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Abstract

There exist some preprocessing based language extensions for database management where persistence is orthogonal to the class
hierarchy. They allow a class hierarchy to be built from both database classes and non-database classes together. Such a property is important
in that classes can be reused in implementing database classes, and vice versa. In this paper, we elaborate on the orthogonality of persistence
to class-hierarchies, and find that the existing method to achieve this is not satisfactory because of the side-effects of the heterogeneosity of
the links in a class hierarchy; some links represent subset(IsA) relationships between database classes, while the others denote inheritance for
code-reuse. Finally, we proposeLODp, a C11 extension to database access, which separates the different categories of links into
independent hierarchies, and supports orthogonal persistence to the class hierarchy, overcoming the limitations in the previous methods.
q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most object-oriented database systems (OODBMS)
regard programming languages as the main interfaces
[19]. Now, it is popular to integrate OODBMSs and
general-purpose languages like C11, Smalltalk and Java.
In this paper, we call the general-purpose languages the
‘base languages’.

There are two widely used approaches to the integration
of database management and programming languages. In
the first approach, the (class) library for database manage-
ment is provided for the base-language programmers. For
example, the ODMG-93 object model defines such library
interfaces with C11, Smalltalk and Java [8] with the
persistent root class ‘d_Object’. In the second approach
[20,21], the syntax and/or the semantics of the base
language are extended to support database management
facilities. Their programs are usually preprocessed into
low-level function calls in the pure base languages. One

of the advantages of the latter over the former approach is
that a class hierarchy can be constructed with database
classes and non-database classes mixed, which enables
reusing useful codes of non-database classes in implement-
ing database classes, and vice versa [20]. That is, persistence
is orthogonal to class-hierarchies.

In this paper, we elaborate on the orthogonality of persis-
tence to class-hierarchies. We find that the existing method
to achieve this is not satisfactory because of the side-effects
of the heterogeneosity of the links in a class hierarchy; some
links represent subset (IsA) relationships between database
classes, while the others denote inheritance for code-reuse
between classes. This paper proposes ‘LODp’, 1 a C11
extension to database access, supporting orthogonal persis-
tence to the class-hierarchy without the limitations in the
existing method, by separating the different categories of
links.

The sequence of the paper is as follows. The next section
introduces the main ideas and language features ofLODp

with some examples. Sections 3–5 elaborate on our imple-
mentation; Section 3 focuses on the preprocessing phase,
and Sections 4 and 5 briefly mention the type system and
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others, respectively. Discussions and related works are
covered in Section 6. This paper is concluded in Section
7. Throughout this paper, we assume that readers are
acquainted with the ODMG C11 binding [8].

2. Overview of LODLODp

2.1. Motivations

As mentioned in the previous section, there already exists
the mechanism of constructing a class hierarchy with data-
base classes and non-database classes together. For exam-
ple, supposing ‘D1’ and ‘D2’ are database classes, the non-
database classN can be one of the subclasses ofD1 and/or
one of the super classes ofD2.

This enables two different kinds of links between classes
to coexist in a class hierarchy. One is for the subset (IsA)
relationships between extents of database classes, which
denotes database schema, usually viewed from more than
one program sharing the database. The other represents
inheritance for code-reuse between classes, which is usually
related to the implementation details and likely to be hidden
from programs other than the one the class is being imple-
mented in. In the above example, both the relationshipsD1–
N andN–D2 are for reuse. On the other hand, whenD0 is a
super class of bothD1 andD2, the relationshipsD0–D1 and
D0–D2 are subset links.

Unfortunately, this heterogeneosity of the links in a class
hierarchy entails the following limitations:

• The programmers have to take much care in defining
links of class hierarchies, not to cause side-effects from
other kinds of links. In the above example, there would
be the linkD1–D2, which was not originally intended if
the implementation of classes was not considered.

• Additional facilities for filtering the IsA hierarchy from
the entire hierarchy are needed to encapsulate what
depends on implementation. In the above example, we
should provide the view of {D0;D1;D1} for the users of
query languages and schema designers who do not care
about the implementation details.

• Changes in non-database classes are discouraged since
they may cause database schema evolution.

In the above example, when we decide not to reuseN in
the implementation ofD2 any more, this entails the modifi-
cation of entire class hierarchies.

2.2. Basic characteristics ofLODp

In this section, we introduce the main idea ofLODp.

