
ELSEVIER Information and Software Technology 40 (1998) 1.57-173 

INFORMATION 

SOtGztE 
TECHNOLOGY 

A model of schema versions for object-oriented databases based on the concept 
of rich base schema’ 

Sang-Won Lee *, Hyoung-Joo Kim 

Department of Computer Engineering, Seoul National University, Shilim-Dong Gwanak-Gu, Seoul 151-742, South Korea 

Received 13 October 1997; received in revised form 23 February 1998; accepted 25 February 1998 

Abstract 

In this paper, we propose a model of schema versions for object-oriented databases called RIBS. At the heart of this model is the concept of 
the rich base schema called (RiBS). In our model, each schema version is in the form of a class hierarchy view over one base schema, called 
RIBS, which has richer schema information than any existing schema version in the database. Users are supposed to be concerned only with 
schema versions. Direct schema updates on schema versions are allowed, and their effects are, if necessary, automatically propagated to 
RiBS. We first describe the structural part of the model and then introduce a set of invariants that should always be satisfied by structural 
parts. As the third element of our model, we give a set of schema update operations, the semantics of which are defined, so as to preserve all 
the invariants. 

Another contribution of this paper is the work on schema-version-merging within the RiBS model. We identify several conflicts in 
schema-version-merging, and then provide a semi-automatic schema-version-merging algorithm to resolve these conflicts. This algorithm is 
semi-automatic in the sense that it requires minimal user involvement during schema-version-merging. 0 1998 Elsevier Science B.V. 
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1. Introduction 

One of the remarkable differences between object- 
oriented database management systems (OODBMS) and 
relational database management systems (RDBMS) is sup- 
port for schema evolution. Object-oriented data models 
emerged in the mid 1980s and since then many approaches 
to schema evolution have been proposed [l-3]. This is 
mainly because target applications of OODBMSS, such as 
CAD/CAM, CASE, and multi-media frequently require 
dynamic schema changes and flexible schema management. 
Currently, several commercial OODBMSS, such as 
Gemstone [2], 02 [3], ObjectStore [4], and Objectivity 
[5] support various schema update primitives and provide 
on-line schema evolution mechanisms. In addition, some 
products, such as 02, Objectivity and ObjectStore, support 
user-defined functions for schema updates. 

Under these systems, however, only a single schema can 
exist at any point in time; if a schema evolution operation 
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completes, the previous schema state is no longer 
maintained. This single schema modification mechanism 
has several drawbacks [6]. First, schema updates may 
invalidate programs written against old schema. Second, 
because all the users share a single schema, schema updates 
by one user may change the views of all the other. users. 
Schema version mechanisms were introduced to overcome 
these problems, and many researchers have stressed 
their importance since a characteristic of design applications 
is being able to cope with frequently changing meta-data 

VA. 

1.1. Rejuvenation of schema versions 

Recently, the necessity for schema versions has been 
re-motivated in several new OODB application areas 
including Repositories [9- 1 I], Portable Common Tool 
Environment (PCTE) [12-141, and the Worldwide Web 
(WWW) [15,16], all of which may use an OODBMS as 
an integrator of data. 

Data repositories ‘are expected to be one of the important 
new uses of DBMS ‘technology ([ll]). Among many 
requirements for repository management systems, the 
ability to change the structure of information and its 
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meta-data without breaking existing applications (that is, 
the functionality of schema versions) is mandatory 

([l&l 11). 
Another strong requirement for the functionality of 

schema version comes from PCTE, where, as Loomis says 
[ 131, an important role of the OODBMS is to manage PCTE 
schema, support their evolution over time, and support the 
resulting schema versions. In fact, schema evolution and 
schema version management become a more serious 
problem in PCTE [ 121. 

Finally, WWW applications, needless to say the most 
promising areas for OODBMS [ 15-171, also require 
schema versions due to their dynamic nature. Atwood points 
out in Ref. [ 151 that web sites need to publish new versions 
of their applications with new database schema versions 
without changing the existing versions of the applications 
and their schemas. 

Much work has been done to provide schema version 
mechanisms for objectoriented databases (OODBS) 
[7,18-201, but they have not reached a satisfactory status 
yet. Traditional schema version approaches has three out- 
standing problems: (1) storage overhead for redundant 
objects [7,20], (2) limited schema update capability [18], 
and (3) complexity for managing consistent schema 
versions [ 191. Refer to Section 9 for the details. We believe 
that the lack of flexible schema management and efficient 
schema version mechanisms in current OODBMSs is one of 
the major obstacles for their wide acceptance in the market. 
Consequently, it is essential to fill the gap of flexible schema 
management between application requirements and current 
OODBMS functionalities. 

1.2. Our perspectives and paper organization 

A database schema is a representation of entities and 
their semantics in the real world, which the database is 
intended to model. In our view, a schema version in an 
OODB is another schema, the purpose of which is 
either to represent a semantically significant snapshot 
of a schema at a point of time under the ever-evolving 
real world, or to customize different, but simultaneous 
user perspectives. 

In this paper, we propose a simple, yet powerful, model of 
schema versions for OODBS, based on the concept of the 
rich base schema (RiBS). The remainder of this paper is 
organized as follows. Section 2 gives a brief overview of 
the RiBS model using an illustrative example. Section 3 
describes the object model assumed in this paper. A 
detailed description of each component of the RiBS 
model is given in Sections 4-6, respectively. Section 7 
touches upon several issues about the implementations of 
the RiBS model. Section 8 deals with schema-version- 
merging, another contribution of this paper. Our work is 
compared to related work in Section 9. Section 10 
concludes the paper with a summary and an outline of future 
work. 

2. Basic idea 

In this section, we illustrate some basic ideas of the RiBS 
model with an example. A detailed description of each com- 
ponent of the model will be given in the following sections. 
For brevity, in this section, we assume the following 
informal description of a schema in an OODB: A schema 
in a database consists of classes that are organized into a 
class hierarchy through ‘is-a’ (ISA) relationships between 
them. Each class, in turn, consists of properties including 
both attributes and methods. To every class is attached a 
collection of objects, extent. Each instance object belongs to 
the extent of a single class, and is referred to as a direct 
instance of the class. 

2.1. Rich base schema and schema versions 

Before proceeding with the example, we motivate the 
concept of ‘rich base schema’, and discuss how it can be 
exploited in supporting schema versions. We say that 
schema Sl is richer in schema information than schema 
S2 if all conditions set out below hold. 

(1) For each class in schema S2, there is a correspond- 
ing class in Sl; 
(2) for each property of a class in schema S2, there 
exists a corresponding property in the corresponding 
class of Sl; 
(3) for every direct ISA relationship in schema S2, there 
is also a corresponding ISA relationship (direct or 
indirect) in schema S 1. 

If a schema Sl is richer than another schema S2, it means 
intuitively that Sl has more schematic information than S2. 
This, in turn, means that S2 can be specified as a subset view 
of S 1. This concept of rich schema can be re-stated in terms 
of relative information capacity [21,22]; Sl dominates (or 
subsumes) S2. 

Our model is based on this concept of rich schema. A 
physical base schema, RiBS (rich base schema), which is 
richer in schema information than any existing schema ver- 
sion, is maintained, and every schema version is represented 
as a view over RIBS. In addition, when a schema update is 
imposed on a schema version, RiBS is, if necessary, auto- 
matically augmented so as to be richer than the modified 
schema version in addition to all other schema versions. 
In summary, a schema version is an updatable class 
hierarchical view2 over RIBS. 

