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Abstract—The SPY-TEC (Spherical Pyramid-Technique) was proposed as a new indexing method for high-dimensional data spaces

using a special partitioning strategy that divides a d-dimensional data space into 2d spherical pyramids. In the SPY-TEC, an efficient

algorithm for processing hyperspherical range queries was introduced with a special partitioning strategy. However, the technique for

processing k-nearest-neighbor queries, which are frequently used in similarity search, was not proposed. In this paper, we propose an

efficient algorithm for processing nearest-neighbor queries on the SPY-TEC by extending the incremental nearest-neighbor algorithm.

We also introduce a metric that can be used to guide an ordered best-first traversal when finding nearest neighbors on the SPY-TEC.

Finally, we show that our technique significantly outperforms the related techniques in processing k-nearest-neighbor queries by

comparing it to the R*-tree, the X-tree, and the sequential scan through extensive experiments.

Index Terms—Similarity search, high-dimensional index technique, nearest-neighbor query, incremental nearest-neighbor algorithm,

SPY-TEC.
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1 INTRODUCTION

FEATURE-BASED similarity search has become an important
search paradigm for various database applications such

as multimedia retrieval, data mining, decision support, and
statistical and medical applications. The technique used is
to map the data items as points into a high-dimensional
feature space. The feature space is usually indexed using a
multidimensional index structure. Similarity search then
corresponds to a hyperspherical range search, which
returns all objects within a threshold level of similarity to
the query objects, and a k-nearest-neighbor search that
returns the k most similar objects to the query object. One of
the most popular applications using this technique is a
content-based image indexing and retrieval system [3], [6],
[15], [4] which extracts several features (such as color,
texture, shape, etc.) from images, indexes the images based
on those features, and supports similarity queries based on
them. To support efficient similarity search in such a
system, robust techniques to index high-dimensional
feature spaces need to be developed because the feature
vectors used are high-dimensional [3], [11].

Initially, traditional multidimensional data structures
(e.g., R-tree [1], kd-tree [13], and grid files [14]), which were
designed for indexing low-dimensional (two or three-
dimensional) spatial data, were used for indexing high-
dimensional feature vectors. However, recent research
activities [27], [25], [21] reported the result that basically
none of the querying and indexing techniques which
provide good results on low-dimensional data also perform
sufficiently well on high-dimensional data for larger
queries. Many researchers have called this problem the

“curse of dimensionality” [11], and many database-related
projects have tried to tackle it [25].

As a result of these research efforts, a variety of new
index structures [7], [8], [17], [19], [28], cost models [5], [22],
[27], and query processing techniques [29] have been
proposed. However, most of the high-dimensional index
structures are extensions of the R-tree [1] or the kd-tree [13]
adapted to the requirements of high-dimensional indexing.
Thus, all of these index structures are limited with respect
to data space partitioning and suffer from specific draw-
backs of the R-tree or the kd-tree [25].

For example, most of the R-tree-based index structures,
such as the TV-tree [17], X-tree [28], SS-tree [8], and SR-tree
[19], tend to have low fanouts and a high degree of overlap
between bounding regions in higher dimensions. These
degrade the performance of query processing in high-
dimensional data spaces. Although the X-tree uses a
modified R-tree node splitting algorithm to reduce overlap
among the index nodes, it has the overhead of performing
disk management operations to create and maintain
variable sized nodes (so-called supernodes) produced by
this modified splitting algorithm. Also, most of the kd-tree-
based index structures, such as the k-d-B-tree [16], hB-tree
[9], and LSDh-tree [2], suffer from such problems as no
guaranteed utilization (e.g., k-d-B-tree) or require storage of
redundant information (e.g., hB-tree). In addition to the
above drawbacks, these index structures have the well-
known drawbacks of multidimensional index structures,
such as high costs for insert and delete operations and a
poor support of concurrency control and recovery [10].