2.2.1. Separate modules for a database class
There are two different aspects of a database class. The

‘interface’ of a class is related to the semantics of the data-
base, which makes classes form in the subset (IsA) relation-
ships. The ‘implementation’ of a class is the whole

description for implementing the class, which is responsible
for the inheritance for code-reuse.

This motivates two separate modules for a database
class—one for the interface and one for the implementation.
The idea of such separation is not new in data sharing
environments, especially in multi-language environments
and/or distributed database environments, where the inter-
face is usually referred to by more than one program, while
class implementation is hidden from users other than the one
implementing the class. In the previous example, for each of
D0, D1 andD2, an interface and implementation are given.

2.2.2. Distinct class hierarchies
A LODp program deals with two distinct class hierar-

chies for interfaces of database classes and for implementa-
tions of database classes and non-database classes. The
interface hierarchies are based on subset relationships
between extents of related schema classes, which are
viewed by all of the users including query language users
and schema designers. The hierarchies for the implementa-
tions of database classes and non-database classes are based
on code-reuse and are independent from the interface hier-
archies. In the above example, one hierarchy is
Dinterf

0 2 { Dinterf
1 ;Dinterf

2 }, while the other isDimpl
0 2 Dimpl

1 2
N 2 Dimpl

2 :

Note that implementations of database classes can
become super/sub-classes of non-database classes, while
interfaces cannot. This is because only the implementation
aspect of a database class requires relationships with non-
database classes.

Independence between interfaces and implementation
frees users from considering one kind of link in defining
other kinds of link.

Although the separate interface hierarchy would look
similar to a distinct database class hierarchy from the speci-
fic root class ‘d_Object’ in the database library, it is abso-
lutely independent from the implementation of the database-
classes, which eliminates the needs for interactions with
non-database classes. Thus, although the hierarchies with
the implementations of database classes and non-database
classes are constructed together, users can still enjoy ortho-
gonality of the persistence to the class-hierarchy.

2.2.3. More than one implementation for a class
In LODp, one interface and more than one implementa-

tion is allowed for a database class. It is easy to see that
multiple implementations for a class is necessary for the
independence between two kinds of hierarchies.

In addition, the schema evolution cost can be degenerated
in some cases. We will discuss this more in a later section.

2.3. Examples

2.3.1. Definition of interfaces of persistent classes
In most preprocessing based DBPLs [1,20,21], a database
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class is usually defined with the new keyword ‘persistent’,
as follows:2

// Schema definition in most C11 based DBPLs
persistent class Deposit {

private:
money amount; time issue_date;

public:
number account_number;
money show_amount(); time show_date();
void put_money(money); ….

};

However, inLODp, two more object constructors other
than theclassare introduced for class-separation—‘inter-
face’ and ‘implementation’. An ‘ interface’ is an object
constructor consisting of public members and member func-
tion signatures. An ‘implementation’ is the implementation
part of a schema class that includes internal members/
member functions and member function implementations.
When a schema class is separated into an interfaceI and an
implementationM, it is said thatM implementsI, and
objects created byM can also be considered objects ofI.

Classes with the keyword ‘persistent’ represent only
interfaces inLODp. For example, the persistent class
‘Deposit’ consists of only itspublic part, as follows:

persistent class Deposit {
number account_number;
money show_amount(); time show_date();
void put_money(); ….

};

Otherwise, we can also define ‘Deposit’ as a subclass of
another persistent class, as follows:

persistent class Account {
number account_number;
money show_amount(); time show_date(); ….

};

persistent class Deposit: Account {… void put_mo-
ney(); …};
persistent class Loan: Account {…(void borrow_mo-
ney();…};

Not only can these schema interfaces be defined in
LODp, but also in ODLs (Object Definition Language) [7].

2.3.2. Definition of implementations and bindings to
interfaces

With both thepublic and private parts of a class, an
implementation has the same declaration syntax as a non-
database class, except for its additional keyword ‘imple-
ments’, which binds it to an interface. For example, the
implementation ‘Deposit_Impl1’ in the next example
implements the interface ‘Deposit’.

class Deposit_Impl1 { // implementation
implements Deposit;
…. // same as declaration in Deposit(can be
omitted)
money amount; time issue_date;
…. // method implementation …

};

Implementations have to be declared and defined only in
programming language interfaces, likeLODp. In the
declaration of an implementation, the data/methods
declared in the corresponding interface can be omitted or
rephrased. If rephrased, they are checked to see whether the
user-defined binding destroys the type safety. If a binding is
not destructive, we call it an ‘acceptable binding’ [10].