In our model, schema versions are strictly separated from 
RIBS. This separation enables the prevention of problems 
from occurring when the schema information of schema 
versions is mingled with that of RIBS. Some previous 
works on views in OODB [ 18,231 put normal classes and 
derived views together in one class hierarchy. However, this 

* ‘Updatable’ means that the schema evolution operation can be directly 
imposed on the view. 
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SVl (root schema version) 

_-_> : instance-of 
---) : inheritance 
__ : attribute-of 

.m____.’ 

RiBS 

Fig. 1, RiBS and schema versions: an example. 

approach has several disadvantages [24]. First, it is difficult 
for users to understand the complicated class hierarchy. 
Next, the extents of classes in the hierarchy may overlap. 
Finally, it is difficult and, in certain cases, impossible to 
decide where to locate the view class in the class hierarchy. 

2.2. An intuitive example 

Now let us consider the example in Fig. 1, where two 
schema versions SVI and SV2 are represented as views 
over RIBS. As illustrated in Fig. 1, schema information in 
RiBS is rich enough to contain all the classes and properties 
for either SVl or SV2. The base class corresponding to a 
class version in a schema version is called the direct base 
class of the class version. For example, BCl in RiBS is the 
direct base class of class version Cl in SVI .3 Every instance 
object in the direct base class becomes an element of the 
logical extent of the class version. In Fig. 1, both SVl and 
SV2 share instance objects in RiBS. Under a specific 
schema version, an instance object of a class version is 
derived from an instance object of the corresponding base 
class through projection. 

In Fig. 1, we assume that after SVl is created initially (we 
call it the root schema version) and then SV2 is derived from 
it, SV2 undergoes three schema updates as follows: (1) 
rename class version C 1 as Cl ‘, (2) drop class version C2, 
and (3) add attribute version d to C 1’. We now describe how 
each schema update affects SV2 and/or RiBS. 

In our model, each schema version maintains names for 
its own class versions and their property versions, inde- 
pendently of base classes and properties in RIBS. Thus, 

’ In this paper we use the naming convention such as BCl and BC2 for 
classes in RiBS. This is only for illustrative purpose. Mechanisms such as 
object identity (OID), which can uniquely identify class and properties 
within a system, will be sufficient. 

the first operation renames the class version Cl as Cl’ 
only within SV2, without affecting RiBS or SVl. The 
second operation just drops the schema information of 
class version C2 from SV2, without effecting RiBS or 
SVl. However, this operation, in contrast to the previous 
operation, raises a subtle semantic issue: that is, the effect of 
dropping c2 on ~2’s logical extent. For this, the RiBS model 
chooses the semantics to migrates all the (logical) direct 
instances of C2 to the extent of a superclass. Thus, class 
version Cl ’ has base classes BCl and BC2 as its extental 
base classes. Details will be discussed in Section 6. The last 
operation, adding attribute d to class version Cl ‘, is 
different from the above two operations as it requires a 
change in RiBS as well as changes in SV2: a corresponding 
attribute should be added to the direct base class of Cl’ in 
RIBS. Attribute d in BCl is the result of this operation. 

In this section, we gave an overview of the RiBS model. 
The RiBS model has three components: (1) the structural part, 
which consists of schema versions and a RiBS, (2) a set of 
invariants to preserve semantic consistency within the struc- 
tural part, and (3) a set of schema manipulation operations, 
which are applicable to the schema versions. In Sections 4-6, 
we will elaborate on these components, respectively. 

3. Object model 

This section defines the object model assumed in this 
paper, which is common to RiBS and schema versions. A 
class C in a database defines the properties of objects. Each 
class maintains its extent. A property represents either an 
attribute or a method.4 Each class may have more than one 

4 In this paper, we use the term ‘property’ to represent both attributes and 
methods. When we need to distinguish them, we will use the specific 
terminology. 
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Table 1 

Notations for object model 

Term 

C 

s 

W) 
Cname 

P 
Parents(Q 

Parents * (C) 

IWC,,Cd 
ISA * (S) 

Interface(C) 

InheritedPr ops(c) 

LocalProps 

Extent(C) 

Or&) 

Description 

Class 

RiBS or schema version 

Set of all classes of schema S 

Class name 

Property 
Set of direct parents of C 

Set of all parents of C 

C, is a direct subclass of CZ 

All direct or indirect ISA relationships within schema S 

Interface of class C (that is, the set of properties) 

Inherited properties of C 

Locally defined properties of C 

Extent of class C (set of direct instances) 

Original property of p 

Table 2 

Axioms for inheritance 

(1) Axiom of closure 

(2) Axiom of acyclicity 

(3) Axiom of rootedness 

(4) Axiom of interface 

(5) Axiom of property inheritance 

(6) Axiom of superclasses 

VCeI, Parents(Q C 7 

VC&, C +! Parents * (C) 
Parents (Object) = ( ) A VCel-(Object], ObjecteParents * (C) 

Interface(C) = InheritedProps (C) U LocalProps 

InheritedProps = U C.rParen,~(OInteTface(CI) 

Parents * (Cl = U c,,pa,m,c(cIParents * (C’) U Parents(C) 

superclass, that is, multiple inheritance is supported. The set 
of direct superclasses of a class C is denoted as Parents(C). 
All the properties of the superclass are inherited into the 
subclass. The newly defined local properties of a class C, 
denoted as LocalProps( together with the inherited ones, 
denoted as InheritedProps( constitute the interface of the 
class, Interface(C). For an inherited property p of a class, 
there exists an origin property, denoted as Orgb), from 
which p is inherited. The notations for the object model 
are summarized in Table 1. The transitive closure of 
Parents(C), namely the set of all the direct or indirect 
superclasses of class C, is denoted as Parents * (C). 

Table 2 summarizes the inheritance semantics of the 
object model. As pointed out in Ref. [25], although much 
research has been focussed on inheritance, researchers 
rarely agree on its meaning and usage. Even in ODMG- 
935 [26], no clear semantics are given for inheritance, in 
particular multiple inheritance. Thus, we need to develop 
these axioms to clarify the inheritance semantics in RiBS 
model. 

Through axioms 1 to 3 in Table 2, we force a schema to 
be a direct acyclic graph (DAG). Axiom 1 says that all the 
superclasses of any class in schema S should be also 
members of I(S). Axiom 2 requires that there be no cycle 
in the class hierarchy, and axiom 3 does require that a single 
class Object in I be the root of the class hierarchy. A schema 
conforming to these three axioms results in a DAG [I]. 

’ An object database standard from ODMG (object database management 

group). 

Axiom 4 means that, as mentioned above, the interface of 
a class consists of inherited properties and locally defined 
properties. The inherited properties of a class C, as stated in 
axiom 5, are the unions of the interfaces of all the super- 
classes of C. Axiom 6 means that Parents * (C) is the 
transitive closure of P relationships of class C. According 
to these axioms, a class, of which two or more superclasses 
share a common superclass, inherits properties from com- 
mon superclass only once (like virtual inheritance in C++). 
Name conflicts between two or more properties of different 
superclasses, or between inherited and locally defined 
properties are allowed and users are responsible for 
designating a specific property (also similar to C++). 

