
ELSEVIER Information and Software Technology 40 (1998) 1.57-173

INFORMATION

SOtGztE
TECHNOLOGY

A model of schema versions for object-oriented databases based on the concept
of rich base schema’

Sang-Won Lee *, Hyoung-Joo Kim

Department of Computer Engineering, Seoul National University, Shilim-Dong Gwanak-Gu, Seoul 151-742, South Korea

Received 13 October 1997; received in revised form 23 February 1998; accepted 25 February 1998

Abstract

In this paper, we propose a model of schema versions for object-oriented databases called RIBS. At the heart of this model is the concept of
the rich base schema called (RiBS). In our model, each schema version is in the form of a class hierarchy view over one base schema, called
RIBS, which has richer schema information than any existing schema version in the database. Users are supposed to be concerned only with
schema versions. Direct schema updates on schema versions are allowed, and their effects are, if necessary, automatically propagated to
RiBS. We first describe the structural part of the model and then introduce a set of invariants that should always be satisfied by structural
parts. As the third element of our model, we give a set of schema update operations, the semantics of which are defined, so as to preserve all
the invariants.

Another contribution of this paper is the work on schema-version-merging within the RiBS model. We identify several conflicts in
schema-version-merging, and then provide a semi-automatic schema-version-merging algorithm to resolve these conflicts. This algorithm is
semi-automatic in the sense that it requires minimal user involvement during schema-version-merging. 0 1998 Elsevier Science B.V.

Keywords: Schema version; Schema evolution; View; Schema integration

1. Introduction

One of the remarkable differences between object-
oriented database management systems (OODBMS) and
relational database management systems (RDBMS) is sup-
port for schema evolution. Object-oriented data models
emerged in the mid 1980s and since then many approaches
to schema evolution have been proposed [l-3]. This is
mainly because target applications of OODBMSS, such as
CAD/CAM, CASE, and multi-media frequently require
dynamic schema changes and flexible schema management.
Currently, several commercial OODBMSS, such as
Gemstone [2], 02 [3], ObjectStore [4], and Objectivity
[5] support various schema update primitives and provide
on-line schema evolution mechanisms. In addition, some
products, such as 02, Objectivity and ObjectStore, support
user-defined functions for schema updates.

Under these systems, however, only a single schema can
exist at any point in time; if a schema evolution operation

* Corresponding author. Fax: 0082 227 16945, e-mail: swlee@oopsla.
snu.ac.kr

’ This research was partially supported by the Ministry of Trade, Industry,
and Energy of KOREA under project 943-20-4, “Implementation of
Design Tools for Object-Oriented Database”.

0950-5849/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved
PI1 SO950-5849(98)00037-8

completes, the previous schema state is no longer
maintained. This single schema modification mechanism
has several drawbacks [6]. First, schema updates may
invalidate programs written against old schema. Second,
because all the users share a single schema, schema updates
by one user may change the views of all the other. users.
Schema version mechanisms were introduced to overcome
these problems, and many researchers have stressed
their importance since a characteristic of design applications
is being able to cope with frequently changing meta-data

VA.

1.1. Rejuvenation of schema versions

Recently, the necessity for schema versions has been
re-motivated in several new OODB application areas
including Repositories [9- 1 I], Portable Common Tool
Environment (PCTE) [12-141, and the Worldwide Web
(WWW) [15,16], all of which may use an OODBMS as
an integrator of data.

Data repositories ‘are expected to be one of the important
new uses of DBMS ‘technology ([ll]). Among many
requirements for repository management systems, the
ability to change the structure of information and its

158 S.-W. Lee, H.-J. Kim/Information and Software Technology 40 (I 998) 157- I73

meta-data without breaking existing applications (that is,
the functionality of schema versions) is mandatory

([l&l 11).
Another strong requirement for the functionality of

schema version comes from PCTE, where, as Loomis says
[131, an important role of the OODBMS is to manage PCTE
schema, support their evolution over time, and support the
resulting schema versions. In fact, schema evolution and
schema version management become a more serious
problem in PCTE [121.

Finally, WWW applications, needless to say the most
promising areas for OODBMS [15-171, also require
schema versions due to their dynamic nature. Atwood points
out in Ref. [151 that web sites need to publish new versions
of their applications with new database schema versions
without changing the existing versions of the applications
and their schemas.

Much work has been done to provide schema version
mechanisms for objectoriented databases (OODBS)
[7,18-201, but they have not reached a satisfactory status
yet. Traditional schema version approaches has three out-
standing problems: (1) storage overhead for redundant
objects [7,20], (2) limited schema update capability [18],
and (3) complexity for managing consistent schema
versions [191. Refer to Section 9 for the details. We believe
that the lack of flexible schema management and efficient
schema version mechanisms in current OODBMSs is one of
the major obstacles for their wide acceptance in the market.
Consequently, it is essential to fill the gap of flexible schema
management between application requirements and current
OODBMS functionalities.

1.2. Our perspectives and paper organization

A database schema is a representation of entities and
their semantics in the real world, which the database is
intended to model. In our view, a schema version in an
OODB is another schema, the purpose of which is
either to represent a semantically significant snapshot
of a schema at a point of time under the ever-evolving
real world, or to customize different, but simultaneous
user perspectives.

In this paper, we propose a simple, yet powerful, model of
schema versions for OODBS, based on the concept of the
rich base schema (RiBS). The remainder of this paper is
organized as follows. Section 2 gives a brief overview of
the RiBS model using an illustrative example. Section 3
describes the object model assumed in this paper. A
detailed description of each component of the RiBS
model is given in Sections 4-6, respectively. Section 7
touches upon several issues about the implementations of
the RiBS model. Section 8 deals with schema-version-
merging, another contribution of this paper. Our work is
compared to related work in Section 9. Section 10
concludes the paper with a summary and an outline of future
work.

2. Basic idea

In this section, we illustrate some basic ideas of the RiBS
model with an example. A detailed description of each com-
ponent of the model will be given in the following sections.
For brevity, in this section, we assume the following
informal description of a schema in an OODB: A schema
in a database consists of classes that are organized into a
class hierarchy through ‘is-a’ (ISA) relationships between
them. Each class, in turn, consists of properties including
both attributes and methods. To every class is attached a
collection of objects, extent. Each instance object belongs to
the extent of a single class, and is referred to as a direct
instance of the class.

2.1. Rich base schema and schema versions

Before proceeding with the example, we motivate the
concept of ‘rich base schema’, and discuss how it can be
exploited in supporting schema versions. We say that
schema Sl is richer in schema information than schema
S2 if all conditions set out below hold.

(1) For each class in schema S2, there is a correspond-
ing class in Sl;
(2) for each property of a class in schema S2, there
exists a corresponding property in the corresponding
class of Sl;
(3) for every direct ISA relationship in schema S2, there
is also a corresponding ISA relationship (direct or
indirect) in schema S 1.

If a schema Sl is richer than another schema S2, it means
intuitively that Sl has more schematic information than S2.
This, in turn, means that S2 can be specified as a subset view
of S 1. This concept of rich schema can be re-stated in terms
of relative information capacity [21,22]; Sl dominates (or
subsumes) S2.

Our model is based on this concept of rich schema. A
physical base schema, RiBS (rich base schema), which is
richer in schema information than any existing schema ver-
sion, is maintained, and every schema version is represented
as a view over RIBS. In addition, when a schema update is
imposed on a schema version, RiBS is, if necessary, auto-
matically augmented so as to be richer than the modified
schema version in addition to all other schema versions.
In summary, a schema version is an updatable class
hierarchical view2 over RIBS.

In our model, schema versions are strictly separated from
RIBS. This separation enables the prevention of problems
from occurring when the schema information of schema
versions is mingled with that of RIBS. Some previous
works on views in OODB [18,231 put normal classes and
derived views together in one class hierarchy. However, this

* ‘Updatable’ means that the schema evolution operation can be directly
imposed on the view.

S.-W. Lee, H.-J. Kim/Infbrmation and Software Technology 40 (1998) 157-l 73 159

SVl (root schema version)

-> : instance-of
---) : inheritance
__ : attribute-of

.m____.’