The hierarchy of interfaces and that of implementations
in a program are independent of each other. The interface
hierarchy is based on subset relationships and related to
modeling a schema, while the implementation hierarchy is
constructed from reuse relationships. For example, the
implementation ‘Money_Deposit’, which implements the
interface ‘Deposit’, is placed in a hierarchy that is indepen-
dent of the hierarchy of ‘Deposit’ and ‘Account’. Assume
that the class ‘moneyManager’ is an existing class for
managing the ‘money’ type data.

class Money_Deposit: moneyManager { implements
Deposit; … };

Implementations of the interface ‘Deposit’ can be reused
for other interfaces. The following examples show how
‘Deposit_Imp1’ is used to implement the interface
‘Loan’. The resulting class hierarchy is shown in Fig. 1.

class Loan_Impl1: Deposit_Impl1{ implements Loan;
… };

Since interfaces and implementations are not restricted to
map on a one-to-one basis, a schema interface can have
instances created by different implementations. For exam-
ple, assuming that ‘account_data’ is a system-defined
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record type for an account, the interface ‘Deposit’ can have
more than one implementation, simultaneously:

class Money_Deposit: moneyManager{ implements
Deposit; …//same as above definition }
class Deposit_Impl1{ implements Deposit; …// same
as above definition };
class Deposit_Impl2: account_data { implements
Deposit; … };

2.3.3. Usage of objects with handlers
As in conventional language extensions [1,4], a database

object is created through an implementation and handled by
an ‘object handler(a persistent pointer)’. However, note that
in LODp, the type of the object handler is always the poin-
ter to an interface type. For example, if the interface
‘Deposit’ is implemented by both ‘Deposit_Impl1’ and
‘Deposit_Impl2’, the instances can be created through
‘Deposit_Impl1’ or ‘ Deposit_Impl2’, and handled by an
object handler ‘x’ which is a pointer to the ‘Deposit’ type.

persistent Deposit p x� new (obase) Deposit_Impl1;
…; x� new (obase) Deposit_Impl2;
x! put_money(1000);

By the object handler ‘x’, all members/member functions
described in ‘Deposit’ can be accessed, whether the actual
implementation is ‘Deposit_Impl1’ or ‘ Deposit_Impl2’.
This allows a new style of polymorphism [6]. Such assign-
ment statements are allowed only if ‘Deposit_Impl1’ and
‘Deposit_Impl2’ implement the interface ‘Deposit’. Here,
‘obase’ represents an object for theobjectbase(a database in
an OODBMS) [7].

3. Implementation details

In this section, we present our implementation which
translatesLODp codes into the expressions in ODMG
C11 binding.

The C11 object structures, deeply reliant on language
implementation for efficiency, makes it hard to design an
extension of the language [13]. Since this also makes it
difficult to support database and class-separation, we have
decided to impose some restrictions on C11. First,LODp

deals with only global interfaces and implementations, i.e.
only those defined outside all blocks. Second, protected
members/member functions are not considered. Third, no
function overloading is allowed. Fourth, we exclude opera-
tor overloading. Fifth, we allow neither the array types of
user defined types for members, nor the class templates for
interfaces/implementations.

3.1. System-defined classes

For each declaration of an interface and implementation,
some definitions of C11 classes are generated. As in
ODMG C11 binding, where all database classes are

defined as subclasses of ‘Persistent_Object’, implementa-
tions are translated to be the subclasses of ‘Imp1Object’, a
system-defined class derived fromPersistent_Object. The
definition of Imp1Object is as follows:

struct Imp1Object: public Persistent_Object{
Fptrtb1Class p my_class_tb1;
Imp1Object(_lod_ClassId class_id)
{my_class_tb1� &ftb1[class_id];}…

};

With a pointer to a member function table named
‘my_class_tb1’, we determine at run time which function
to execute. ‘ftb1’ is the list of member function tables
constructed from the declarations of interfaces and imple-
mentations. A ‘class_id’ is a class identifier assigned to
each class during the preprocessing step.ftb1 is searched
with the class identifier as a key.