4. Structures 

The structural component of the RiBS model has a three- 
level architecture: (1) the (extensional) obiect base, (2) the 
rich base schema (RiBS), and (3) the schema versiions. 
Every object physically resides in the extensional object 
base. RiBS accumulates all the necessary schema informa- 
tion ever defined in any one of the schema versions. Each 
schema version is in the form of a class hierarchy view over 
this RiBS. Users are concerned only with the schema 
versions in the uppermost layer. Direct schema updates on 
schema versions are allowed, and their effects are, if 
necessary, automatically propagated down to RiBS. In 
this section, we give descriptions of all the structural 
components of the RiBS model. 
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4.1. De$nition I (Base schema, RiBS) 

In a database, there exists a single (rich) base schema 
called RiBS, which describes the structures of objects 
physically stored in the database. RiBS includes a set of 
base classes, and inheritance relationships between them 
constitute the class hierarchy of RIBS. The structure of 
each object stored in an object base conforms to the 
definition of the base class in RiBS to which the object 
belongs. To each base class of RiBS an extent is 
attached, which is the set of all the direct instance objects 
of the class. 

4.2. Dejnition 2 (Schema version, SV) 

A schema version, SV, is a logical class hierarchy view 
over RIBS, which represents either a snapshot of the ever- 
revolving database schema at a certain point of time, or a 
customized view for a particular user. A schema version, 
SV, is a class hierarchy view because the schema version 
itself is also a class hierarchy. It is also a logical view in the 
sense that all the objects visible through a schema version 
are derived from the objects stored in the extensional object 
base. 

4.3. Dejinition 3 (Current schema version, CSV) 

We call a specific schema version, under which 
application programs/users access and manipulate the data- 
base at a certain point of time, current schema version 
(CSV). With the RiBS model, a user should designate a 
schema version as CSV before (s)he accesses the database. 
A user can do all the normal database operations against the 
CSV. Moreover, users can change the schema structure of 
CSV; that is, the schema can evolve. We will give a detailed 
description of this, mechanism in a later section and 
describe the semantics of schema changes on schema 
versions. 

In the RiBS model, the execution of a schema evolution 
operation, however, does not imply derivation of a new 
schema version. Instead, we provide an operation for users 
to explicitly derive a new schema version from existing 
ones: the former is called the ‘child schema version’ and 
the latter ‘parent schema version(s)‘. Derived-from relation- 
ships between schema versions constitute the schema 
version derivation graph, defined as follows: 

4.4. Definition 4 (Schema version derivation graph, SVDG) 

A schema version derivation graph (SVDG) is a directed 
acyclic graph, where each node represents a schema version 
and each directed edge between nodes represents a ‘derived- 
from’ relationship. When a database is initialized at its 
creation time, the ‘root schema version’ is created, in 
addition to the initial RIBS. The root schema version is 
the root of SVDG. 

4.5. Dejinition 5 [Class version, CV, and direct base class, 

B(Wl 

A class version CV of a particular schema version repre- 
sents a facet of a base class in RiBS, which needs to be 
modeled within the schema version. We call the base 
class the direct base class of CV, and formally denote it as 
B(CV). For each class version CV, there is one and only one 
direct base class B(CV) in RiBS. However, the converse is 
not true, that is, a base class in RiBS may not need to be 
explicitly modeled in a schema version SV, so there might 
not be a corresponding class version in SV. With respect to 
schema information capacity, B(CV) is a superset of CV; 
that is, B(CV) has all the schema information necessary for 
CV. The purpose of maintaining the direct base class is as 
follows. When a specific schema update is imposed against 
CV and its effects need to propagate to RiBS, the schema 
change in RiBS starts from B(CV). 

As mentioned earlier, users are concerned only with 
schema versions. Hence, each class version in a schema 
version, like normal classes, is expected to have its own 
class extent. For this, we maintain extental base classes 
for each class version. 

4.6. Dejinition 6 [Extental base classes, B’ (CV)] 

The extental base classes of a class version CV, B+ (CV), 
are a set of base classes in RIBS. The union of the extents of 
these base classes comprises the logical extent of CV. From 
these extental base classes, the logical extent of a class 
version CV is derived as follows. 

Extent(CV) = c, ,?&, Extent(C’) 
c 

As will be discussed later, the set of base classes in B+(CV) 
is a connected subgraph of RIBS, rooted at B(CV) (thus, we 
employ the notation B+). Therefore, all the objects in 
B+(CV) carry values for all the properties necessary in CV. 

4.7. Definition 7 [Property version, PV and direct base 

property, WWI 

A property version, PV, of a class version, CV, represents 
either an attribute or a method of the CV. The direct base 
property of a PV in a class version CV, denoted as B(PV), is 
a corresponding property of B(CV). Every PV in a schema 
version has its direct base property. 

The purpose of maintaining a direct base property for 
each PV is as follows. When a logical object is retrieved 
through CSV, its values are derived from the corresponding 
physical object. In this process, the value of each PV is 
derived from that of the B(PV) of the physical object. The 
concept of extental base classes, however, complicates this 
process in that, if the corresponding physical object of an 
object being accessed under CSV is an instance of a base 
class which is not a direct base class of any class version of 
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CSV, how do we derive the value of each PV from the 
physical object? As stated in the previous section, we 
assume that in RIBS, a subclass inherits all properties 
from its superclass and keeps the property information 
locally, as in Orion [l]. Thus, when deriving the value of 
each PV, the value of the property which has B(PV) as its 
origin property is used. 

5. Invariants 

In this section, as a second component of the RiBS model, 
we introduce a set of invariants which should always be 
satisfied by the structural part. Moreover, this set of 
invariants plays a critical role in defining the semantics of 
schema evolution operations for schema versions, as 
discussed in the next section. 

Invariants in the RiBS model can be classified generally 
into three categories: RiBS invariants, schema version 
invariants, and invariants between RiBS and schema 
version. In this paper, we describe the last two categories. 
With respect to RIBS, we assume the well known invariants 
for schema evolutions, such as DAG invariance, name 
invariance, origin invariance, full inheritance invariance, 
and no redundant ISA relationships from [ l-3,27 1. 

5.1. Znvariants on schema version 

For schema versions, in addition to the traditional 
invariants for schema evolutions, we identify two new 
invariants, ‘no phantom reference’ and ‘no multiple 
classification’, both of which are related closely to the 
schema evolution operation class drop. Incorrectly defined 
semantics for this operation might result in some anomalies. 
In the next section, we will explain how these two invariants 
guide the semantics of class drop. 

5.1.1. Invariant 1 (no phantom reference) 
The value of an attribute of an object may be a reference 

to a phantom object, which is not a direct instance of any 
class in the schema version. We refer to this kind of 
reference as a phantom reference. This is in contrast to a 
dangling reference, which is a reference to non-existing 
object. There should be no phantom references within a 
schema version SV: that is, within SV* for each object 0 
referenced by another object, there should exist a class 
version CV, where 0 E Extent(CV). 

5.1.2. Invariant 2 (no multiple class$cation) 
This invariant restricts each logical instance object in a 

schema version to be a direct instance of only one class 
version. In other words, logical extents of each class version 
in a schema version should be disjoint to each other, which 
can be formalized as follows:* for every class version CVi 
and CV, in a schema version SV, where i # j, Extent(CVJ 
n Extent(CVi) = 4. 

5.2. Invariants between RiBS and schema version 

As mentioned above, each schema version is a logical 
view over RIBS. The following invariants should hold 
between each schema version SV and RIBS. 