RiBS

Fig. 1, RiBS and schema versions: an example.

approach has several disadvantages [24]. First, it is difficult
for users to understand the complicated class hierarchy.
Next, the extents of classes in the hierarchy may overlap.
Finally, it is difficult and, in certain cases, impossible to
decide where to locate the view class in the class hierarchy.

2.2. An intuitive example

Now let us consider the example in Fig. 1, where two
schema versions SVI and SV2 are represented as views
over RIBS. As illustrated in Fig. 1, schema information in
RiBS is rich enough to contain all the classes and properties
for either SVl or SV2. The base class corresponding to a
class version in a schema version is called the direct base
class of the class version. For example, BCl in RiBS is the
direct base class of class version Cl in SVI .3 Every instance
object in the direct base class becomes an element of the
logical extent of the class version. In Fig. 1, both SVl and
SV2 share instance objects in RiBS. Under a specific
schema version, an instance object of a class version is
derived from an instance object of the corresponding base
class through projection.

In Fig. 1, we assume that after SVl is created initially (we
call it the root schema version) and then SV2 is derived from
it, SV2 undergoes three schema updates as follows: (1)
rename class version C 1 as Cl ‘, (2) drop class version C2,
and (3) add attribute version d to C 1’. We now describe how
each schema update affects SV2 and/or RiBS.

In our model, each schema version maintains names for
its own class versions and their property versions, inde-
pendently of base classes and properties in RIBS. Thus,

’ In this paper we use the naming convention such as BCl and BC2 for
classes in RiBS. This is only for illustrative purpose. Mechanisms such as
object identity (OID), which can uniquely identify class and properties
within a system, will be sufficient.

the first operation renames the class version Cl as Cl’
only within SV2, without affecting RiBS or SVl. The
second operation just drops the schema information of
class version C2 from SV2, without effecting RiBS or
SVl. However, this operation, in contrast to the previous
operation, raises a subtle semantic issue: that is, the effect of
dropping c2 on ~2’s logical extent. For this, the RiBS model
chooses the semantics to migrates all the (logical) direct
instances of C2 to the extent of a superclass. Thus, class
version Cl ’ has base classes BCl and BC2 as its extental
base classes. Details will be discussed in Section 6. The last
operation, adding attribute d to class version Cl ‘, is
different from the above two operations as it requires a
change in RiBS as well as changes in SV2: a corresponding
attribute should be added to the direct base class of Cl’ in
RIBS. Attribute d in BCl is the result of this operation.

In this section, we gave an overview of the RiBS model.
The RiBS model has three components: (1) the structural part,
which consists of schema versions and a RiBS, (2) a set of
invariants to preserve semantic consistency within the struc-
tural part, and (3) a set of schema manipulation operations,
which are applicable to the schema versions. In Sections 4-6,
we will elaborate on these components, respectively.

3. Object model

This section defines the object model assumed in this
paper, which is common to RiBS and schema versions. A
class C in a database defines the properties of objects. Each
class maintains its extent. A property represents either an
attribute or a method.4 Each class may have more than one

4 In this paper, we use the term ‘property’ to represent both attributes and
methods. When we need to distinguish them, we will use the specific
terminology.

160 S.-W. Lee, H.-J. Kim&formation and Sofiware Technology 40 (1998) 157-I 73

Table 1

Notations for object model

Term

C

s

W)
Cname

P
Parents(Q

Parents * (C)

IWC,,Cd
ISA * (S)

Interface(C)

InheritedPr ops(c)

LocalProps

Extent(C)

Or&)

Description

Class

RiBS or schema version

Set of all classes of schema S

Class name

Property
Set of direct parents of C

Set of all parents of C

C, is a direct subclass of CZ

All direct or indirect ISA relationships within schema S

Interface of class C (that is, the set of properties)

Inherited properties of C

Locally defined properties of C

Extent of class C (set of direct instances)

Original property of p

Table 2

Axioms for inheritance

(1) Axiom of closure

(2) Axiom of acyclicity

(3) Axiom of rootedness

(4) Axiom of interface

(5) Axiom of property inheritance

(6) Axiom of superclasses

VCeI, Parents(Q C 7

VC&, C +! Parents * (C)
Parents (Object) = () A VCel-(Object], ObjecteParents * (C)

Interface(C) = InheritedProps (C) U LocalProps

InheritedProps = U C.rParen,~(OInteTface(CI)

Parents * (Cl = U c,,pa,m,c(cIParents * (C’) U Parents(C)

superclass, that is, multiple inheritance is supported. The set
of direct superclasses of a class C is denoted as Parents(C).
All the properties of the superclass are inherited into the
subclass. The newly defined local properties of a class C,
denoted as LocalProps(together with the inherited ones,
denoted as InheritedProps(constitute the interface of the
class, Interface(C). For an inherited property p of a class,
there exists an origin property, denoted as Orgb), from
which p is inherited. The notations for the object model
are summarized in Table 1. The transitive closure of
Parents(C), namely the set of all the direct or indirect
superclasses of class C, is denoted as Parents * (C).

Table 2 summarizes the inheritance semantics of the
object model. As pointed out in Ref. [25], although much
research has been focussed on inheritance, researchers
rarely agree on its meaning and usage. Even in ODMG-
935 [26], no clear semantics are given for inheritance, in
particular multiple inheritance. Thus, we need to develop
these axioms to clarify the inheritance semantics in RiBS
model.

Through axioms 1 to 3 in Table 2, we force a schema to
be a direct acyclic graph (DAG). Axiom 1 says that all the
superclasses of any class in schema S should be also
members of I(S). Axiom 2 requires that there be no cycle
in the class hierarchy, and axiom 3 does require that a single
class Object in I be the root of the class hierarchy. A schema
conforming to these three axioms results in a DAG [I].

’ An object database standard from ODMG (object database management

group).

Axiom 4 means that, as mentioned above, the interface of
a class consists of inherited properties and locally defined
properties. The inherited properties of a class C, as stated in
axiom 5, are the unions of the interfaces of all the super-
classes of C. Axiom 6 means that Parents * (C) is the
transitive closure of P relationships of class C. According
to these axioms, a class, of which two or more superclasses
share a common superclass, inherits properties from com-
mon superclass only once (like virtual inheritance in C++).
Name conflicts between two or more properties of different
superclasses, or between inherited and locally defined
properties are allowed and users are responsible for
designating a specific property (also similar to C++).

4. Structures

The structural component of the RiBS model has a three-
level architecture: (1) the (extensional) obiect base, (2) the
rich base schema (RiBS), and (3) the schema versiions.
Every object physically resides in the extensional object
base. RiBS accumulates all the necessary schema informa-
tion ever defined in any one of the schema versions. Each
schema version is in the form of a class hierarchy view over
this RiBS. Users are concerned only with the schema
versions in the uppermost layer. Direct schema updates on
schema versions are allowed, and their effects are, if
necessary, automatically propagated down to RiBS. In
this section, we give descriptions of all the structural
components of the RiBS model.

S.-W. Lee, H.-J. Kim/Information and SofhYare Technology 40 (I 998) 1.57-l 73 161

4.1. De$nition I (Base schema, RiBS)

In a database, there exists a single (rich) base schema
called RiBS, which describes the structures of objects
physically stored in the database. RiBS includes a set of
base classes, and inheritance relationships between them
constitute the class hierarchy of RIBS. The structure of
each object stored in an object base conforms to the
definition of the base class in RiBS to which the object
belongs. To each base class of RiBS an extent is
attached, which is the set of all the direct instance objects
of the class.

4.2. Dejnition 2 (Schema version, SV)

A schema version, SV, is a logical class hierarchy view
over RIBS, which represents either a snapshot of the ever-
revolving database schema at a certain point of time, or a
customized view for a particular user. A schema version,
SV, is a class hierarchy view because the schema version
itself is also a class hierarchy. It is also a logical view in the
sense that all the objects visible through a schema version
are derived from the objects stored in the extensional object
base.

4.3. Dejinition 3 (Current schema version, CSV)

We call a specific schema version, under which
application programs/users access and manipulate the data-
base at a certain point of time, current schema version
(CSV). With the RiBS model, a user should designate a
schema version as CSV before (s)he accesses the database.
A user can do all the normal database operations against the
CSV. Moreover, users can change the schema structure of
CSV; that is, the schema can evolve. We will give a detailed
description of this, mechanism in a later section and
describe the semantics of schema changes on schema
versions.