To overcome these drawbacks, in our earlier work, we
proposed a new special space partitioning strategy, the
SPY-TEC [10], which is optimized for similarity search in
high-dimensional spaces, and proposed the algorithms for
processing hyperspherical range queries on the data space
partitioned by this strategy. The SPY-TEC first partitions the
d-dimensional space into 2d spherical pyramids having the
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center point of the space as their apex and the curved ðdÿ
1Þ-dimensional surface as their bases and then cuts each
spherical pyramid into several spherical slices. By using this
partitioning strategy of the SPY-TEC, we were able to
transform the given d-dimensional data space into a one-
dimensional value. Thus, we could use a Bþ-tree to store
and access data items, and take advantage of all of the
benefits of a Bþ-tree, such as fast insert, update, and delete
operations, and good concurrency control and recovery.
However, we could not propose an algorithm for proces-
sing nearest-neighbor queries efficiently on the SPY-TEC.

In this paper, we propose the incremental nearest-
neighbor algorithm on the SPY-TEC. We also introduce a
new metric that can be used to guide an ordered best-first
traversal when finding nearest neighbors on the SPY-TEC.

The rest of this paper is organized as follows: Section 2
discusses major algorithms related to nearest-neighbor
queries. Section 3 briefly reviews the structure of the SPY-
TEC. Section 4 describes the incremental nearest-neighbor
algorithm on the SPY-TEC. Section 5 presents the results of
an empirical study comparing our technique with the
R*-tree, the X-tree, and the sequential scan. Finally, we
conclude our work and describe our future plans in Section 6.

2 RELATED WORK

There are numerous algorithms for answering nearest-
neighbor or k-nearest-neighbor queries that are motivated
by the importance of these queries in fields, including
geographical information systems (GIS), document retrie-
val, pattern recognition, and learning theory [12]. Many of
the above algorithms require specialized search structures,
but some employ commonly used spatial structures. For
example, algorithms exist for the k-d tree, quadtree-related
structures, the R-tree, and others. Of these algorithms, there
are two major approaches that provide a basis for our work.
One was published by Roussopoulos, et al. [20] and we call
it the KNN algorithm because it was intended for general
nearest neighbor or k-nearest-neighbor queries. The other
algorithm was published by Hjaltason and Samet [12]. We
call it the INN algorithm because it used the incremental
nearest-neighbor approach. Due to their importance for our
work, these algorithms are presented in detail.

In the KNN algorithm, the authors proposed an approach
for a nearest-neighbor search in the R-tree. The key idea of
their work is to maintain a global list (ActiveBranchList) of the
candidate k nearest neighbors as the R-tree is traversed in a
depth-first manner. The authors introduced two important
distance functions, MINDIST and MINMAXDIST for ordering
nodes that will be visited. MINDIST is the distance from the
query point q to the closest point on the boundary of a
bounding rectangle r of node n, while MINMAXDIST is the
minimum value of all the maximum distances between q and
a face (or vertex) of r containing an object o [20]. Fig. 1 shows
two examples of the calculation of MINDIST and MINMAX-

DIST, which are shown with a solid and a broken line,
respectively. With these distance functions, the authors
proposed three strategies for upward and downward
pruning. In some sense, the two orderings represent the
optimistic (MINDIST) and the pessimistic (MINMAXDIST)
ordering choices because experiments reported in [20]

showed that ordering the ActiveBranchList using MINDIST

consistently performed better than using MINMAXDIST [12].
Since MINDIST represents the minimum distance from a
query object q to a bounding rectangle r, it is the most
optimistic ordering choice possible. Thus, it provides a
means of pruning nodes from the search, given that a bound
on the maximum distance is available. On the other hand,
MINMAXDIST is an upper bound on the distance of the
object o nearest to q. Therefore, it should be clear that
MINMAXDIST by itself does not help in pruning the search,
as objects closer to q could be found in elements of n at
positions with higher MINMAXDIST values [12].