5.2.1. Invariant 3 
For each class version CV (and property version PV) in a 

schema version, there should exist a corresponding B(CV) 
(and B(PV)) in RIBS. 

5.2.2. Invariant 4 

Within a schema version, for each base class C in RIBS, 
there should exist a class version CV, such that C E B+(CV). 
The above invariant means that the union of the extental 
base classes of all class versions in a schema version should 
be equal to the set of base classes in RiBS, as formalized in 
the following. 

cv,E~csv, B + (CVJ = I(RiBS) 

6. Operations 

In this section, we give a set of operations for schema 
version management, which is the last component of the 
RiBS model. These operations are classified into two 
groups: one group is concerned with SVDG manipulation, 
while the ther includes schema evolution operations against 
schema versions. 

l Operations for SVDG manipulations. 
(1) Derive sv-name from parent-list; 
(2) Delete sv-name; 
(3) Set current schema version to sv-name. 
l Operations for schema evolution. 
(1) Operations which have no impact on RiBS; 

(a) Change the name of a class version C, 
(b) Drop an existing class version C, 
(c) Drop an existing property version v from a class 
version C, 
(d) Drop an edge to remove a class version S as a 
superclass of another class version C, 
(e) Change the ordering of superclasses of a class 
version C. 

(2) Operations which have impacts on RIBS; 

(a) Add an edge to make a class version S a superclass 
of class version C, 
(b) Add a new property version v to a class version C. 

(3) Operations which have impacts both on RiBS and on 
other schema versions; 

(a) Create a new class version C. 
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Schema evolution operations available in RiBS model are 
similar to those from Refs. [1,2]. In this paper, we make a 
new taxonomy for the eight fundamental schema change 
operations of Orion, depending on their impacts on RiBS 
and other schema versions. In the rest of this section, we will 
describe each of these schema version management 
operations in greater detail. 

6.1. Operations for SVDG manipulations 

Derive sv-name from parent-list as mentioned before, this 
operation is used to derive a new schema version sv-name 
from existing ones in parent-list. When a schema version is 
derived from a single parent, this operation can easily be 
implemented. That is, the schema information of the parent 
is simply copied into the child. At this point, the schema 
information of both parent and child, including class 
versions and their property versions, is exactly the same. 
In the case of multiple parents, however, the parent schema 
versions with different structural information should be 
merged into a new consistent one. We call this process 
‘schema-version-merging’. In the next section, we will dis- 
cuss some issues about schema merging and provide our 
solutions in, detail. 

Delete sv-name When a schema verion is no longer 
needed, this operation is used to remove it from SVDG 
and delete its schema information from the database; that 
is, all the class versions and their property versions are 
deleted. We do not allow to delete root schema version. 
When a schema version is removed from SVDG, its parent 
schema versions become new parent schema versions of its 
child schema version (if any). 

Set current schema version to sv-name As mentioned 
above, every program or query in the RiBS model should 
be written against a specific schema version, called the 
current schema version (CSV). This operation is used to 
designate CSV before applications or query accesses to 
the database. 

6.2. Schema evolution operations 

The schema evolution operations of the first group require 
changes only in the schema information of CSV. In this 
respect, they are related to earlier works on simulating 
schema updates using the OODB view [ 18,241. However, 
these approaches have a serious drawback, which is that 
they do not support operations from our last two groups. 

In this subsection, we will explain three representative 
operations from each group, which raise subtle issues in 
defining their semantics. In the next subsection, we will 
give a formal semantics for all the eight operations. For com- 
plete descriptions of all the operations, refer to Ref. [28]. 

6.2.1. Drop an existing class version C 
This operation drops a class version C from CSV. C is 

dropped out from the subclass list of each class version in 

Parents(C) and from Parents(C,J of each subclass version 
C5uh of C, if any. If C is the only superclass of any subclass 
Csuh, class versions in Parents(C) become new superclasses 
of Csub [ 11. All the properties that are locally defined within 
C are also dropped from all its subclasses. 

As mentioned before, a (logical) extent in the RiBS model 
is attached to each class version. Thus, when deleting a class 
version, we should consider the issue of how to deal with its 
extent. In relation to this issue, there have been at least two 
reasonable approaches for class drop [ 1,3,4] in the area of 
schema evolution. In the first approach, all the instance 
objects of a class are deleted from the database [ 1,4]. How- 
ever, this semantics, as pointed out in Ref. [l], may intro- 
duce the dangling reference problem. A commercial 
OODBMS, ObjectStore [4], overcomes this problem by nul- 
lifying all the references to the deleted instance objects. 
However, this in turn, makes the operation potentially 
very time consuming [4]. In the second approach, which 
is exemplified by the 02 system ([3]), the class drop opera- 
tion is allowed only if the extent of the class is empty. 

In the RiBS model, there could be another possible 
approach to class drop, where all objects in Extent(C) are 
filtered out from CSV. According to this approach, 
objects in Extent(C) cannot be accessed through the 
extent of any class within CSV when the class drop 
operation is completed. However, it should be noted 
that all the physical objects still exist in RIBS. This 
approach seems to be similar to the view mechanism 
in relational databases, which provides the functionality 
of content-based authorization [29], in that it hides some 
objects from the view of the user. Many other researchers 
have anticipated that some kind of view mechanism for 
OODB will also provide the same functionality of content- 
based authorization [ 18,241. 

However, navigational object access through object 
identity (OID) in the object-oriented data model is 
drastically different from the relational data access 
paradigm where the only unit of access is either table or 
view. In the object-oriented data model, a class may be 
used as the domain of an attribute of another class. Hence, 
an object may have the OID of another object as its value for 
an attribute. This characteristic of object traversal through 
OID introduces the ‘phantom reference’ problem under our 
previous semantics of class drop. As shown in Fig. 2, even 
after a class version CV is dropped, the object cl is still 
accessible through object a2. Under the last semantics, how- 
ever, object cl cannot be accessed through the extent of any 
class version in CSV; that is, cl is a phantom object. It 
should be noted that the phantom reference problem is not 
confined to the RiBS model. Any view mechanism in 
OODB should consider and solve this phantom reference 
problem in order to provide for the functionality of content- 
based authorization. This phantom reference problem leads 
us to choose a compromised semantics for class drop. 
Within CSV, all objects in Extent(C) are migrated 
(logically) to the extent of a superclass of C. For example, 
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Fig. 2. Phantom reference 

in Fig. 2, all objects in Extent(C) are migrated to Extent(B) 
after the class version C is dropped. 

Under this semantics for class drop, multiple inheritance 
complicates the situation: to which superclass should the 
logical extent of the class being dropped migrate? In order 
to guarantee invariant 2, we require users to explicitly 
designate a target superclass in the RiBS model. 

6.2.2. Add an edge to make class version S a superclass of 
class version C 

This operation adds a class version S to Parents(C). This 
operation is rejected if it introduces a cycle or a redundant 
ISA within CSV. C inherits all the properties of S. This 
operation also affects RIBS, except in the following two 
cases. The first case is where S is deleted from Parents(C) 
within CSV before this operation occurs. The second is 
when another schema update in another schema version 
has already had the required effect on RiBS. These two 
cases can be inferred by checking whether [B(S),B(C)] is 
in ISA * (RiBS). In the case where [B(S),B(C)] is not in ISA 
* (RiBS), B(S) is added into Parents[B(C)l. 