Schema interfaces are defined as subclasses of ‘InterOb-
ject’, another system-defined class derived from ‘RefkIm-
p1Objectl‘. The definition ofInterObject is as follows.

struct InterObject: public RefkImp1Objectl {
InterObject (POID t � 0): RefkImp1Objectl(t){ }
InterObject (Imp1Object p t): RefkImp1Objectl(t){ }
InterObject (const RefAny & t): RefkImp1Ob-
jectl(t){ }
InterObject (const RefkImp1Objectl & t): RefkIm-
p1Objectl(t){ }

…
};

3.2. Translation

3.2.1. Interfaces
For each member originally defined in an interface, two

member functions prefixed with ‘get_’ and ‘set_’ are
generated, and every member access is translated into the
get_/set_ member function call. For eachget_/set_
member function, the preprocessor defines a new global
function, and also generates in everyget_/set_ function
body the code for the global function call. The member
functions in the original interfaces remain after the transla-
tion. The body of such a member function is converted to
the corresponding member function call of the implementa-
tion.

For example, consider a simple schema interface ‘SCol-
lection’ and its super class ‘SCollectionSuper’.

interface SCollectionSuper { void insert(int x);};
interface SCollection: SCollectionSuper {char p

name; };

After translation, they are redefined as a subclass of the
classInterObject with some new member functions.

class SCollectionSuper: virtual public InterObject {
public:

void insert(int x){
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void (pf) (const RefAny&, int);
f� (void (p) (const RefAny&, int))
(poperator! ()!my_class_tb1)
[FTN_insert_ID]! ptr;
f(p this, x);

}
public:

SCollectionSuper(POID t � 0): InterObject(t) {}
SCollectionSuper(Imp1Object p t): InterObject(t)
{}
SCollectionSuper(const Ref kImp1Objectl & t):
InterObject(t) {}
SCollectionSuper(const RefAny & t): InterOb-
ject(t) {}
SCollectionSuper& operator� (const RefkIm-
p1Objectl & t) {
SCollectionSuper p nthis � this; pnthis � t;
return pthis;}
…

};
class SCollection: public SCollectionSuper
{
public:

void set_name(char n[]){
void (pf) (const RefAny&, const char []);
f� (void (p) (const RefAny&, const char []))

(poperator! () !my_class_tb1)
[FTN_set_name_ID]! ptr;
f(pthis,n);
}

const char p get_name() {
char p (pf) (const RefAny&);
f� (char p (p) (const RefAny&))
(poperator! ()!my_class_tb1)
[FTN_get_name_ID]! ptr;
return f(pthis);

}
public:

SCollection(POID t � 0): InterObject(t) {}
SCollection(Imp1Object p t): InterObject(t) {}
SCollection(const RefkImp1Objectl & t): Inter-
Object(t) {}
SCollection(const RefAny & t): InterObject(t) {}
SCollection&operator� (constRefkImp1Objectl
& t) {
SCollection p nthis� this; (p nthis)� t; return
p this;}
…

};

As seen above, an interface without super classes is trans-
lated into a direct subclass ofInterObject. For the body of a
member function like ‘insert()’, the preprocessor generates
code for the call of the corresponding global function
through the corresponding function pointer in
my_class_tb1. For each member,get_/set_ functions

are generated, with their bodies filled with the correspond-
ing global function calls.

The constants prefixed with ‘FTN_’ are the identifiers for
member function names, and are used as indices for the
member functions in eachmy_class_table. Such identi-
fiers should be carefully selected, to avoid the conflict of
indices in the case of inheritance. For example, if we assign
the integer 1 to theinsert of SCollectionSuper, it should be
ensured that the identifier forinsert remains 1 in all
subclasses ofSCollectionSuper, in order for its call
through themy_class_table entry to work properly. It
would be more sophisticated in the case of multiple inheri-
tance.

