37 1.19 1.2233 0.40

H16 12 0.25 1.23 1.2321 0.17

H24 19 0.38 1.31 1.2697 0.11

H32 22 0.21 1.49 1.2685 0.10

H40 27 0.43 1.75 1.3167 0.10

H48 33 0.40 1.77 1.3570 0.08

H56 37 0.43 1.74 1.3156 0.07

H60 40 0.43 1.75 1.3332 0.07

SCCH), and ARCR with class-hierarchy index (ARCRPINS/

ARCRCH) with various class hierarchies. In most cases,

PINS entails retrieval cost of up to 130% of the full index,

while consuming less than half storage space. Considering

that we used hierarchies with only three or four levels depth,

the storage bene®t would be greater than this result if we

were to test hierarchies with greater depths. Compared with

CH, PINS consumes somewhat larger storage space

�119±177%� but provides far better retrieval performance

by reducing the retrieval cost up to 7±40% of CH. In parti-

cular, PINS gives better performance improvement as the

number of classes increases.

Besides the test results shown, we also tested many differ-

ent cases of workload (query frequencies among classes).

We found that PINS selects CH when most of the queries

are centered at root class, while it produces a set of single

class indexes for the reverse case. This result shows that

PINS can adaptively design index con®gurations according

to the workload, while CH and single class index are ®xed

regardless of the workload.

Fig. 9 illustrates the execution time in relation to the

number of processors being used. In this ®gure, we include

only the time for running the genetic algorithm, excluding

the time for the data loading and program initialization,

because the genetic algorithm takes most of the program

execution time. In our parallel genetic algorithm, we paral-

lelized the evaluation step. If there are N individuals that

have to be evaluated and there are k CPUs available, the

master CPU allocates N/k individuals to each CPU including

itself. After the evaluation is completed in each CPU, the

result is sent back to the master CPU. The master CPU then

continues with the next step. As expected, the execution

time decreases as the number of CPUs increases. Paralle-

lism is more noticeable when it comes to large hierarchies

with relatively more classes (H48, H60). In most cases,

PINS shows good parallelism until a certain number of

CPUs are used (four CPUs with H16, and seven CPUs

with H32). This is due to the fact that only the evaluation

step is parallelized, while selection, crossover and mutation

are processed sequentially by the master processor. There-

fore, although the evaluation step takes less time as the

number of processors increases, the total execution time

for the genetic algorithm does not decrease signi®cantly.

6. Conclusion and future work

The performance of the object databases is the key to

their commercial success, and thus ef®cient indexing on a

class hierarchy is essential for them.

In this study, we present the partition index con®guration

scheme (PINS), which ®nds a near optimal index con®gura-

tion, within a speci®ed number of indexes, using the genetic

algorithm and the greedy algorithm. PINS provides a good

index con®guration for any real database environment, since

it considers the distribution of key values, as well as query

patterns such as query frequency on each class. Essentially,

our PINS can also be easily applied to a system since it uses

the B1-tree structure.

We have developed a cost model and analyzed the perfor-

mance of the new index technique with various class hier-

archies. In these experiments, PINS showed a signi®cant

performance enhancement compared to the class-hierarchy

index, with little additional space overhead. Although PINS

does not give as good a performance as the full index (FI), it

is more practical because it requires far less storage space

than FI, and does not introduce additional update costs.

Since PINS assume the uniformity in the distribution of

key values, we are currently devising a statistical method to

estimate it more precisely, and will extend our method for

parallel database systems.

Acknowledgements

We wish to thank the referees for their valuable

comments and suggestions.

References

[1] E. Bertino, P. Foscoli, Index organizations for object-oriented data-

base systems, IEEE Transactions on Knowledge and Database Engi-

neering 7 (2) (1995) 193±209.

[2] E. Bertino, W. Kim, Indexing techniques for queries on nested

objects, IEEE Transactions on Knowledge and Database Engineering

1 (2) (1989) 196±214.

[3] T.N. Bui, B.R. Moon, A fast and stable hybrid genetic algorithm for

the ratio-cut partitioning problem on hypergraphs, in: Proceedings of

the Design Automation Conference, 1994, pp. 664±669.

[4] T.N. Bui, B.R. Moon, Genetic algorithm and graph partitioning, IEEE

Transactions on Computers 45 (7) (1996) 841±855.

[5] I.T. Christou, R.R. Meyer, Fast distributed genetic algorithms for

partitioning uniform grids, in: Proceedings of the Workshop on Paral-

lel Algorithms for Irregularly Structured Problems, 1996, pp. 89±103.

[6] D. Commer, The ubiquitous b-tree, ACM Computing Surveys 11 (2)

(1979) 121±137.

[7] I.W. Flockhart, N.J. Radcliffe, A genetic algorithm-based approach to

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741740

Fig. 9. Elapsed time in the genetic algorithm with varying the number of

CPUs.

data mining, in: Proceedings of Knowledge Discovery and Data

Mining, 1996, pp. 299±302.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, Reading, MA, 1989.

[9] Postgres Global Development Group, PostgreSQL Programmer's

Guide, 1999.

[10] A. Guttman, R-trees: a dynamic index structure for spatial searching,

in: Proceedings of the ACM SIGMOD International Conference on

Management of Data, 1984, pp. 47±57.

[11] J.T. Horng, B.J. Liu, A genetic algorithm for database query optimi-

zation, in: Proceedings of the First IEEE Conference on Evolutionary

Computation, 1994, pp. 350±355.

[12] Y. Ishikawa, H. Kitagawa, N. Ohbo, Evaluation of signature ®les as

set access facilities in oodbs, in: Proceedings of the ACM SIGMOD

International Conference on Management of Data, 1993, pp. 247±

256.

[13] C. Kilger, G. Moerkotte, Indexing multiple sets, in: Proceedings of the

International Conference on Very Large Data Bases, 1994, pp. 180±

191.

[14] W. Kim, K.-C. Kim, A. Dale, Object-oriented Concepts, Databases,

and Applications, Addison-Wesley, Reading, MA, 1989 (Chapter:

Indexing Techniques for Object-oriented Databases).

[15] C.C. Low, B.C. Ooi, H. Lu, H-trees: a dynamic associative search

index for oodb, in: Proceedings of the ACM SIGMOD International

Conference on Management of Data, 1992, pp. 134±143.

[16] S. Ramaswamy, P.C. Kanellakis, Oodb indexing by class-division, in:

Proceedings of the ACM SIGMOD International Conference on

Management of Data, 1995, pp. 139±150.

[17] B. Sreenath, S. Seshadri, The hcc-tree: an ef®cient index structure for

object oriented databases, in: Proceedings of the International Confer-

ence on Very Large Data Bases, 1992, pp. 203±213.

[18] M. Srinivas, L.M. Patnaik, Genetic algorithms: a survey, IEEE

Computer 27 (6) (1994) 17±26.

[19] P. van Bommel, Th.P. van der Weide, Towards database optimization

by evolution, in: Proceedings of the International Conference on

Information Systems and Management of Data (CISMOD), 1992,

pp. 273±287.

H.-J. Song et al. / Information and Software Technology 42 (2000) 731±741 741