In addition, to ensure no redundant ISA relationship in 

/ w-1 ,@ / / 

Fig. 3. Addition of superclass to a schema version. 

RiBS, the existence of any direct or indirect superclass of 
B(S) in Parents[B(C)] in RiBS should be checked. If one 
exists, the inheritance relationship is removed from RiBS. 
This situation is exemplified in Fig. 3, where we assume that 
schema version SVj was derived from SVi and class version 
A was made a new superclass of class version C in SVi. 
Then, when a schema update which adds class version B 
to Parents(C) is imposed on SVj, a new edge from B(B) to 
B(C) is added and the edge from B(A) to B(C) is deleted. 
This is required to avoid redundant ISA relations in RiBS. 
Note that, for ISA(A,C) in SVi, the corresponding [B(A), 
B(C)] exists in ISA * (RIBS). 

6.2.3. Create a new class version C as a subclasss of S 

This operation creates a new class version in CSV. If any 
class version with same name already exists in CSV, the 
operation is rejected. To satisfy the invariant 3, a new 
base class B(C) needs to be created in RiBS. Direct base 
classes of each superclass of C become the superclasses of 
B(C). In addition, the direct base class of each domain of an 
attribute defined in C becomes the domain of the attribute in 
B(C). The base class is created with the superclass list and 
property list, and then the new base class is set to B(C). 

This operation affects other schema versions, in addition 
to RiBS. According to invariant 4, B(C) needs to be 
included into extensional base classes of an appropriate 
class version in schema versions other than CSV. In order 
to do this, we choose the following solution: “in schema 
versions other than CSV, add B(C) to the extental base 
classes of a class version CV which has B(S) as its extental 
base class” (refer to formal semantics in the next section). 

6.3. Formal semantics of operations 

In this subsection, we give the formal semantics of each 
operation based on the informal semantics from the previous 
subsection. According to our taxonomy of schema 
evolution operations, the formal semantics of the three 
schema evolution operation groups are given in Tables 3- 
5, respectively. The meanings of all the other operations 
used in the tables, except for the operation c.u(C,p), are 
self-explanatory. 

The operation cx(C,p) sets a corresponding direct base 
property for each property version of subclasses of class 
version C, which has the property version p as its origin 
property version. To illustrate the semantics of this opera- 
tion, we use the example in Section 2.2. As shown in Fig. 1, 
the newly added attribute d to class version Cl ’ in SV2 is 
inherited by class version C3. This inherited attribute d of 
C3 also needs its base property. Thus, base attribute d in 
base class BC3 in RiBS should be set as base property of d 
in class version C3. This can be done using the operation 
ol(Cl’,d). In this paper, we assume that local property 
versions defined within a class version are inherited into 
all the direct and indirect subclasses. In addition, according 
to full inheritance semantics, each subclass keeps the 
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Table 3 

Semantics of operations with no impact on RiBS 

Operations Semantics (only current SV) 

Change the name of a class version C 

Drop an existing property version p from a class version C 

Change the ordering of superclasses of a class version C 

Drop an edge to remove class version S as a superclass of class version C 

Drop an existing class version C 

set C.name to new name 
if p 4 LocalProps then reject 

else drop p from LocalProps 

no action 

(semantics of unordered inheritance) 

if Parents(C) = [S] then 
if S = Object then reject 

else Parents(C) = Parents(S) 

else remove S from Parents(C) 

if C = Object then reject 

else B+(C,,,) = B+(C,,,) U B’ (C); 

for each subclass Csuh of C 

if Parents(C,,b) = (C) then 
Parents(C,,,) = Parents(C) 

else remove C from Parents(C,,,); 

Table 4 

Semantics of operations with impact only on RiBS 

Operations Semantics 

Add an edge to make classversion S as a superclass of C RiBS 

csv 

Add a new property version p to a class version C RiBS 

csv 

create a base property bp 
add hp to LocalProps(B(C)) 

create a property version p 
set B(p) as bp 
add p to LocalProps 

cu(CP) 
if B(S) E Parents * [B(C)] then no action 

else add B(S) to Parents[B(C)] 
if 3bc(e Parents[B(CJ]] t Parents * [B(S)] 

then remove bc from Parents[B(C)] 

add S to Parents(C) 

for all new properties p inherited from S, 

NCP) 

Table 5 

Semantics of operations with impact on RiBS and other schema versions 

Operations Semantics 

Create a new class version C as a subclass of S RiBS 

csv 

create a base-class bc 
add B(S) to Parents 

set bc as B(C) 

add S to Parents(C) 

other SV s 

initialize B+(C) to (bc) 
for all p E LocalProps( 

4CP) 
if 3 C, in SV, where B(S) E B+(C,) 

then add bc to Bf (C,) 

inherited property versions independently from the original 
class version. For these inherited property versions, direct 
base properties are also necessary. All the subclass versions 
of class version C have their own direct base class. All these 
base classes are also subclasses of B(C) in RIBS. Moreover, 
for each base class there exists an inherited base property 
having B(y) as its origin property. a(C,p) traverses all the 
subclass versions of C, finds direct base property of each 

inherited property version ip from p. and then sets the base 
property as B(ip). 

7. Implementation considerations 

In this section, we discuss several issues that should be 
considered when implementing the RiBS model. In addition, 
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Fig. 4. Systems classes for the RiBS model. 

we show that the RiBS model could be supported by current 
OODBMSs with some extensions, and argue that the 
perfomance overhead to support the RiBS model is small. 

7.1. Data structures 

Fig. 4 shows a generic data structure for the implementa- 
tion of the RiBS model, using the OMT (object modeling 
technique) notation [30]. The data structures consist of five 
system classes and their relationships to each other. These 
classes and their relationships implement the structural 
components of the RiBS model. The various modeling 
constructs of the OMT object model, such as ‘qualified 
association’, ‘aggregation’, and ‘ordering’,h are used to 
describe the data structures concisely and precisely. 

In current OODBMSS, a module called SM (scheme 
manager), maintains the schema information correspond- 
ing to system classes class and property [3]. For the imple- 
mentation of the RiBS model, this SM module needs 
some extensions to incorporate the system classes for the 
schema version layer, SchemaVersion, ClassVersion, and 
PropertyVersion. 

7.2. Preprocessing 

In the RiBS model, a program or query is written against a 
schema version, and translated so as to run against RiBS for 

’ We assume that readers are familiar with OMT notation. Refer to [29] 
for more detailed descriptions regarding the OMT. 

its execution. This translation can be handled by an ODLI 
OML (object definition language/object manipulation lan- 
guage) preprocessor [26], as suggested by ODMG. During 
the translation, the preprocessor might need to interact with 
the SM module to get information about the schema map- 
ping between RiBS and current schema version. The final 
program or query against RiBS can be executed without 
extra run-time overhead. 

7.3. Object adaptation 

In general, there have been two approaches to the adapta- 
tion of objects [l-3], changing the representation of 
affected objects to a state consistent with the new schema. 
The first approach is deferred update, where the format of 
each object is changed only when it is accessed after schema 
updates. The second approach is immediate update, in 
which attected objects are updated instantly upon schema 

updates. 
This paper is mainly concerned with the semantics of 

schema version evolutions for both schema versions and 
RIBS; thus, object adaptation is not within the scope of 
this paper. However, either approach can be applied to 
bring physical objects residing in an extensional base up 
to a consistent state in the RiBS model. 