In the INN algorithm, the authors proposed the incre-
mental nearest-neighbor algorithm that employs what may
be termed best-first traversal. When finding k nearest
neighbors to the query object using the KNN algorithm, k
is known prior to the invocation of the algorithm. Thus, if
the ðkþ 1Þth neighbor is needed, the k-nearest-neighbor
algorithm needs to be reinvoked for ðkþ 1Þ neighbors from
scratch. To resolve this problem, the authors of the INN
algorithm proposed the concept of distance browsing which is
to obtain the neighbors incrementally (i.e., one by one) as
they are needed. This operation means browsing through
the database on the basis of distance. They showed through
various experiments that the INN algorithm significantly
outperforms the KNN algorithm for distance browsing
queries and also usually outperforms the KNN algorithm
when applied to the k-nearest-neighbor problem for the
R-tree. They also showed that the two pruning strategies
proposed in [20] are only useful when finding the first
nearest neighbor, and the one strategy that does not use
MINMAXDIST is sufficient when used in a combination
with upward and downward pruning in their algorithm.
This implies that MINMAXDIST is not necessary for pruning
in the incremental nearest neighbor approach.

In the KNN algorithm, finding a leaf node containing a
query object in a spatial index can be done in a depth-first
manner by recursively descending the tree structure [12].
With this method, the recursion stack keeps track of what
nodes have yet to be visited. Therefore, the order where
nodes are visited is the order where the node is visited
during tree traversal. However, the INN algorithm picks
the node with the least distance in the set of all nodes that
have yet to be visited when deciding what node to traverse
next on the R-tree. Thus, it uses a priority queue where the
distance from the query point is used as a key. Therefore, in
the INN algorithm, the order where nodes are visited is
independent of the structure of the index.
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To the best of our knowledge, the INN algorithm is one of
the most efficient algorithms for finding the nearest
neighbor or k nearest neighbors. However, this algorithm
does not provide good results on high-dimensional data
either, as we will show in our experimental evaluation. This
is not a problem of the INN algorithm itself, but a problem of
the spatial index structure (R-tree), which does not support
efficient indexing or query processing structurally on a
high-dimensional data space.

In this paper, we propose a new metric that can be used
to guide an ordered best-first traversal when finding
nearest neighbors on the SPY-TEC. We also propose an
efficient incremental nearest-neighbor algorithm based on
this new metric on the SPY-TEC.

3 THE SPY-TEC

In [25], Berchtold et al. proposed a special partitioning
strategy (Pyramid-Technique) that divides the data space
first into 2d pyramids and then cuts each pyramid into
several slices. They also proposed the algorithms for
processing hypercubic range queries on the space parti-
tioned by this strategy. However, the shape of queries used
in similarity search is not a hypercube, but a hypersphere
[3], [6], [11], [30]. Thus, when processing hyperspherical
range queries with the Pyramid-Technique, there is a
drawback that exists in all index structures based on the
bounding rectangle [10], [11].

The main idea of the SPY-TEC is based on the observation
that spherical splits will be better than right-angled splits of
the Pyramid-Technique for similarity search. This observa-
tion is due to the fact that the shape of the queries used in
similarity search is not a hypercube, but a hypersphere.
Although we have presented the basic idea and space
partitioning strategy of the SPY-TEC in [10], we should
explain it again briefly for better understanding of our
incremental nearest-neighbor algorithm on the SPY-TEC.

The SPY-TEC is to transform d-dimensional data points
into one-dimensional values and then store and access the
values using the Bþ-tree. Also, we store a d-dimensional
point plus the corresponding one-dimensional key as a
record in the leaf nodes of the Bþ-tree. Therefore, we do not
need an inverse mechanism of this transformation. The
transformation itself is based on a specific partitioning of
the SPY-TEC. To define the transformation, we first explain
the data space partitioning strategy of the SPY-TEC.