In the RiBS model, the execution of a schema evolution
operation, however, does not imply derivation of a new
schema version. Instead, we provide an operation for users
to explicitly derive a new schema version from existing
ones: the former is called the ‘child schema version’ and
the latter ‘parent schema version(s)‘. Derived-from relation-
ships between schema versions constitute the schema
version derivation graph, defined as follows:

4.4. Definition 4 (Schema version derivation graph, SVDG)

A schema version derivation graph (SVDG) is a directed
acyclic graph, where each node represents a schema version
and each directed edge between nodes represents a ‘derived-
from’ relationship. When a database is initialized at its
creation time, the ‘root schema version’ is created, in
addition to the initial RIBS. The root schema version is
the root of SVDG.

4.5. Dejinition 5 [Class version, CV, and direct base class,

B(Wl

A class version CV of a particular schema version repre-
sents a facet of a base class in RiBS, which needs to be
modeled within the schema version. We call the base
class the direct base class of CV, and formally denote it as
B(CV). For each class version CV, there is one and only one
direct base class B(CV) in RiBS. However, the converse is
not true, that is, a base class in RiBS may not need to be
explicitly modeled in a schema version SV, so there might
not be a corresponding class version in SV. With respect to
schema information capacity, B(CV) is a superset of CV;
that is, B(CV) has all the schema information necessary for
CV. The purpose of maintaining the direct base class is as
follows. When a specific schema update is imposed against
CV and its effects need to propagate to RiBS, the schema
change in RiBS starts from B(CV).

As mentioned earlier, users are concerned only with
schema versions. Hence, each class version in a schema
version, like normal classes, is expected to have its own
class extent. For this, we maintain extental base classes
for each class version.

4.6. Dejinition 6 [Extental base classes, B’ (CV)]

The extental base classes of a class version CV, B+ (CV),
are a set of base classes in RIBS. The union of the extents of
these base classes comprises the logical extent of CV. From
these extental base classes, the logical extent of a class
version CV is derived as follows.

Extent(CV) = c, ,?&, Extent(C’)
c

As will be discussed later, the set of base classes in B+(CV)
is a connected subgraph of RIBS, rooted at B(CV) (thus, we
employ the notation B+). Therefore, all the objects in
B+(CV) carry values for all the properties necessary in CV.

4.7. Definition 7 [Property version, PV and direct base

property, WWI

A property version, PV, of a class version, CV, represents
either an attribute or a method of the CV. The direct base
property of a PV in a class version CV, denoted as B(PV), is
a corresponding property of B(CV). Every PV in a schema
version has its direct base property.

The purpose of maintaining a direct base property for
each PV is as follows. When a logical object is retrieved
through CSV, its values are derived from the corresponding
physical object. In this process, the value of each PV is
derived from that of the B(PV) of the physical object. The
concept of extental base classes, however, complicates this
process in that, if the corresponding physical object of an
object being accessed under CSV is an instance of a base
class which is not a direct base class of any class version of

162 S.-W. Lee, H.-J. KirnArzfonnation and Software Technology 40 (1998) 157-173

CSV, how do we derive the value of each PV from the
physical object? As stated in the previous section, we
assume that in RIBS, a subclass inherits all properties
from its superclass and keeps the property information
locally, as in Orion [l]. Thus, when deriving the value of
each PV, the value of the property which has B(PV) as its
origin property is used.

5. Invariants

In this section, as a second component of the RiBS model,
we introduce a set of invariants which should always be
satisfied by the structural part. Moreover, this set of
invariants plays a critical role in defining the semantics of
schema evolution operations for schema versions, as
discussed in the next section.

Invariants in the RiBS model can be classified generally
into three categories: RiBS invariants, schema version
invariants, and invariants between RiBS and schema
version. In this paper, we describe the last two categories.
With respect to RIBS, we assume the well known invariants
for schema evolutions, such as DAG invariance, name
invariance, origin invariance, full inheritance invariance,
and no redundant ISA relationships from [l-3,27 1.

5.1. Znvariants on schema version

For schema versions, in addition to the traditional
invariants for schema evolutions, we identify two new
invariants, ‘no phantom reference’ and ‘no multiple
classification’, both of which are related closely to the
schema evolution operation class drop. Incorrectly defined
semantics for this operation might result in some anomalies.
In the next section, we will explain how these two invariants
guide the semantics of class drop.

5.1.1. Invariant 1 (no phantom reference)
The value of an attribute of an object may be a reference

to a phantom object, which is not a direct instance of any
class in the schema version. We refer to this kind of
reference as a phantom reference. This is in contrast to a
dangling reference, which is a reference to non-existing
object. There should be no phantom references within a
schema version SV: that is, within SV* for each object 0
referenced by another object, there should exist a class
version CV, where 0 E Extent(CV).

5.1.2. Invariant 2 (no multiple class$cation)
This invariant restricts each logical instance object in a

schema version to be a direct instance of only one class
version. In other words, logical extents of each class version
in a schema version should be disjoint to each other, which
can be formalized as follows:* for every class version CVi
and CV, in a schema version SV, where i # j, Extent(CVJ
n Extent(CVi) = 4.

5.2. Invariants between RiBS and schema version

As mentioned above, each schema version is a logical
view over RIBS. The following invariants should hold
between each schema version SV and RIBS.

5.2.1. Invariant 3
For each class version CV (and property version PV) in a

schema version, there should exist a corresponding B(CV)
(and B(PV)) in RIBS.

5.2.2. Invariant 4

Within a schema version, for each base class C in RIBS,
there should exist a class version CV, such that C E B+(CV).
The above invariant means that the union of the extental
base classes of all class versions in a schema version should
be equal to the set of base classes in RiBS, as formalized in
the following.

cv,E~csv, B + (CVJ = I(RiBS)

6. Operations

In this section, we give a set of operations for schema
version management, which is the last component of the
RiBS model. These operations are classified into two
groups: one group is concerned with SVDG manipulation,
while the ther includes schema evolution operations against
schema versions.

l Operations for SVDG manipulations.
(1) Derive sv-name from parent-list;
(2) Delete sv-name;
(3) Set current schema version to sv-name.
l Operations for schema evolution.
(1) Operations which have no impact on RiBS;

(a) Change the name of a class version C,
(b) Drop an existing class version C,
(c) Drop an existing property version v from a class
version C,
(d) Drop an edge to remove a class version S as a
superclass of another class version C,
(e) Change the ordering of superclasses of a class
version C.

(2) Operations which have impacts on RIBS;

(a) Add an edge to make a class version S a superclass
of class version C,
(b) Add a new property version v to a class version C.

(3) Operations which have impacts both on RiBS and on
other schema versions;

(a) Create a new class version C.

S.-W. Lee. H.-J. Kim/Information and Software Technology 40 (1998) 157-173 163

Schema evolution operations available in RiBS model are
similar to those from Refs. [1,2]. In this paper, we make a
new taxonomy for the eight fundamental schema change
operations of Orion, depending on their impacts on RiBS
and other schema versions. In the rest of this section, we will
describe each of these schema version management
operations in greater detail.

6.1. Operations for SVDG manipulations

Derive sv-name from parent-list as mentioned before, this
operation is used to derive a new schema version sv-name
from existing ones in parent-list. When a schema version is
derived from a single parent, this operation can easily be
implemented. That is, the schema information of the parent
is simply copied into the child. At this point, the schema
information of both parent and child, including class
versions and their property versions, is exactly the same.
In the case of multiple parents, however, the parent schema
versions with different structural information should be
merged into a new consistent one. We call this process
‘schema-version-merging’. In the next section, we will dis-
cuss some issues about schema merging and provide our
solutions in, detail.

Delete sv-name When a schema verion is no longer
needed, this operation is used to remove it from SVDG
and delete its schema information from the database; that
is, all the class versions and their property versions are
deleted. We do not allow to delete root schema version.
When a schema version is removed from SVDG, its parent
schema versions become new parent schema versions of its
child schema version (if any).