In LODp, during the preprocessing step, the entire inter-
face hierarchy is scanned, and a unique ‘color’ (identifier)
assigned to each member function name in the hierarchy.
These colors are found by the graph coloring algorithm [12].
We use colors as indices for the member functions in each
my_class_table. The member function identifiers for the
above example are defined by our preprocessor, as follows:

enum_lod_FtnId {FTN__ERROR_ID�21,
FTN_insert_ID� 0, FTN_set_name_ID, FTN_get_-
name_ID};

3.2.2. Implementations
The declaration of an implementation is made containing

the copies of the members and the member functions of its
corresponding interface, unless they are rephrased in the
declaration of the implementation. For example, we could
define the implementations ‘BSetSuper’, ‘ BSet’ and
‘BSetSub’ as follows:

class BSetSuper
{public: char name[10]; void insert(int x) {…..} };

class BSet: public BSetSuper
{implements SCollection; int number_of(){…} };

class BSetSub: public BSet
{public: void insert(int x) {…..} };

…..

which would be translated as

class BSetSuper: virtual public Imp1Object{
public:

char name[10];
void insert(int x){ … }
BSetSuper(): Imp1Object(CLASS_BSetSu-
per_ID){ }
… };

class BSet: public BSetSuper{
int number_of () {…}

public:
BSet(): Imp1Object(CLASS_BSet_ID){ }

… };
class BSetSub: public BSet{

public:
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void insert(int x){ …..}
BSetSub(): Imp1Object(CLASS_BSetSub_ID){
}
… };

The preprocessor discriminates implementations from
non-database classes through syntactical differences, such
as the keyword ‘implements’, since implementations,
unlike non-database classes, should be registered into the
database. Classes such asBSetSuper and BSetSub are
also made subclasses ofImp1Object, as long as they are
linked with implementationBSet in the inheritance hierar-
chy.

The constants prefixed with ‘CLASS_’ are the identifiers
for the implementations. They are used to searchftb1 in the
constructor of theImp1Object, in order to get appropriate
my_class_tables. The identifiers for the example imple-
mentations defined by theLODp preprocessor are as
follows:

enum_lod_ClassId { CLASS_ERROR_ID�21,
CLASS_BSetSuper_ID� 0, CLASS_BSet_ID,
CLASS_BSetSub_ID};

3.2.3. Definition and registration of global functions
During the translation, some global functions are gener-

ated in order to connect corresponding interfaces and imple-
mentations. They contain the call of the corresponding
member function of the implementation. For any pair of
interface and its implementation, one global function is
needed for each member function, and two for each
member.

The preprocessor also generates the code for registering
those global functions intoftb1.

Fig. 2 depicts aLODp object structure of our implemen-
tation. Note that, after translation, an actual database object
becomes the implementation object, while its interface has
the same layout as that of the ODMGRef handler [7], but
with the more difference in its functionality.

3.2.4. Expressions
As mentioned earlier, a database object is created by the

‘new’ expression and handled by a persistent pointer. Let us
consider the following example which involves creating and
handling persistent objects:

SCollection p sp1� new (obase) BSet;
sp1! insert(3);
sp1! name � “MySet1”;
cout Rsp1! get_name() Rend1;
SCollectionSuper psp2� new (obase) BSetSub;
sp2! insert(5);

The preprocessor translates this code segment into;

SCollection sp1� new (obase) BSet;
sp1.insert (3);
sp1.set_name (“MySet1”);
cout R sp1.get_name() R end1;
SCollectionSuper sp2� new (obase) BSetSub;
sp2.insert(5);

Note that, to avoid multiple indirections, an interface
pointer is not translated into a smart pointer of an interface,
but instead into an interface object itself, since an interface
object is already a smart pointer.

3.2.5. Cost analysis
The memory required for member function tables isPI
i�1 Mi × (number_of_member_functions_of_interfacei

1 2 × number_of_members_of_interfacei) words, whereI
is the total number of interfaces, andMi is the number of
implementations implementing theinterfacei, since a
member function table entry is one word per table entry.
An interface requires no more words than a normal smart
pointer ofRef. An implementation object needs one more
word than an object ofPersistent_Object, for the member
function table. Thus, the total space overhead for class-
separation comes to:

Space_Overhead�
XI

i�1

Mi

× (number_of_member_functions_of_interfacei

1 2 × number_of_members_of_interfacei)

1 number_of_implementation_objectswords.

The overhead for calling a member function through an
interface object is roughly the same as the time for one
member function call and one global function call. The
overhead for accessing a member through an interface
object is roughly the same as the time for two member
function calls (for theget_/set_ function) and one global
function call. Note that no extra time is required for object
creation.

The time needed for building up the member function
tables and for registering system-defined global func-
tions depends on the total number of members and
member functions of interfaces, that is,

PI
i�1 Mi ×

(number_of_member_functions_of_interfacei 1 2 × number_
of_members_of_interfacei).