3.1 Data Space Partitioning

The SPY-TEC partitions the data space in two steps: In the
first step, we split the d-dimensional data space into 2d
spherical pyramids having the center point of the data
space (0.5, 0.5, ..., 0.5) as their apex and a ðdÿ 1Þ-dimensional
curved surface of the data space as their bases. The second
step is to divide each of the 2d spherical pyramids into
several spherical slices, with each slice corresponding to
one data page of the Bþ-tree. Fig. 2 shows the data space
partitioning of the SPY-TEC in a two-dimensional example.
First, the two-dimensional data space has been divided into
four spherical pyramids resembling fans. Each of these
spherical pyramids has the center point of the data space as
its apex and one curved line of the data space as its base. In

the second step, each of these four spherical pyramids is
split again into several data pages which are shaped like the
annual rings of a tree. Given a d-dimensional space instead
of the two-dimensional space, the base of the spherical
pyramid is not a 1-dimensional curved line as in the
example, but a ðdÿ 1Þ-dimensional spherical surface. As a
sphere of dimension d has 2d ðdÿ 1Þ-dimensional spherical
surface as a surface, we obviously obtain 2d spherical
pyramids [10].

Numbering the spherical pyramids is based on the
following observation: All points v located in the ith spherical
pyramid spi have the common property that the distance in
the ith coordinate from the center point is either smaller than
the distance of all other coordinates if i < d, or larger if i � d
[25]. Therefore, given a point v, we have to find the
dimension i having the maximum deviation j0:5ÿ vij from
the center to determine the spherical pyramid containing the
point v. If vi is greater than or equal to 0.5, then the spherical
pyramid containing the point v is spiþd. If it is smaller than
0.5, the spherical pyramid containing the point v is spi.

Fig. 3a shows the process of numbering the spherical
pyramids in a two-dimensional example. As depicted in
Fig. 3a, the value of j0:5ÿ v1j of a point v in a two-
dimensional space is greater than the value of j0:5ÿ v0j.
Thus, the dimension having the maximum deviation j0:5ÿ
vij from the center is d1 and the value of v1 is smaller than
0.5. Therefore, the point v belongs to the spherical pyramid
sp1. For example, consider another point v0 ¼ ð0:8; 0:4Þ. The
dimension having the maximum deviation from the center
for each dimension of v0 is

d0ð0:3 ¼ j0:5ÿ v00j > j0:5ÿ v01j ¼ 0:1Þ:

Also, the value of v00 is greater than 0.5. Therefore, the point
v0 belongs to the spherical pyramid spð0þ2Þ. Although the
formal expression of this procedure was presented in [10],
we redefine it formally for better understanding of the
partitioning strategy of the SPY-TEC.

Definition 1 (Spherical Pyramid of a Point v). A d-
dimensional point v is defined to be located in a spherical

pyramid spi.

i ¼
jmax if vjmax < 0:5

ðjmax þ dÞ if vjmax � 0:5

�
jmax ¼ ðjjð8k; 0 � ðj; kÞ < d; j 6¼ k : j0:5ÿ vjj � j0:5ÿ vkjÞÞ:
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In Definition 1, jmax is the dimension having the maximum
deviation j0:5ÿ vij from the center for each dimension of a
d-dimensional point v and i is the number of the spherical
pyramid containing v.

In order to transform d-dimensional data into a one-
dimensional value, we have to determine the location of a
point v within its spherical pyramid. The Pyramid-
Technique uses the height of the point within the pyramid
as the location of the point. However, we use the distance
from the point to the center point of the data space as the
location of the point. Fig. 3b shows the process of
determining the distance of the point v as the location
within its spherical pyramid. We assume that the distance
function is the Euclidean distance which is frequently used
for similarity measurement in content-based image retrieval
[3], [11]. More formally, see Definition 2.

Definition 2 (Distance of a point v). Given a d-dimensional
point v, the distance dv of the point v is defined as

dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXdÿ1

i¼0

ð0:5ÿ viÞ2
vuut :

According to Definitions 1 and 2, we are able to transform a
d-dimensional point v into a one-dimensional value
(i � d

ffiffiffi
d
p
e þ dv). In this one-dimensional value, i is the

number of the spherical pyramid containing the point v, d
is the dimension of the point v, and dv is the distance from
the point v to the apex of its spherical pyramid. More
formally, see Definition 3.