Set current schema version to sv-name As mentioned
above, every program or query in the RiBS model should
be written against a specific schema version, called the
current schema version (CSV). This operation is used to
designate CSV before applications or query accesses to
the database.

6.2. Schema evolution operations

The schema evolution operations of the first group require
changes only in the schema information of CSV. In this
respect, they are related to earlier works on simulating
schema updates using the OODB view [18,241. However,
these approaches have a serious drawback, which is that
they do not support operations from our last two groups.

In this subsection, we will explain three representative
operations from each group, which raise subtle issues in
defining their semantics. In the next subsection, we will
give a formal semantics for all the eight operations. For com-
plete descriptions of all the operations, refer to Ref. [28].

6.2.1. Drop an existing class version C
This operation drops a class version C from CSV. C is

dropped out from the subclass list of each class version in

Parents(C) and from Parents(C,J of each subclass version
C5uh of C, if any. If C is the only superclass of any subclass
Csuh, class versions in Parents(C) become new superclasses
of Csub [11. All the properties that are locally defined within
C are also dropped from all its subclasses.

As mentioned before, a (logical) extent in the RiBS model
is attached to each class version. Thus, when deleting a class
version, we should consider the issue of how to deal with its
extent. In relation to this issue, there have been at least two
reasonable approaches for class drop [1,3,4] in the area of
schema evolution. In the first approach, all the instance
objects of a class are deleted from the database [1,4]. How-
ever, this semantics, as pointed out in Ref. [l], may intro-
duce the dangling reference problem. A commercial
OODBMS, ObjectStore [4], overcomes this problem by nul-
lifying all the references to the deleted instance objects.
However, this in turn, makes the operation potentially
very time consuming [4]. In the second approach, which
is exemplified by the 02 system ([3]), the class drop opera-
tion is allowed only if the extent of the class is empty.

In the RiBS model, there could be another possible
approach to class drop, where all objects in Extent(C) are
filtered out from CSV. According to this approach,
objects in Extent(C) cannot be accessed through the
extent of any class within CSV when the class drop
operation is completed. However, it should be noted
that all the physical objects still exist in RIBS. This
approach seems to be similar to the view mechanism
in relational databases, which provides the functionality
of content-based authorization [29], in that it hides some
objects from the view of the user. Many other researchers
have anticipated that some kind of view mechanism for
OODB will also provide the same functionality of content-
based authorization [18,241.

However, navigational object access through object
identity (OID) in the object-oriented data model is
drastically different from the relational data access
paradigm where the only unit of access is either table or
view. In the object-oriented data model, a class may be
used as the domain of an attribute of another class. Hence,
an object may have the OID of another object as its value for
an attribute. This characteristic of object traversal through
OID introduces the ‘phantom reference’ problem under our
previous semantics of class drop. As shown in Fig. 2, even
after a class version CV is dropped, the object cl is still
accessible through object a2. Under the last semantics, how-
ever, object cl cannot be accessed through the extent of any
class version in CSV; that is, cl is a phantom object. It
should be noted that the phantom reference problem is not
confined to the RiBS model. Any view mechanism in
OODB should consider and solve this phantom reference
problem in order to provide for the functionality of content-
based authorization. This phantom reference problem leads
us to choose a compromised semantics for class drop.
Within CSV, all objects in Extent(C) are migrated
(logically) to the extent of a superclass of C. For example,

164 S.-W. Lee, H.-J. Kim/Information and Sojiware Technology 40 (1998) 157-173

RiBS

L.__l phantom

reference
_

kJ

Fig. 2. Phantom reference

in Fig. 2, all objects in Extent(C) are migrated to Extent(B)
after the class version C is dropped.

Under this semantics for class drop, multiple inheritance
complicates the situation: to which superclass should the
logical extent of the class being dropped migrate? In order
to guarantee invariant 2, we require users to explicitly
designate a target superclass in the RiBS model.

6.2.2. Add an edge to make class version S a superclass of
class version C

This operation adds a class version S to Parents(C). This
operation is rejected if it introduces a cycle or a redundant
ISA within CSV. C inherits all the properties of S. This
operation also affects RIBS, except in the following two
cases. The first case is where S is deleted from Parents(C)
within CSV before this operation occurs. The second is
when another schema update in another schema version
has already had the required effect on RiBS. These two
cases can be inferred by checking whether [B(S),B(C)] is
in ISA * (RiBS). In the case where [B(S),B(C)] is not in ISA
* (RiBS), B(S) is added into Parents[B(C)l.

In addition, to ensure no redundant ISA relationship in

/ w-1 ,@ / /

Fig. 3. Addition of superclass to a schema version.

RiBS, the existence of any direct or indirect superclass of
B(S) in Parents[B(C)] in RiBS should be checked. If one
exists, the inheritance relationship is removed from RiBS.
This situation is exemplified in Fig. 3, where we assume that
schema version SVj was derived from SVi and class version
A was made a new superclass of class version C in SVi.
Then, when a schema update which adds class version B
to Parents(C) is imposed on SVj, a new edge from B(B) to
B(C) is added and the edge from B(A) to B(C) is deleted.
This is required to avoid redundant ISA relations in RiBS.
Note that, for ISA(A,C) in SVi, the corresponding [B(A),
B(C)] exists in ISA * (RIBS).

6.2.3. Create a new class version C as a subclasss of S

This operation creates a new class version in CSV. If any
class version with same name already exists in CSV, the
operation is rejected. To satisfy the invariant 3, a new
base class B(C) needs to be created in RiBS. Direct base
classes of each superclass of C become the superclasses of
B(C). In addition, the direct base class of each domain of an
attribute defined in C becomes the domain of the attribute in
B(C). The base class is created with the superclass list and
property list, and then the new base class is set to B(C).

This operation affects other schema versions, in addition
to RiBS. According to invariant 4, B(C) needs to be
included into extensional base classes of an appropriate
class version in schema versions other than CSV. In order
to do this, we choose the following solution: “in schema
versions other than CSV, add B(C) to the extental base
classes of a class version CV which has B(S) as its extental
base class” (refer to formal semantics in the next section).

6.3. Formal semantics of operations

In this subsection, we give the formal semantics of each
operation based on the informal semantics from the previous
subsection. According to our taxonomy of schema
evolution operations, the formal semantics of the three
schema evolution operation groups are given in Tables 3-
5, respectively. The meanings of all the other operations
used in the tables, except for the operation c.u(C,p), are
self-explanatory.

The operation cx(C,p) sets a corresponding direct base
property for each property version of subclasses of class
version C, which has the property version p as its origin
property version. To illustrate the semantics of this opera-
tion, we use the example in Section 2.2. As shown in Fig. 1,
the newly added attribute d to class version Cl ’ in SV2 is
inherited by class version C3. This inherited attribute d of
C3 also needs its base property. Thus, base attribute d in
base class BC3 in RiBS should be set as base property of d
in class version C3. This can be done using the operation
ol(Cl’,d). In this paper, we assume that local property
versions defined within a class version are inherited into
all the direct and indirect subclasses. In addition, according
to full inheritance semantics, each subclass keeps the

S.-W. Lee, H.-J. Kim/Information and Software Technology 40 (1998) 157-I 73 165

Table 3

Semantics of operations with no impact on RiBS

Operations Semantics (only current SV)

Change the name of a class version C

Drop an existing property version p from a class version C

Change the ordering of superclasses of a class version C

Drop an edge to remove class version S as a superclass of class version C

Drop an existing class version C

set C.name to new name
if p 4 LocalProps then reject

else drop p from LocalProps

no action

(semantics of unordered inheritance)

if Parents(C) = [S] then
if S = Object then reject

else Parents(C) = Parents(S)

else remove S from Parents(C)

if C = Object then reject

else B+(C,,,) = B+(C,,,) U B’ (C);

for each subclass Csuh of C

if Parents(C,,b) = (C) then
Parents(C,,,) = Parents(C)

else remove C from Parents(C,,,);

Table 4

Semantics of operations with impact only on RiBS

Operations Semantics

Add an edge to make classversion S as a superclass of C RiBS

csv

Add a new property version p to a class version C RiBS

csv

create a base property bp
add hp to LocalProps(B(C))

create a property version p
set B(p) as bp
add p to LocalProps

cu(CP)
if B(S) E Parents * [B(C)] then no action

else add B(S) to Parents[B(C)]
if 3bc(e Parents[B(CJ]] t Parents * [B(S)]

then remove bc from Parents[B(C)]

add S to Parents(C)

for all new properties p inherited from S,

NCP)

Table 5

Semantics of operations with impact on RiBS and other schema versions

Operations Semantics

Create a new class version C as a subclass of S RiBS

csv

create a base-class bc
add B(S) to Parents

set bc as B(C)

add S to Parents(C)

other SV s

initialize B+(C) to (bc)
for all p E LocalProps(

4CP)
if 3 C, in SV, where B(S) E B+(C,)

then add bc to Bf (C,)

inherited property versions independently from the original
class version. For these inherited property versions, direct
base properties are also necessary. All the subclass versions
of class version C have their own direct base class. All these
base classes are also subclasses of B(C) in RIBS. Moreover,
for each base class there exists an inherited base property
having B(y) as its origin property. a(C,p) traverses all the
subclass versions of C, finds direct base property of each

inherited property version ip from p. and then sets the base
property as B(ip).