7.4. Object identity 

Two OID schemes, physical OID and logical OID, have 
been commonly adopted by OODBMSS. A physical OID 
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encodes the permanent address of the object referred to by 
itself. This approach provides efficient access to disk- 
resident objects, but lacks location interdependence. In 
contrast, a logical OID is generated by the object storage 
system independently of the physical address of an object. 
Thus, this representation allows flexible object movement 
and replication, but with some performance degradation due 
to the mapping overhead between logical OIDs and their 
physical addresses. As mentioned above, because a program 
or query in the RiBS model runs on the RiBS layer after 
translation, the RiBS model can be supported by any 
OODBMS, regardless of the OID scheme used. 

7.5. Space optimization 

With the RiBS model, there might be opportunities for 
space optimization. For example, consider a base property 
for which no corresponding property version exists in any 
schema version. Physical objects in the extensional base 
reserve space for the obsolete base property, but the space 
is no longer necessary because the information kept there is 
not accessible through any schema version. This fact can be 
exploited by the database administrator by dropping 
unnecessary base properties from RiBS periodically. 

7.6. Implementations using SOP ODMG-compliant 

OODBMS 

SOP (SNU OODBMS Platform) is an ODMG-compliant 
OODBMS developed from scratch at Seoul National 
University [3 I]. SOP consists of several modules, including 
an object storage system (Soprano) [32], an SM module. an 
ODMG ODL/OML C,, preprocessor, and a cost-based 
query processor. Soprano supports a physical OID scheme. 
The SM module maintains the class and property informa- 
tion and supports basic schema evolution primitives from 
Orlon. The current ODMG ODL/OML C,, preprocessor 
was developed to provide a seamless integration of C,, 
programming with SOP by enabling the persistence to be 
orthogonal to the type. We plan to implement the RiBS 
model on SOP by extending the SM module, the pre- 
processor, and the query processor to understand the schema 
version layer. 

8. Schema-version-merging 

As noted in Section 6, ‘schema-version-merging’ is the 
process of merging two or more existing schema versions. 
This operation seems to be very useful in several phases of 
managing OODBS. First, let us consider the initial phase of 
OODB schema design. Usually at this time, a group of 
schema designers is involved, and each person is assigned 
to a different part of the database. The partial schema of 
each designer is then merged into one global schema. 
Second, a user might want to customize his/her own schema 

version from two or more existing ones. In this section, after 
considering two types of conflicts during schema-version- 
merging in the RiBS model, we give solutions to overcome 
those conflicts. 

8.1. Conjlicts in schema-version-merging 

Merging two or more parents with different schema 
information into a new schema version may introduce two 
kinds of name conflict: 

8.1.1. Homonym prublems 
Two or more class (property) versions, from different 

schema (class) versions, but having the same name, may 
have different direct base classes (properties). We call 
them homonym class (property) versions. 

8.1.2. Synonym problems 
Two or more class (property) versions, from different 

schema (class) versions and having different names, may 
have the same direct base class (property). We call them 
synonym class (property) versions. Schema updates such as 
class renaming and creation cause these name conflicts. 
Fig. 5 shows examples of synonym and homonym class 
versions. Assume that (1) schema version SVj is derived 
from SV,, (2) a class version in SVj which has student in 
RiBS as its direct base class, is dropped out, and (3) class 
under was renamed student. Thus, class version Person from 
SV, and class version Univ_Person from SV, are synonym 
class versions. Other synonym class versions are class 
version under from SV, and class version student from 
SV;. Class versions students from both schema versions 
are examples of homonym class versions. 

Besides name conflicts, schema-version-merging in the 
RiBS model introduces another type of conflict, extent 
migration conflict. We say, that for any two schema versions 
being merged, a base class in RiBS is said to have extent 
migration conflict (1) if it has no corresponding class 

W-j 

Univ_Person 

/---F-L 

Student Graduate Professor 

Student Em 

TA 

Fig. 5. Schema-version-merging. 
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version in either schema version, and instead (2) it is 
included in extental base classes of two class versions 
from those schema versions, which have different direct 
base classes. For example, base class C in Fig. 6 has extent 
migration conflict while merging SV i and SVj. Base class C 
has no corresponding class version in either SVi or SV,. C is 
contained in B+(CV,) in SV,, while B+(CV,) is in SVj. 
However, CV, and CV, have different direct base classes, 
A and B, respectively. In the new schema version, each 
corresponding class version is created for CV, and CV,. 
At this point, it is impossible to automatically decide 
which class version should take base class C as its extental 
base class. We refer to this situation as ‘extent migration 
conflict’. This is mainly due to multiple inheritance in the 
object-oriented data model. 

In the next subsection, we provide a semi-automatic 
algorithm considering all these issues. The algorithm is 
semi-automatic in the sense that it requires some user 
involvement, as in Ref. [29]. 

For synonym classes, the user chooses the most mean- 
ingful name among the names of each synonym class, or 
assigns a new name in the new schema version. 
For homonym classes, the user assigns a new name for 
each new class version. 
For each base class that has extent migration conflict, the 
user should designate a logical migration class in the new 
schema version. 

8.2. Schema-version-merging algorithm 

The algorithms given in Appendix A describe a way to 
generate a new schema version (output) from parents 
(input). Algorithm 1 lists the five main steps of the 
schema-version-merging process. Algorithm 2 to algorithm 
6 correspond to those steps, respectively. The algorithms are 
quite complex, and thus we give a detailed explanation with 
an illustrative example in the next subsection. 

The first step, Identify-BCs, identifies the base classes 

W-i SV-j 

RiBS 

necessary in the new schema version. If a base class in 
RiBS is used as the direct base class of a class version in 
any input schema version, it is included in the base class list, 
BCList, of the new schema version. For each base class BC, 
in BCList, we maintain a class version list CVList,, each 
element of which has BCi as its direct base class and comes 
from a different input schema version. 

The next step, Create-CVs, creates a class version object 

CV”,, for each base class BCi in BCList. After creating 

CVIE, 9 this step sets B(CV,,,) to BC;. If the names of all 
class versions in CVListi are equal (that is, no synonym 
problems), then a new class version inherits its name from 
these class versions. Otherwise, users are requested to 
resolve synonyms. 

After creating all class versions of the new schema 
version, the algorithm calculates extental base classes of 
each new class version, via Calculate-B+. In the first loop, 
this procedure derives initial extental base classes B+ for 
each new class version CV,,, in SV,,,. For each CV,,,! all 
the B+s of class versions in CVList, are intersected into 
B + (CV,,,). At the end of the first loop, some base classes 
may not be either in BCList or any B’ (CV,,,,); that is, 
these base classes have ‘extental migration conflicts’. For 
each of these base classes, users are requested to resolve the 
conflicts in the second loop of Calculate-B+; that is, the user 
should designate a logical migration class version in SV,,,. 

The next step, Calculate-LPs, creates local properties of 
each new class version in SV,,,. For a class version CV,,, , 
this procedure creates a local property version object PV,,,m 
for each base property BLP, in B(CV,,,,) which is used as a 
base property of a local property version of any class version 
in CVListi. BLP, is then set to B(PVnewm). After completing 
BLPList, this algorithm names each PV,,,m. As in the case 
of synonym class versions, users need to be involved in 
resolving synonym property versions in LPVList,, if any. 

RI 

/I\ 
AA B\ 

7 /“\/“‘I B8 
B9 BIO Bll B12 

Fig. 6. Extental migration conflict. Fig. 7. Schema-version-merging example (1). 