The overhead for assigning colors is in proportion toPI
i�1 Mi × (number_of_member_functions_of_interfacei),

E.-S. Cho, H.-J. Kim / Information and Software Technology 42 (2000) 347–356352

Fig. 2. An object with class-separation.



and the space for the color table in preprocessing depends onPI
i�1 Mi × (number_of_member_functions_of_interfacei).

However, they do not affect the execution time, but
increases only the preprocessing time.

4. Type checking

In pure C11 programs, an object of ‘SetkBicyclel’
cannot be assigned to the variable of ‘SetkPersonl’.
However, in ODMG C11 binding [7], objects ofRef can
appear at any position expectingRefAny, even when the
type parameters of the template classRef are different. For
example, an object of ‘RefkBicyclel’ can be used in
contexts expecting ‘RefkPersonl’. Accordingly, it is
preprocessor’s responsibility to type check to make the
smart pointer typeRef behave like a real C11 pointer
type. At the same time, it means that the preprocessor is
allowed to have its own type system for persistent pointer
types.

Type checking for class-separation support is categorized
into four cases, as follows:

1. Subtyping relationship checking between two interfaces:
to see if objects of one interface can be used in contexts
expecting the other interface.

2. Subtyping relationship checking between two implemen-
tations: to see if objects of one implementation can be
used in contexts expecting the other implementation.

3. Acceptability checking: to see if the user-defined binding
of an interface and an implementation affects type safety.

4. ‘Implementing’ relationship checking between an inter-
face and an implementation: to see if objects of the
implementation can be used in contexts expecting the
interface.

Note that animplementingrelationship does not simply
mean an acceptable binding, because an implementation
not explicitly bound to an interface may implement the
interface [10]. The acceptability checking is made at the
implementation declaration; the subtype relationship and
implementation relationship are checked at each expres-
sion.3

While type checking, the preprocessor builds and refers
to a table which contains the description of the classes being
preprocessed and the information from the schema manager.
Details on the type checking inLOD p are found in Ref.
[10].

5. Others, besides preprocessing

The schema manager maintains a flag for each class to
determine if the class is an interface or an implementation.

The schema class generated by an on-line importing tool is
always considered as an interface. As for an implementa-
tion, it also keeps the information on the interface it is bound
to.

An extent for a schema class is collected by traversing all
its implementations, as well as its subclasses in the interface
hierarchy. In application language interfaces such asLODp

and ODMG C11 binding, however, it is hard to clearly
define extents because of their transient instances and
uncommitted object creation. Thus, containers like ‘Set’s
and ‘Bag’s usually replace extents and collect the instances
explicitly.

The preprocessing steps are summarized in Fig. 3.

6. Related works and discussions

6.1. The ODMG 2.0 model

The ODMG object model [8] supports the separate imple-
mentation for a class, in a different way from ours. First of
all, unlike LODp, the ODMG C11 binding allows only
one implementation for a database class in a program. That
is, to a C11 programmer, the implementation looks iden-
tical to its class, while another language is used for the
schema design in order to define the separate interface of
a class. Thus in a C11 program, all the database classes are
required to be subclasses of the root class ‘d_Object’, and
persistence is not orthogonal to the class-hierarchy.

The ODMG object model also supports distinct hierar-
chies for ‘interfaces’ and ‘classes’, but unlike the interfaces
and implementations inLODp, its separation is aimed at
the database modeling power, an ‘interface’ describes
abstract behaviors without its own extent, and a ‘class’
specifies the abstract behaviors and states of its objects,
which are collectively called ‘types’,4 and viewed from
multiple programs sharing a database. Neither the ‘inter-
faces’ nor ‘classes’ is concerned in implementing database
classes.

Fig. 4 depicts how the ODMG 2.0 object model supports
separate implementation from classes, compared with how
LODp does so. The dotted lines represent the binding rela-
tionships between interfaces and implementations. In the
ODMG model, only one-to-one mapping is allowed, with-
out independent hierarchies for implementations.