7. Implementation considerations

In this section, we discuss several issues that should be
considered when implementing the RiBS model. In addition,

166 S.-W. Lee. H.-J. Kim/tnj&wwtion and Sojtware Technology 40 (1998) 157-173

(Schema
Version supetclasses (ordered) + or,gm

Schema schema-

Version W-S~WI
parents --J name

RiBS

Fig. 4. Systems classes for the RiBS model.

we show that the RiBS model could be supported by current
OODBMSs with some extensions, and argue that the
perfomance overhead to support the RiBS model is small.

7.1. Data structures

Fig. 4 shows a generic data structure for the implementa-
tion of the RiBS model, using the OMT (object modeling
technique) notation [30]. The data structures consist of five
system classes and their relationships to each other. These
classes and their relationships implement the structural
components of the RiBS model. The various modeling
constructs of the OMT object model, such as ‘qualified
association’, ‘aggregation’, and ‘ordering’,h are used to
describe the data structures concisely and precisely.

In current OODBMSS, a module called SM (scheme
manager), maintains the schema information correspond-
ing to system classes class and property [3]. For the imple-
mentation of the RiBS model, this SM module needs
some extensions to incorporate the system classes for the
schema version layer, SchemaVersion, ClassVersion, and
PropertyVersion.

7.2. Preprocessing

In the RiBS model, a program or query is written against a
schema version, and translated so as to run against RiBS for

’ We assume that readers are familiar with OMT notation. Refer to [29]
for more detailed descriptions regarding the OMT.

its execution. This translation can be handled by an ODLI
OML (object definition language/object manipulation lan-
guage) preprocessor [26], as suggested by ODMG. During
the translation, the preprocessor might need to interact with
the SM module to get information about the schema map-
ping between RiBS and current schema version. The final
program or query against RiBS can be executed without
extra run-time overhead.

7.3. Object adaptation

In general, there have been two approaches to the adapta-
tion of objects [l-3], changing the representation of
affected objects to a state consistent with the new schema.
The first approach is deferred update, where the format of
each object is changed only when it is accessed after schema
updates. The second approach is immediate update, in
which attected objects are updated instantly upon schema

updates.
This paper is mainly concerned with the semantics of

schema version evolutions for both schema versions and
RIBS; thus, object adaptation is not within the scope of
this paper. However, either approach can be applied to
bring physical objects residing in an extensional base up
to a consistent state in the RiBS model.

7.4. Object identity

Two OID schemes, physical OID and logical OID, have
been commonly adopted by OODBMSS. A physical OID

S.-W. Lee, H.-J. Kindfnformarion and Sofrware Technology 40 (199X) 157- I73 167

encodes the permanent address of the object referred to by
itself. This approach provides efficient access to disk-
resident objects, but lacks location interdependence. In
contrast, a logical OID is generated by the object storage
system independently of the physical address of an object.
Thus, this representation allows flexible object movement
and replication, but with some performance degradation due
to the mapping overhead between logical OIDs and their
physical addresses. As mentioned above, because a program
or query in the RiBS model runs on the RiBS layer after
translation, the RiBS model can be supported by any
OODBMS, regardless of the OID scheme used.

7.5. Space optimization

With the RiBS model, there might be opportunities for
space optimization. For example, consider a base property
for which no corresponding property version exists in any
schema version. Physical objects in the extensional base
reserve space for the obsolete base property, but the space
is no longer necessary because the information kept there is
not accessible through any schema version. This fact can be
exploited by the database administrator by dropping
unnecessary base properties from RiBS periodically.

7.6. Implementations using SOP ODMG-compliant

OODBMS

SOP (SNU OODBMS Platform) is an ODMG-compliant
OODBMS developed from scratch at Seoul National
University [3 I]. SOP consists of several modules, including
an object storage system (Soprano) [32], an SM module. an
ODMG ODL/OML C,, preprocessor, and a cost-based
query processor. Soprano supports a physical OID scheme.
The SM module maintains the class and property informa-
tion and supports basic schema evolution primitives from
Orlon. The current ODMG ODL/OML C,, preprocessor
was developed to provide a seamless integration of C,,
programming with SOP by enabling the persistence to be
orthogonal to the type. We plan to implement the RiBS
model on SOP by extending the SM module, the pre-
processor, and the query processor to understand the schema
version layer.

8. Schema-version-merging

As noted in Section 6, ‘schema-version-merging’ is the
process of merging two or more existing schema versions.
This operation seems to be very useful in several phases of
managing OODBS. First, let us consider the initial phase of
OODB schema design. Usually at this time, a group of
schema designers is involved, and each person is assigned
to a different part of the database. The partial schema of
each designer is then merged into one global schema.
Second, a user might want to customize his/her own schema

version from two or more existing ones. In this section, after
considering two types of conflicts during schema-version-
merging in the RiBS model, we give solutions to overcome
those conflicts.

8.1. Conjlicts in schema-version-merging

Merging two or more parents with different schema
information into a new schema version may introduce two
kinds of name conflict:

8.1.1. Homonym prublems
Two or more class (property) versions, from different

schema (class) versions, but having the same name, may
have different direct base classes (properties). We call
them homonym class (property) versions.

8.1.2. Synonym problems
Two or more class (property) versions, from different

schema (class) versions and having different names, may
have the same direct base class (property). We call them
synonym class (property) versions. Schema updates such as
class renaming and creation cause these name conflicts.
Fig. 5 shows examples of synonym and homonym class
versions. Assume that (1) schema version SVj is derived
from SV,, (2) a class version in SVj which has student in
RiBS as its direct base class, is dropped out, and (3) class
under was renamed student. Thus, class version Person from
SV, and class version Univ_Person from SV, are synonym
class versions. Other synonym class versions are class
version under from SV, and class version student from
SV;. Class versions students from both schema versions
are examples of homonym class versions.

Besides name conflicts, schema-version-merging in the
RiBS model introduces another type of conflict, extent
migration conflict. We say, that for any two schema versions
being merged, a base class in RiBS is said to have extent
migration conflict (1) if it has no corresponding class

W-j

Univ_Person

/---F-L

Student Graduate Professor

Student Em

TA

Fig. 5. Schema-version-merging.

168 S.-W. Lee, H.-J. Kim&formation and Software Technology 40 (1998) 157-173

version in either schema version, and instead (2) it is
included in extental base classes of two class versions
from those schema versions, which have different direct
base classes. For example, base class C in Fig. 6 has extent
migration conflict while merging SV i and SVj. Base class C
has no corresponding class version in either SVi or SV,. C is
contained in B+(CV,) in SV,, while B+(CV,) is in SVj.
However, CV, and CV, have different direct base classes,
A and B, respectively. In the new schema version, each
corresponding class version is created for CV, and CV,.
At this point, it is impossible to automatically decide
which class version should take base class C as its extental
base class. We refer to this situation as ‘extent migration
conflict’. This is mainly due to multiple inheritance in the
object-oriented data model.

In the next subsection, we provide a semi-automatic
algorithm considering all these issues. The algorithm is
semi-automatic in the sense that it requires some user
involvement, as in Ref. [29].