Definition 3 (Spherical Pyramid Value of a Point v). Given
a d-dimensional point v, let i be the number of the spherical
pyramid containing v according to Definition 1, and dv be the
distance of v according to Definition 2. Then, the spherical
pyramid value spvv of v is defined as

spvv ¼ ði � d
ffiffiffi
d
p
e þ dvÞ:

Note that i is an integer in the range ½0; 2d�, dv is a real
number in the range ½0; 0:5

ffiffiffi
d
p
� and d

ffiffiffi
d
p
e is the smallest

integer not less than or equal to
ffiffiffi
d
p

. Therefore, every
point within a spherical pyramid spi has a value in the
interval ½i � d

ffiffiffi
d
p
e; ði � d

ffiffiffi
d
p
e þ 0:5

ffiffiffi
d
p
Þ�. In order to make the

sets of spherical pyramid values covered by any two
spherical pyramids spi and spj be disjoint, we multiply

the spherical pyramid number i by d
ffiffiffi
d
p
e. Without this

multiplication of i by d
ffiffiffi
d
p
e, the interval of every point

within a spherical pyramid spi would be ½i; ðiþ 0:5
ffiffiffi
d
p
Þ�.

Thus, there might be intersections in the sets of spherical

pyramid values covered by any two spherical pyramids

spi and spj when the dimension is higher than four. Note

that this transformation is not injective. That is, two

points v and v0 may have the same spherical pyramid

value, but, as mentioned above, we do not need an

inverse transformation because we store a d-dimensional

point plus the corresponding one-dimensional key as a

record in the leaf nodes of the Bþ-tree. Therefore, the

SPY-TEC does not require a bijective transformation [10].
Note further that, in Figs. 2 and 3b, the outer slice of a

spherical pyramid seems to be divided into a number of

small pieces in the corner of the data space. However, the

slice of a spherical pyramid is not physically divided into

small pieces. The slice is the smallest unit that corresponds

to one data page of the Bþ-tree. The points of these small

pieces are not stored in different data pages. That is, the

points inside one slice are physically stored in one data

page of the Bþ-tree. The points inside one outer slice are

also stored in one data page of the Bþ-tree.

3.2 Index Creation

It is a very simple task to build an index using the SPY-TEC.

Given a d-dimensional point v, we first determine the

spherical pyramid value spvv of the point and then insert

the point into a Bþ-tree using spvv as a key. Finally, we store

the point v and spvv in the corresponding data page of the

Bþ-tree. Update and delete operations can be done

similarly.
The spherical pyramid values of points that all belong to

the same spherical pyramid lies in the interval given by the

minimum and maximum key values of the data pages.

Thus, a single Bþ-tree data page corresponds to a spherical

slice of a spherical pyramid as shown in Fig. 2 (right). The

page regions of the R-tree are (minimum) bounding

rectangles, whereas the page regions of the SPY-TEC are

spherical slices. Thus, in the rest of the paper, we call the

spherical slice the bounding slice (BS).
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4 INCREMENTAL NEAREST-NEIGHBOR ALGORITHM

ON THE SPY-TEC

In this section, we present the incremental nearest-neighbor
algorithm that extends the original INN algorithm [12] in
order to adapt to the structure of the SPY-TEC. As
mentioned above, the INN algorithm proposed in [12] picks
the node with the least distance in the set of all nodes that
have yet to be visited when deciding what node to traverse
next on the R-tree. This means that, instead of using a stack
or a plain queue to keep track of the nodes to be visited, it
uses a priority queue where the distance from the query
point is used as a key. In our algorithm, we also use a
priority queue where the distance from the query point to
the nodes or objects is used as a key.