6.2. Schema evolution

Due to the independence of interface hierarchies and
implementation hierarchies, the schema evolution cost can
be degenerated, as mentioned earlier. For example, let us
assume that there is an interface of a persistent class
‘Deposit’ which has three ways of implementation named
‘Deposit_Impl1’, ‘ Deposit_Impl2’ and ‘Deposit_Impl3’.
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3 Actually, checking subtyping between interfaces can be put in the
charge of the C11 compiler instead of the preprocessor, since the subtyp-
ing is based on C11 inheritance [10].

4 There is one more constructor called ‘structure’ [8] which describes
abstract states, but we omit it here since it is not so related to this paper.



Without interface/implementation separation, such multiple
implementations have to be made subclasses of ‘Deposit’ in
a class hierarchy. This can be represented in a C11-like
syntax as follows:

// a schema class
persistent class Deposit { … };
// various ways of implementing Deposit
persistent class Deposit_Impl1: virtual Deposit { … };
persistent class Deposit_Impl2: virtual Deposit { … };
persistent class Deposit_Impl3: virtual Deposit { … };

Now, if a new class ‘SpecialDeposit’ is created as a
subclass of ‘Deposit’ in the schema, it should be inherited
from all three classes:

// a subclass of Deposit
persistent class SpecialDeposit:
Deposit_Impl1, Deposit_Impl2, Deposit_Impl3 { … };

Otherwise, the way of implementation of theSpecialDe-
posit is required to be decided in the schema designing
phase.

// we decide to make it a subclass of Deposit_Impl1
persistent class SpecialDeposit: Deposit_Impl1 { …
};

In the former case, ambiguities [13] may arise if any pair
of those three subclasses happen to have common names of
attributes/methods, which is not rare, and users have to
override them in the class ‘SpecialDeposit’. In the latter
case, schema designers have to consider the implementation
of the class, and in addition, it is hard to add other imple-
mentations of theSpecialDeposit to the class hierarchy
later.

In our approach, such a schema class can be added in a
simpler and more elegant way. Since a hierarchy for imple-
mentations can be built regardless of the interface hierarchy,
‘DepositImpl1’, ‘ DepositImpl2’ and ‘DepositImpl3 in the
above example do not have to be subclasses of ‘Deposit’
any more. Instead, they are bound to ‘Deposit’:

class DepositImpl1{implements Deposit;…};
class DepositImpl2{implements Deposit;…};
class DepositImpl3{implements Deposit;…};

Since the changes in the implementation hierarchy do not
affect the interface hierarchy and vice versa, the new inter-
face ‘SpecialDeposit’ can inherit from ‘Deposit’ directly,
without consideration of the implementations ofDeposit:

persistent class SpecialDeposit: Deposit{…};

Also, when a user wants to add/delete/modify the private
attributes/methods in the implementation of the class
‘Deposit’ or ‘ SpecialDeposit’, she/he does not have to
change the whole class declaration or application programs
concerned. Instead, he/she is supposed to change only the
very implementation, or add a new implementation of the
interface and uses it from then on. Hence, our approach of

degeneration of schema evolution cost has similar advan-
tage to that of the schema versioning [22].

6.3. Implementation

6.3.1. Java
Like LODp, Java supports the independent hierarchies of

interfaces from those of implementations. However, ODMG
Java-binding [8] does not take advantage of the semantics in
database access.

In Java [24], an object is represented by a pointer to a
‘handle pool entry’ which has two pointers again: a pointer
to instance data and a pointer to class data.

Although this is similar to the object layout ofLODp,
Java uses naive pointers to the object. On the other hands,
pointers to database objects inLOD p are translated into
‘ InterObject’ objects, a special kind of ‘d_Ref’ objects in
ODMG C11 binding. This enablesLODp programs to
share the object management facilities of the ODMG
C11-binding, for the portability of standardization. Each
object handlers inLODp contains the information of the
interface that the pointed object belongs to. This is another
difference from a Java, where the information of the inter-
face can be obtained by indirect retrieval via the information
of a class that is linked from the object.

6.3.2. ODMG
Currently, we have developedLODp on top of the

previous version ‘SOP[2]’ that supports the ODMG model
release 1.2. However, even if it will be built on the system of
the ODMG 2.0 release, the way of the implementation of
LODp will not have remarkable changes, since we cannot
make use of any new features of the new release; the
separate implementation support in the new ODMG release
are not helpful forLODp implementation, because it
mismatches the model ofLODp.