For synonym classes, the user chooses the most mean-
ingful name among the names of each synonym class, or
assigns a new name in the new schema version.
For homonym classes, the user assigns a new name for
each new class version.
For each base class that has extent migration conflict, the
user should designate a logical migration class in the new
schema version.

8.2. Schema-version-merging algorithm

The algorithms given in Appendix A describe a way to
generate a new schema version (output) from parents
(input). Algorithm 1 lists the five main steps of the
schema-version-merging process. Algorithm 2 to algorithm
6 correspond to those steps, respectively. The algorithms are
quite complex, and thus we give a detailed explanation with
an illustrative example in the next subsection.

The first step, Identify-BCs, identifies the base classes

W-i SV-j

RiBS

necessary in the new schema version. If a base class in
RiBS is used as the direct base class of a class version in
any input schema version, it is included in the base class list,
BCList, of the new schema version. For each base class BC,
in BCList, we maintain a class version list CVList,, each
element of which has BCi as its direct base class and comes
from a different input schema version.

The next step, Create-CVs, creates a class version object

CV”,, for each base class BCi in BCList. After creating

CVIE, 9 this step sets B(CV,,,) to BC;. If the names of all
class versions in CVListi are equal (that is, no synonym
problems), then a new class version inherits its name from
these class versions. Otherwise, users are requested to
resolve synonyms.

After creating all class versions of the new schema
version, the algorithm calculates extental base classes of
each new class version, via Calculate-B+. In the first loop,
this procedure derives initial extental base classes B+ for
each new class version CV,,, in SV,,,. For each CV,,,! all
the B+s of class versions in CVList, are intersected into
B + (CV,,,). At the end of the first loop, some base classes
may not be either in BCList or any B’ (CV,,,,); that is,
these base classes have ‘extental migration conflicts’. For
each of these base classes, users are requested to resolve the
conflicts in the second loop of Calculate-B+; that is, the user
should designate a logical migration class version in SV,,,.

The next step, Calculate-LPs, creates local properties of
each new class version in SV,,,. For a class version CV,,, ,
this procedure creates a local property version object PV,,,m
for each base property BLP, in B(CV,,,,) which is used as a
base property of a local property version of any class version
in CVListi. BLP, is then set to B(PVnewm). After completing
BLPList, this algorithm names each PV,,,m. As in the case
of synonym class versions, users need to be involved in
resolving synonym property versions in LPVList,, if any.

RI

/I\
AA B\

7 /“\/“‘I B8
B9 BIO Bll B12

Fig. 6. Extental migration conflict. Fig. 7. Schema-version-merging example (1).

RiBS

The final step, Make-Class-Hierarchy, makes DAG
(direct acyclic graph) relationshps for SV,,,. After blindly
deriving all direct ISA relationships between new class
versions from relationships of parent schema versions, this
procedure removes redundant ISA relationships.

8.3. An illustrative example

Fig. 7 shows a RiBS and two schema versions SVl and
SV2 to be used in exemplifying the schema-version-merging.
In the figure, we assume that a class version CV in either
schema version is represented by an area surrounded by a
solid line. In each area, the root of the corresponding subgraph
is its direct base class, B(CV). A bold arrow between class
versions represents an ISA relationship in the schema
version. The base classes contained in each area comprise
the extental base classes of CV, B+(CV). For simplicity, we
do not specify the name of each class version explicitly.

S.-W. Lee, H.-J. Kim/information and Software Technolog!: 40 (1998) 157-173 169

status after the first loop of make-class-hierarchy. Basically,
the ISA relationships between new class versions inherit
from the ISA relationships of parent schema versions. For
instance, see ISA relationships between CVl and CV.5 or
between CV3 and CV12. However, it should be noted that in
the case of the ISA between CV5 and CV9, there is no
corresponding ISA relationship in any parent schema
version instead, in SV2, the class version containing B9
has, as its superclass, the class version corresponding to
CVl. The second-level if statement inside the first loop of
make-class-hierarchy is concerned with this; when new ISA
relationships are built up. the relationship of the extental
base classes takes precedence over the explicit ISA relation-
ship in the parent schema versions. For example, ISA (CV9,
CV5) is derived from the fact that B(CV9), that is B9, is
contained in the B + of a class version in SVl rather than
from the ISA relationship between the two class versions
containing Bl and B9, respectively, in SV2. The second
loop of make-class-hierarchy removes the redundant ISA
between CVl and CV6, thus, Fig. 8(d) shows the final
new schema version.

Fig. 8 illustrates how our schema-version-merging
algorithm works on the above two schema versions. Fig. 8
(a) shows eight base classes resulting from Identify-B&.
Fig. 8 (b) represents the status at the time of completion
of the first loop of Calculate-B+, with eight new class
versions. A temporary set of extental base classes is attached
to the name of each new class version. Note that base class
B 11 is not included in any extental base class of new class
versions, an example of ‘extental migration conflict’. We
assume that the user decides to include B 11 into B+(CV6),
which thus results in { B6, B 10, B 1 1 }. Fig. 8 (c) shows the

9. Related work

In the field of OODBS, there have been several research
activities closely related to the RiBS model, including
papers on views, schema versions, and schema evolutions.
In addition, our work on schema-version-merging shares

B5

B9

B1
“I/B,, B2l

B3 B4

B6 B8
TBSI cv~B6,810/ CVgB,l

B12

(a)

CVI {BI. B2/

(b)

cv’2(B12/

cv9 CV6
/B9/ /B6.BlO,Bl1/

\

CV8
lBW

Fig. 8. Schema-version-merging example (2).

170 S.-W. Lee, H.-J. KirnAnformarion and Software Technology 40 (1998) 157-173

some concerns with methodologies for database schema
integration. In this section, we summarize these articles
and outline their differences from the RiBS model.

9.1. Views and the RiBS model

There have been several attempts to support views in
OODB [23,24,27]. In [23], in the context of the 02 data
model, a view mechanism which allows the restructuring
of the class hierarchy and supports virtual classes is
described with a number of examples. In Ref. [27], the
authors proposed a MultiView methodology, where a view
schema from a global schema can be defined according to
need. [24] presents a view semantic within an object/
relational DBMS, UniSQL, by augmenting semantics of
relational views with object-oriented concepts such as
inheritance, method and OID. In addition, they extend the
use of views to dynamic windows for schema, with which
schema evolution in OODB can be simulated without
affecting the database. This is along the same line as the
approach in Ref. [181 simulating schema evolution using
views.

Our RiBS approach is similar to these articles in the sense
that each schema version is defined over one global base
schema RIBS. However, there is a big difference between
the RiBS model and the work on views in OODB. While
direct schema updates against a schema version are allowed
in the RiBS model, in earlier works a view schema can be
changed only by redefining a new view from scratch after
deleting the old one. Furthermore, capacity-augmenting
schema updates cannot be simulated by earlier view

approaches [201.

9.2. Schema versions/evolutions and the RiBS model

The work in Ref. [7] is the first substantial research on
schema versions in OODB, based on the object version
model of ORION [l]. In this work, the schema version
model is expressed as several rules about schema version
management and access scope. According to the access
scope rules, each schema version has a different set of
objects visible to it, that is, the access scope of the version.
An instance object may thus not be shared among schema
versions. In contrast to the RiBS model, a new schema
version can be derived from only one parent nylon and
thus the schema version derivation hierarchy results in a
tree.

Another approach to schema versions is found in Ref.
[20]. This work is most similar to ours in that it also supports

schema evolution through views, sharing of instance objects
among all the schema versions and schema merging.
However, the consider such issues as phantom references
and conflicts in schema merging, including homonyms/
synonyms and extental migration conflicts. In addition,
their automatic classification algorithm introduces a new
class in the global schema for every capacity-augmenting

schema update, which makes the global schema
complicated.

As an alternative to schema versions, there has been the
class versioning approach 119,331, where the units of
versioning are individual classes, instead of the entire
class hierarchy. [19] proposes a class versioning system
CLOSQL, based on dynamic instance conversion, which
enables an instance object to be seen from the outside by
a number of class version interfaces, and determines the
type of an instance object by the context of concern (that
is, dynamic instance objects). In this respect, we can argue
that in the RiBS model a physical object residing in
extensional bases is also a dynamic object since it changes
its type dynamically depending on the current schema
version (CSV) accessing the object. However, with class
versioning approach, the burden to construct consistent
‘virtual’ schema versions from various class versions is
left to users [7].