RiBS 



The final step, Make-Class-Hierarchy, makes DAG 
(direct acyclic graph) relationshps for SV,,,. After blindly 
deriving all direct ISA relationships between new class 
versions from relationships of parent schema versions, this 
procedure removes redundant ISA relationships. 

8.3. An illustrative example 

Fig. 7 shows a RiBS and two schema versions SVl and 
SV2 to be used in exemplifying the schema-version-merging. 
In the figure, we assume that a class version CV in either 
schema version is represented by an area surrounded by a 
solid line. In each area, the root of the corresponding subgraph 
is its direct base class, B(CV). A bold arrow between class 
versions represents an ISA relationship in the schema 
version. The base classes contained in each area comprise 
the extental base classes of CV, B+(CV). For simplicity, we 
do not specify the name of each class version explicitly. 
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status after the first loop of make-class-hierarchy. Basically, 
the ISA relationships between new class versions inherit 
from the ISA relationships of parent schema versions. For 
instance, see ISA relationships between CVl and CV.5 or 
between CV3 and CV12. However, it should be noted that in 
the case of the ISA between CV5 and CV9, there is no 
corresponding ISA relationship in any parent schema 
version instead, in SV2, the class version containing B9 
has, as its superclass, the class version corresponding to 
CVl. The second-level if statement inside the first loop of 
make-class-hierarchy is concerned with this; when new ISA 
relationships are built up. the relationship of the extental 
base classes takes precedence over the explicit ISA relation- 
ship in the parent schema versions. For example, ISA (CV9, 
CV5) is derived from the fact that B(CV9), that is B9, is 
contained in the B + of a class version in SVl rather than 
from the ISA relationship between the two class versions 
containing Bl and B9, respectively, in SV2. The second 
loop of make-class-hierarchy removes the redundant ISA 
between CVl and CV6, thus, Fig. 8(d) shows the final 
new schema version. 

Fig. 8 illustrates how our schema-version-merging 
algorithm works on the above two schema versions. Fig. 8 
(a) shows eight base classes resulting from Identify-B&. 
Fig. 8 (b) represents the status at the time of completion 
of the first loop of Calculate-B+, with eight new class 
versions. A temporary set of extental base classes is attached 
to the name of each new class version. Note that base class 
B 11 is not included in any extental base class of new class 
versions, an example of ‘extental migration conflict’. We 
assume that the user decides to include B 11 into B+(CV6), 
which thus results in { B6, B 10, B 1 1 }. Fig. 8 (c) shows the 

9. Related work 

In the field of OODBS, there have been several research 
activities closely related to the RiBS model, including 
papers on views, schema versions, and schema evolutions. 
In addition, our work on schema-version-merging shares 
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Fig. 8. Schema-version-merging example (2). 
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some concerns with methodologies for database schema 
integration. In this section, we summarize these articles 
and outline their differences from the RiBS model. 

9.1. Views and the RiBS model 

There have been several attempts to support views in 
OODB [23,24,27]. In [23], in the context of the 02 data 
model, a view mechanism which allows the restructuring 
of the class hierarchy and supports virtual classes is 
described with a number of examples. In Ref. [27], the 
authors proposed a MultiView methodology, where a view 
schema from a global schema can be defined according to 
need. [24] presents a view semantic within an object/ 
relational DBMS, UniSQL, by augmenting semantics of 
relational views with object-oriented concepts such as 
inheritance, method and OID. In addition, they extend the 
use of views to dynamic windows for schema, with which 
schema evolution in OODB can be simulated without 
affecting the database. This is along the same line as the 
approach in Ref. [ 181 simulating schema evolution using 
views. 

Our RiBS approach is similar to these articles in the sense 
that each schema version is defined over one global base 
schema RIBS. However, there is a big difference between 
the RiBS model and the work on views in OODB. While 
direct schema updates against a schema version are allowed 
in the RiBS model, in earlier works a view schema can be 
changed only by redefining a new view from scratch after 
deleting the old one. Furthermore, capacity-augmenting 
schema updates cannot be simulated by earlier view 

approaches [ 201. 

9.2. Schema versions/evolutions and the RiBS model 

The work in Ref. [7] is the first substantial research on 
schema versions in OODB, based on the object version 
model of ORION [l]. In this work, the schema version 
model is expressed as several rules about schema version 
management and access scope. According to the access 
scope rules, each schema version has a different set of 
objects visible to it, that is, the access scope of the version. 
An instance object may thus not be shared among schema 
versions. In contrast to the RiBS model, a new schema 
version can be derived from only one parent nylon and 
thus the schema version derivation hierarchy results in a 
tree. 

Another approach to schema versions is found in Ref. 
[20]. This work is most similar to ours in that it also supports 

schema evolution through views, sharing of instance objects 
among all the schema versions and schema merging. 
However, the consider such issues as phantom references 
and conflicts in schema merging, including homonyms/ 
synonyms and extental migration conflicts. In addition, 
their automatic classification algorithm introduces a new 
class in the global schema for every capacity-augmenting 

schema update, which makes the global schema 
complicated. 

As an alternative to schema versions, there has been the 
class versioning approach 119,331, where the units of 
versioning are individual classes, instead of the entire 
class hierarchy. [19] proposes a class versioning system 
CLOSQL, based on dynamic instance conversion, which 
enables an instance object to be seen from the outside by 
a number of class version interfaces, and determines the 
type of an instance object by the context of concern (that 
is, dynamic instance objects). In this respect, we can argue 
that in the RiBS model a physical object residing in 
extensional bases is also a dynamic object since it changes 
its type dynamically depending on the current schema 
version (CSV) accessing the object. However, with class 
versioning approach, the burden to construct consistent 
‘virtual’ schema versions from various class versions is 
left to users [7]. 

During the past decade there has been much research on 
the subject of schema evolutions in OODB [l-3]. These 
articles consider two important issues in schema evolution: 
semantics of schema change operations and adaptation of 
objects. The second issue was touched upon in Section 7. A 
basic solution to the first problem is to define a set of 
invariants that should be satisfied by the schema, and then 
to define rules and/or procedures for each schema change 
operation to guarantee the invariants. In this respect, the 
RiBS model can be taken as another extension of this frame- 
work toward support of schema version functionality, with 
substantial add-ons. First, we identify several new invariants 
for schema versions and RIBS, in addition to traditional 
invariants for schema evolution. Second, we extend the 
semantics of primitive schema change operations to 
guarantee all these invariants. 

9.3. Database schema integration and schema-version- 
merging 

In the database literature, many methodologies for 
integrating database schema are found in the form of view 
integration, database schema integration, or multi-database. 
At the heart of those methodologies is the detection of 
conflicts and their resolution. Our work on schema-version- 
merging shares many concerns with these methodologies. 