For example, it is possible to translateLODp interfaces
into the separate ‘interfaces’ in the ODMG 2.0 model, to
realize the independent interface hierarchy in an easier way.
However, because of the absence of extents for the ‘inter-
faces’ in the ODMG 2.0 model, it entails complications in
the management of extents for theLODp interfaces. Thus,
as in the current translation ofLODp, we had better trans-
late LODp interfaces into the ‘classes’ of the ODMG
model, for automatic and efficient management of extents.
However, there will be some changes of the class names
‘Object’ and ‘Ref’ of the old release into ‘d_Object’ and
‘d_Ref’, respectively.

6.3.3. CORBA
CORBA [11] supports the separation of the interface and

implementation of classes, and there have been developed
two main approaches to binding an implementation of a
class to its separate interface.

In the CORBA TIE approach [15], which uses C11
macros for binding the implementation and its interface
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together, a hidden TIE object is automatically created for
each object [15], which holds a reference to its target object
and delegates all function invocations to it. However, a
simple integration of this mechanism and the ODMG
C11 binding will cause multiple indirections with both
the d_Ref object and the TIE object involved in sequence.
Such indirections are eliminated in our mechanism by
merging the interface pointer with the smart pointerRef,
and transferring the functionalities of TIE to those of the
implementation objects themselves.

In the CORBA BOAImpl approach [15], an implementa-
tion is translated to a C11 derived class of the interface of
its class. Although this mechanism is simple and does not
cause any indirections, the interfaces which are related
by inheritance require that their implementations
reflect the same inheritance hierarchy, and the imple-
mentation classes have to use the inheritance [15].

This side-effect increases the complexity of the class
hierarchies [9].

Some CORBA-compliant systems support OODBMS-
persistence of CORBA objects [16,17,23] by extending
CORBA loaders [15] for persistent storage. However, they
focus neither on supporting persistence orthogonal to
the class hierarchy nor on integrating database classes
and non-database classes in a proper way, since the
purpose of those systems is only to improve CORBA
loaders.

6.3.4. Interface-separation in GNU C11
The facility for separate interface is currently incor-

porated in the GNU C11 compiler [5]. In this mechanism,
an interface pointer is made to be the object that contains
two pointers again—a pointer to the implementation object
and a pointer to the ‘member function table object’.
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Fig. 3.LODp preprocessing steps.

Fig. 4. the ODMG 2.0 object model andLODp model.



However, there are two big drawbacks. First, this table is
initialized with the actual function pointers of the imple-
mentation, which requires casting the member functions
of the implementation to those of the table object, but this
is prohibited in C11 [13]. They modify the front end of the
GNU C11 compiler [5], with the loss of portability.
Second, a ‘member function pointer table’ for an interface
pointer is dynamically generated at every assignment of the
assigned implementation object to the interface pointer.
Note that, in our implementation, placing member function
tables in implementation objects instead of interface
pointers, management of the table is not required during
the assignment.

In most other cases, except for CORBA [11], member
access is not supported directly [3,5]. InLODp, members
are accessed throughget/set functions like in CORBA [11].
Studies on reducing the overhead of member access through
get_/set_ function calls are in Refs. [14,18].

7. Conclusions

This paper proposesLODp, a C11 extension for data-
base access.LODp allows implementing database classes
by reusing non-database classes and vice versa, with the
persistence support orthogonal to the class hierarchy. The
main idea is to have distinct hierarchies for database classes
for subset-based hierarchies and code-reuse hierarchies,
based on separate modules of interface and implementation
for a database class. Only interfaces are viewed to the
programs accessing the shared database, with implementa-
tion details of classes hidden from users other than those
related to implementing the classes. In the case that the
implementation-dependent part of a class needs to be
changed, users are supposed to simply add a new implemen-
tation for the class without care of the existing instances,
which decreases schema evolution cost.

LODp uses the C11 pointer interface, from which the
preprocessor generates ODMG C11 binding code. After
translation, an actual database object is represented as an
implementation object, and an interface object behaves like
a smart pointer. Unlike in general purpose languages,
the implementation introduced in this paper meets the
various requirements for the database applications. Since
there is not much reference material on the related
implementation, we hope this paper will be helpful to future
implementers.

Currently, we are expanding theLODp preprocessor to
eliminate the restrictions described in this paper. We
consider it another interesting issue to apply our idea to
the language extensions like the Java interface for databases
which already support the independent interfaces and
implementations for non-database classes.
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