During the past decade there has been much research on
the subject of schema evolutions in OODB [l-3]. These
articles consider two important issues in schema evolution:
semantics of schema change operations and adaptation of
objects. The second issue was touched upon in Section 7. A
basic solution to the first problem is to define a set of
invariants that should be satisfied by the schema, and then
to define rules and/or procedures for each schema change
operation to guarantee the invariants. In this respect, the
RiBS model can be taken as another extension of this frame-
work toward support of schema version functionality, with
substantial add-ons. First, we identify several new invariants
for schema versions and RIBS, in addition to traditional
invariants for schema evolution. Second, we extend the
semantics of primitive schema change operations to
guarantee all these invariants.

9.3. Database schema integration and schema-version-
merging

In the database literature, many methodologies for
integrating database schema are found in the form of view
integration, database schema integration, or multi-database.
At the heart of those methodologies is the detection of
conflicts and their resolution. Our work on schema-version-
merging shares many concerns with these methodologies.

In Ref. [34], a unifying framework for the problem of
view and database schema integration is provided, and sev-
eral earlier papers are reviewed and compared. The process
of integration is divided into four steps: pre-integration,
conflict detection, conflict resolution and merging/restruc-
turing. With regard to conflict detection, the authors distlin-
guish two types of conflict: name conflicts and structural
conflicts. Name conflicts are further classified into homo-
nyms and synonyms, as in the RiBS model. However, exten-
tal migration conflict in RiBS has no corresponding conflict
in their taxonomy, although we classify it as a structural
conflict in this paper. It is a unique phenomenon in our

S.-W. Lee, H.-J. Kim&f?wmarion and Sojiware Technology 40 (1998) 157-173 171

RiBS model. As for conflict resolutions [34] states that
automatic resolution is generally not feasible. Our
schema-version-merging algorithm also leaves the burden
to users. In the final phase of merging/restructuring, several
criteria are tested to achieve a desirable global schema.
Among the criteria, most methodologies are geared toward
minimality, and in particular a removal of redundancy. Our
schema-version-merging algorithm also includes a step for
removing redundant ISAS. A similar framework for classi-
fying schema and data conflicts in federating multi-database
systems can be found in Refs. [29,35].

However, there is one important difference between these
articles and our framework for schema-version-merging.
Schema versions being merged within the RiBS model share
some semantic knowledge (for example, the direct base class
for each class version), whereas, for general database schema
integration problems, we cannot expect these kinds of knowl-
edge. This semantic knowledge enables the integration of
schema versions with less intervention from the user.

10. Conclusion

We strongly believe that the functionality of the schema
version will be a pre-requisite for OODBMSs to be widely
accepted by newly emerging database applications, includ-
ing repositories and the WWW. In this paper, we proposed a
schema version model for OODBs based on the concept of
RIBS. Each schema version is in the form of a class
hierarchy view over one global schema, RiBS. Users are
supposed to be concerned only with schema versions. Direct
schema updates on schema versions are allowed, which are,
if necessary, automatically propagated to RiBS. To avoid
anomalies such as phantom reference and multiple classifi-
cation, we introduced several invariants. In addition, we
gave the taxonomy of schema update operations over
schema versions and defined their semantics. Finally, we
identified several types of conflicts during schema-version-
merging in the RiBS model, and devised an algorithm for
schema-version-merging.

We plan two future projects. With the current RiBS
model, customization of the class hierarchy is somewhat
restricted. Hence, we intend to incorporate more operations
into our schema update taxonomy, such as class partition-
ing, class merging, and dynamic class [6,23,36,37], for
increased flexibility. We expect that this will substantially
enhance the modeling capability of the RiBS model.
Next,we plan to extond all three elemets of our model,
that is, structures, invariants and operations, to support the
reorganization of nested complex objects. After identifying
a set of basic operations useful to restructure complex
objects, we will augment the mapping data structure
between RiBS and schema versions in order to model the
complex object view, and will define the semantics of those
operations, as well as new invariants. For this, we are now
considering some role defining operations from ORM [36]

and some view definition operations from Chimera ([38]).
This extension enables OODBMSs to effectively model
dynamic views over complex WWW structures, which are
very useful in such applications as health-care systems and
CASE [16].

11. Further reading

For further reading see Refs. 39-47.

Acknowledgements

The authors thank all the OOPSLA members involved in
developing the SOP OODBMS. We also wish to thank the
referees for their valuable comments and suggestions,
especially for referee A, which led to a considerable
improvement of the presentation.

Appendix A A schema version merging algorithm

Appendix A.1 Algorithm I schema-version-merging
algorithm

Input: RiBS, schema versions SV ,, SV2; . ., SV, to be
merged

Output: newly merged schema version SV,,,
Data Structure:
BCList: the set of pairs (BC,, CVList,), where CVList,
is a set of class versions having BCi as their direct base
class;
ExtBC,,,: a temporary set of all extental base classes of

SV lXU’;
initialize BCList = empty; initialize ExtBC,,,, =

empty;
Identify-BCs(); / * identify base classes * /
Create-CVs(); / * create a new class version for each
base class * /
Calculate-B +(); / * calculate B + for new class
versions * /

Calculate-LPs(); / * identify local properties for each
class version * I

Make-Class-Hierarchyo; / * make a class hierarchy
for SVnew * I

Appendix A.2 Algorithm 2 Identify-BCs()

for each SVi do

for each class Cj in SVi do

if (B(Cj) 4 BCList then

add [B(Cj), (C;)] to BCList;

else

add C, to CV Listk where BCk = B(Cj);

172 S.-W. Lee, H.-J. Kim/Information and Sofiware Technology 40 (1998) 157-173

end if

end for

end for

Appendix A.3 Algorithm 3 Create-CVs()

for each BCi in BCList do

create class version CV,,, in SV,,,;
set B(CV,,,,) to BCi;
if name conflict among CVs in CVList, then

let the user resolve the synonym; / * resolve synonym
*I

else

inherit CV,,, . name from CVs in CVLiSti;

end if
if name conflict between CV,,,, and other CV,,, then I

let the user resolve the homonym; / * resolve homonym
*I

end if

end for

Appendix A.4 Algorithm 4 Calculate-B+()

/ * initialize B+ for each CV,,,, * I
for each CV,,, in SV,,, do

B + W,,,) = nc,,cvL;S,, Bf (Cj>;
add B + (CV,,,) to ExtBC,,,;

end for
/ * process extental migration conflicts * /
for each BCk E RiBS - ExtBC,,, do

let the user select a logical migration class version
cv . new,, 1
add BCI, to B ’ (CV,,,,);

end for

Appendix A.5 Algorithm 5 Calculate-LPs()

BLPList: the set of pairs (BLPi, LPVListJ, where
LPVListi is a set of property versions, the direct base
property of which is BLPi
for each CV,,,, in SV,,, do

set BLPList to empty:
for each CVj E CVListi do

for each LPI, in LocalProps(CVj) do

if F3(LPk) $Z BLPList then

add [B(LPk),{ LPk)] to BLPList;

else

add LPk to BLPList,, where BLP, = B(LP,);

end if

end for

end for
for each BLP, E BLPList do

create property version PV,,,m ;
set BLP, to B(PV,,,J;
if name conflicts among LPs in LPVList, then

let the user resolve the synonym;

else

inherit PV,,,,n. name from LPs in LPVList,;

end if

add PV,,w,n to LocalProps(CV,,,);

end for

end for

Appendix A.6 Algorithm 6 make-class-hierarchy0

I * derive ISA relationships blindly * I
for each CV,,, in SV,,, do

for each CVj in CVListi do

for each CVI, in Parents(CVj) do

if CV,,,, E Parents(CV,,,) then

do nothing;

else

if 3 CV,,,, where B(CV,,,,) E B+(CVJ then

for each CV,,,, do

for each CV, E CV List, do

if B(CV,) E B+(CV,) then

add CV,,,, to Parents(CV,,,,);
end if

end for

end for

else

add CV,,,, to Parents(CV,,,,)

end if

end if

end for

end for

end for
I * remove redundant ISA * I
for each CV,,, in SV,,, do

S.-W. Lee, H.-J. KimfInfomntion and Sofmare Technology 40 (1998) 157-173 173

for each CV,,, in Parents(CV,,,,) do

if Cvpar E Parents * (CV), (3 CV E Parents(CV,,,,) -

{CV,xl)
then

U delete CV,,, from Parents(CV,,,);