In Ref. [34], a unifying framework for the problem of 
view and database schema integration is provided, and sev- 
eral earlier papers are reviewed and compared. The process 
of integration is divided into four steps: pre-integration, 
conflict detection, conflict resolution and merging/restruc- 
turing. With regard to conflict detection, the authors distlin- 
guish two types of conflict: name conflicts and structural 
conflicts. Name conflicts are further classified into homo- 
nyms and synonyms, as in the RiBS model. However, exten- 
tal migration conflict in RiBS has no corresponding conflict 
in their taxonomy, although we classify it as a structural 
conflict in this paper. It is a unique phenomenon in our 
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RiBS model. As for conflict resolutions [34] states that 
automatic resolution is generally not feasible. Our 
schema-version-merging algorithm also leaves the burden 
to users. In the final phase of merging/restructuring, several 
criteria are tested to achieve a desirable global schema. 
Among the criteria, most methodologies are geared toward 
minimality, and in particular a removal of redundancy. Our 
schema-version-merging algorithm also includes a step for 
removing redundant ISAS. A similar framework for classi- 
fying schema and data conflicts in federating multi-database 
systems can be found in Refs. [29,35]. 

However, there is one important difference between these 
articles and our framework for schema-version-merging. 
Schema versions being merged within the RiBS model share 
some semantic knowledge (for example, the direct base class 
for each class version), whereas, for general database schema 
integration problems, we cannot expect these kinds of knowl- 
edge. This semantic knowledge enables the integration of 
schema versions with less intervention from the user. 

10. Conclusion 

We strongly believe that the functionality of the schema 
version will be a pre-requisite for OODBMSs to be widely 
accepted by newly emerging database applications, includ- 
ing repositories and the WWW. In this paper, we proposed a 
schema version model for OODBs based on the concept of 
RIBS. Each schema version is in the form of a class 
hierarchy view over one global schema, RiBS. Users are 
supposed to be concerned only with schema versions. Direct 
schema updates on schema versions are allowed, which are, 
if necessary, automatically propagated to RiBS. To avoid 
anomalies such as phantom reference and multiple classifi- 
cation, we introduced several invariants. In addition, we 
gave the taxonomy of schema update operations over 
schema versions and defined their semantics. Finally, we 
identified several types of conflicts during schema-version- 
merging in the RiBS model, and devised an algorithm for 
schema-version-merging. 

We plan two future projects. With the current RiBS 
model, customization of the class hierarchy is somewhat 
restricted. Hence, we intend to incorporate more operations 
into our schema update taxonomy, such as class partition- 
ing, class merging, and dynamic class [6,23,36,37], for 
increased flexibility. We expect that this will substantially 
enhance the modeling capability of the RiBS model. 
Next,we plan to extond all three elemets of our model, 
that is, structures, invariants and operations, to support the 
reorganization of nested complex objects. After identifying 
a set of basic operations useful to restructure complex 
objects, we will augment the mapping data structure 
between RiBS and schema versions in order to model the 
complex object view, and will define the semantics of those 
operations, as well as new invariants. For this, we are now 
considering some role defining operations from ORM [36] 

and some view definition operations from Chimera ([38]). 
This extension enables OODBMSs to effectively model 
dynamic views over complex WWW structures, which are 
very useful in such applications as health-care systems and 
CASE [16]. 

11. Further reading 

For further reading see Refs. 39-47. 
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Appendix A A schema version merging algorithm 

Appendix A.1 Algorithm I schema-version-merging 
algorithm 

Input: RiBS, schema versions SV ,, SV2; . ., SV, to be 
merged 

Output: newly merged schema version SV,,, 
Data Structure: 
BCList: the set of pairs (BC,, CVList,), where CVList, 
is a set of class versions having BCi as their direct base 
class; 
ExtBC,,,: a temporary set of all extental base classes of 

SV lXU’; 
initialize BCList = empty; initialize ExtBC,,,, = 

empty; 
Identify-BCs(); / * identify base classes * / 
Create-CVs(); / * create a new class version for each 
base class * / 
Calculate-B +(); / * calculate B + for new class 
versions * / 

Calculate-LPs(); / * identify local properties for each 
class version * I 

Make-Class-Hierarchyo; / * make a class hierarchy 
for SVnew * I 

Appendix A.2 Algorithm 2 Identify-BCs() 

for each SVi do 

for each class Cj in SVi do 

if (B(Cj) 4 BCList then 

add [B(Cj), (C;)] to BCList; 

else 

add C, to CV Listk where BCk = B(Cj); 
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end if 

end for 

end for 

Appendix A.3 Algorithm 3 Create-CVs() 

for each BCi in BCList do 

create class version CV,,, in SV,,,; 
set B(CV,,,,) to BCi; 
if name conflict among CVs in CVList, then 

let the user resolve the synonym; / * resolve synonym 
*I 

else 

inherit CV,,, . name from CVs in CVLiSti; 

end if 
if name conflict between CV,,,, and other CV,,, then I 

let the user resolve the homonym; / * resolve homonym 
*I 

end if 

end for 

Appendix A.4 Algorithm 4 Calculate-B+() 

/ * initialize B+ for each CV,,,, * I 
for each CV,,, in SV,,, do 

B + W,,,) = nc,,cvL;S,, Bf (Cj>; 
add B + (CV,,,) to ExtBC,,,; 

end for 
/ * process extental migration conflicts * / 
for each BCk E RiBS - ExtBC,,, do 

let the user select a logical migration class version 
cv . new,, 1 
add BCI, to B ’ (CV,,,,); 

end for 

Appendix A.5 Algorithm 5 Calculate-LPs() 

BLPList: the set of pairs (BLPi, LPVListJ, where 
LPVListi is a set of property versions, the direct base 
property of which is BLPi 
for each CV,,,, in SV,,, do 

set BLPList to empty: 
for each CVj E CVListi do 

for each LPI, in LocalProps(CVj) do 

if F3(LPk) $Z BLPList then 

add [B(LPk),{ LPk)] to BLPList; 

else 

add LPk to BLPList,, where BLP, = B(LP,); 

end if 

end for 

end for 
for each BLP, E BLPList do 

create property version PV,,,m ; 
set BLP, to B(PV,,,J; 
if name conflicts among LPs in LPVList, then 

let the user resolve the synonym; 

else 

inherit PV,,,,n. name from LPs in LPVList,; 

end if 

add PV,,w,n to LocalProps(CV,,,); 

end for 

end for 

Appendix A.6 Algorithm 6 make-class-hierarchy0 

I * derive ISA relationships blindly * I 
for each CV,,, in SV,,, do 

for each CVj in CVListi do 

for each CVI, in Parents(CVj) do 

if CV,,,, E Parents(CV,,,) then 

do nothing; 

else 

if 3 CV,,,, where B(CV,,,,) E B+(CVJ then 

for each CV,,,, do 

for each CV, E CV List, do 

if B(CV,) E B+(CV,) then 

add CV,,,, to Parents(CV,,,,); 
end if 

end for 

end for 

else 

add CV,,,, to Parents(CV,,,,) 

end if 

end if 

end for 

end for 

end for 
I * remove redundant ISA * I 
for each CV,,, in SV,,, do 
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for each CV,,, in Parents(CV,,,,) do 

if Cvpar E Parents * (CV), (3 CV E Parents(CV,,,,) - 

{CV,xl) 
then 

U delete CV,,, from Parents(CV,,,); 

[21] R. Hull, Relative information capacity of simple relational database 

schemata, Proceedings of the ACM PODS, Apr. 1984, pp. 97- 109. 
[22] R.J. Miller, Y.E. Ioannidis, R. Ramakrishnam, The use of information 

capacity in schema integration and translation, Proceedings of the 

VLDB, Aug. 1993, pp. 120-133. 
[23] S. Abiteboul, A. Banner, Objects and views, Proceedings of the ACM 

SIGMOD, May 1991, pp. 238-247. 

end if 

end for 

end for 
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