[21] R. Hull, Relative information capacity of simple relational database

schemata, Proceedings of the ACM PODS, Apr. 1984, pp. 97- 109.
[22] R.J. Miller, Y.E. Ioannidis, R. Ramakrishnam, The use of information

capacity in schema integration and translation, Proceedings of the

VLDB, Aug. 1993, pp. 120-133.
[23] S. Abiteboul, A. Banner, Objects and views, Proceedings of the ACM

SIGMOD, May 1991, pp. 238-247.

end if

end for

end for

References

[24] Won Kim, Modern Database Systems: The Object Model, lnter-

operability, and Beyond, ACM Press, 1995.
[25] A. Taivalsaari. On the notion of inheritance, ACM Computing Survey

28 (3) (1996) 438-479.
[26] R.G.G. Cattell, The Object Database Standard: ODMG-93, Morgan

Kaufmann, 1996.
[27] E.A. Rundensteiner, MultiView: a methodology for supporting

multiple views in objectoriented databases, Proceedings fo the

VLDB, Aug. 1992, pp. 187- 198.

[I] J. Banerjee, Won Kim, Hyoung-Joo Kim, Hank Korth, Semantics and

implementation of schema evolution in object-oriented databases,

Proc. ACM SIGMOD, May 1987, pp. 3 11-322.

[2] D. Jason Penney, Jacon Stein, Class modifications in the Gemstone

objectoriented DBMS, Proc. OOPSLA, Oct. 1987, pp. 11 l-l 17.

[3] Roberto Zicari, Fabrizio Ferrandina, Schema and database evolution

in object database systems, Advanced Database Systems, part 6,

Morgan Kaufmann, 1997, pp. 412-495.

[4] Object Design, Inc.. ObjectStore technical overview, Release 3.0,

Object Design Inc., 1994.

[28] Sang-Won Lee, Hyoung-Joo Kim, A model of schema versions for

objectoriented databases, based on the concept of rich base schema,

Technical Report, SNU OOPSLA Laboratory, 1997.

[29] W. Kim, J. Seo, Classifying schematic and data heterogeneity in

multidatabase systems, IEEE Computer 24 (12) (1991) 12- 18.
[30] James Rumbaugh, OMT: the object model, Journal of Object Oriented

Programming 7(9) Jan. 1995, pp. 21-27.
[31] J.H. Ahn, K.W. Lee, H.J. Song, H.J. Kim, Soprano: design and imple-

mentation of an object storage system, Journal of Korea Information

Science Society(C) 2 (3) (1997) 10.

[5] Objectivity, Inc., Schema evolution in Objectivtty/DB, White paper

available from http://www.objy.comlObjectDatabaselP/Schemal

schema. html.

[6] Won Kim. Introduction to Object Oriented Databases, MIT press,

Cambridge. MA, 1991.

[7] Won Kim, H.T. Chou, Versions of schema for object-oriented data-

bases, Proc. VLDB, Sep. 1988, pp. 148-159.

[8] Sven-Eric Lautemann, An introduction to schema versionning in

OODBMS, DEXA Workshdexa. Sep. 1996, pp. 132- 139.

[9] P.A. Bernstein, Repositories and object oriented databases, Proceed-

ings of BTW ‘97, 1997.

[32] Jung-Ho Ahn, Hyoung-Joo Kim, Seof: An adaptable object prefetch

policy fro object-oriented database systems, Proceedings of the Inter-

national Conference on Data Engineering, April 1997, pp. 4- 13.
[33] Hyoung-Joo Kim, Issues in object oriented database schema, Ph.D.

dissertation at University of Texas, Austin, TX, 1988.

[34] C. Batini, M. Lenzerini, S.B. Navathe, A comparative analysis of

methodologies for database schema integration, ACM Computing

Survey 18 (4) (I 986) 323-364.
[35] E. Pitoura, 0. Bukhres, A. Elmagramid, Object orientation in multi-

database systems, ACM Computing Survey 27 (2) (1995) 141-195.
[36] M.P. Papazoglou, B.J. Kramer, A database model for object dynamics,

VLDB Journal 6 (2) (1997) 73-96.

[IO] P.A. Bernstein, B. Harry, P. Sanders, The Microsoft repository, Proc.

VLDB, Aug. 1997. pp. 3- 12.

[37] R. Wieringa, W. de Jonge, P. Spruit, Using dynamic classes and role

classes to model object migration, Theory and Practice of Object

Systems 1 (1) (1995) 61-83.
[I I] A. Silberschartz, M. Stonebraker, J. Ullman, Database research:

achievements and opportunities into the 2lst century, Report of an

NSF Workshop on the Future of Database Systems Research. 1995.

[12] F. Charoy. An object-oriented layer on PCTE, Technical paper

available from http://gilIe.loria.fr:7000/oopcte/oopcte.html, 1994.

[131 Mary E.S. Loomis, Object database-integrator for PCTE, Journal of

Object Oriented Programming 5(2) May 1992, pp. 53-57.

[141 L. Wakeman, J. Jowett, PCTE: the standard for open repositories,

Prentice-Hall, New York, 1993.

[38] G. Guenini, E. Benino, Barbara Catania, Jesus Garcia-Molina, A

formal model of views for object-oriented database systems, Theory

and Practice of Object Systems 3 (3) (1995) 157- 183.

[39] F. Bancilhon, Connecting an object database system to the outside

world. Talks in Stanford Weekly Database Seminar, 1996.
[40] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J. Madec, Schema and

database evolution in the 0? object database system, Proceedings of

the VLDB, Sep. 1995, pp. 170- 18 1.

[151 T. Atwood, Object databases come of age, ObJect Magazine, July

1996.

[161 J. Jingshuang Yang, G.E. Kaiser, An architecture for integrating

OODBs with WWW, Columbia University Tech-Report CUCS-004-

96, 1996.

[17] A. Bapat, J. Waesch, K. Aberer, J.M. Haake, HyperStorM: an

extensible object-oriented hypremedia engine, The Seventh ACM

Conference on Hypertext, 1996.

[41] D. Konopnicki, 0. Shmueli, W3QS: a query system for the World-

Wide Web, Proceedings of the VLDB, Sep. 1995. pp. 66-77.
[42] Sven-Eric Lautemann, A propagation mechanism for populated

schema versions, Proceedings of the International Conference on

Data Engineering, Apr. 1997, pp. 67-78.
[43] B. Staudt Lemer, A. Nice Habermann, Beyond schema evolution to

database reorganization, Proceedings of the OOPSLA, Oct. 1990,

pp. 67-76.

[181 E. Bertino, A view mechanism for object-oriented databases, Proceed-

ings of the Third International Conference on Extending Database

Technology, 1992, pp. 136-151.

[44] R.J. Peters, M.T. Gzsu, An axiomatic model of dynamic schema

evolution in objectbase systems, ACM TODS 22 (1) (1997) 75-l 14.

[45] B. Stroustrup, The C++ Programming Language, 2nd edn, Addison-
Wesley, New York, 1991.

[I91 S. Monk, I. Sommerville, Schema evolution in OODB using class [46] Katsumi Tanaka, Masatoshi Yoshikawa, Koro Ishihara, Schema
versioning, SIGMOD Records 22 (3) (1993) 16-22. virtualization in object-oriented databases, Proceedings of the

[20] Y.G. Ra, E.A. Rundensteiner, A transparent object-oriented schema International Conference on Data Engineering, Feb. 1988, pp. 23-30.
change approach using view evolution, Proceedings of the Inter- [47] G. Wiederhold, Views, objects, and databases, IEEE Computers 19
national Conference on Data Engineering, 1995. (12) (1986) 37-44.