This section is organized as follows: In Section 4.1, we
introduce a new distance metric that can be used to guide
an ordered best-first traversal when finding nearest
neighbors on the SPY-TEC. Then, we present the incre-
mental nearest-neighbor algorithm on the SPY-TEC in
Section 4.2. Finally, in Section 4.3, we give a concrete
example of the execution of the algorithm on the SPY-TEC.

4.1 Metrics for Nearest-Neighbor Search

As mentioned in Section 2, about the two distance metrics
(MINDIST and MINMAXDIST) proposed in the KNN
algorithm, only MINDIST is used for the incremental
nearest-neighbor approach [12]. In our approach also,
MINMAXDIST is not necessary for pruning. Therefore, we
need the minimum possible distance from the query object
to a node in the SPY-TEC. Fig. 4 shows an example of the
SPY-TEC in a two-dimensional data space. For the sake of
simplicity, we assume that each bounding slice contains one
object. In Fig. 4, the query point falls within a bounding slice
BS4 in the spherical pyramid sp1. As with most nearest-
neighbor algorithms, we must first visit the page (BS4 in
this example) containing the query point. Then, we visit the
next page with the second smallest minimum distance from
the query point. To do so, we must calculate the minimum
possible distance from the query point to a spherical
pyramid or a bounding slice. We first describe the process
of calculating the minimum distance between the query

point and a spherical pyramid, and then discuss the process
of calculating the minimum distance between the query

point and a bounding slice.
Lemma 1, which follows, measures the minimum

distance MINDIST(q; spi) from the query point q to a

spherical pyramid spi. For the sake of simplicity, we focus
on the description of the case only for spherical pyramids

spi, where i < d. However, this lemma can be extended to
all spherical pyramids in a straight-forward manner [10].

Lemma 1 (Minimum Distance from a Query Point to a

Spherical Pyramid). Given a query point

ðq ¼ ½q0; q1; . . . ; qdÿ1�Þ;

let spj ðj < dÞ be the spherical pyramid containing a query

point and spi be the spherical pyramid that will be examined

for the minimum possible distance from q. The minimum

distance from q to spi, MINDIST(q; spi), is defined as

MINDISTðq; spiÞ ¼

0 if i ¼ j
dq if jiÿ jj ¼ d
jqj ÿ qijffiffiffi

2
p if i < d

jqj þ qi ÿ 1jffiffiffi
2
p if i > d:

8>>>>>><>>>>>>:
Proof. Given a point ð½q0; q1; . . . ; qdÿ1�Þ and a hyperplane
ðk0x0 þ k1x1 þ . . .þ kdÿ1xdÿ1 þ C ¼ 0Þ, the distance from

the point to the hyperplane in Euclidean geometry is
defined as

Distance ¼ jk0q0 þ k1q1 þ . . .þ kdÿ1qdÿ1 þ Cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2 þ k1
2 þ . . .þ kdÿ1

2
p : ð1Þ

We are able to prove the case (i > d) and the case
(i < d) using this formula.

1. If i ¼ j, spi is the spherical pyramid containing
the query point q. Therefore, MINDIST(q; spiÞ ¼ 0,
which is less than or equal to the distance of q
from any point in spi.

2. If jiÿ jj ¼ d, spi is the spherical pyramid on the
opposite side of spj. Therefore, the minimum
distance of q from spi is the distance from q to
the apex of spi (the center of the data space).
Thus, according to the notation of Definition 2,
MINDIST(q; spi) = dq.

3. In (1), the index kn and the constant C have
discrete values [-1, 0, 1] because of unit space. If
i < d, the equation for the closest side plane of a
spherical pyramid adjacent to the query point is
kjxj þ kixi ¼ 0 as depicted in the 2-dimensional
example of Fig. 5. This formula can be extended
to a d-dimensional data space in a straight-
forward way. Given a d-dimensional space
instead of the two-dimensional space, the side
plane of a spherical pyramid is not a one-
dimensional line as in the example of Fig. 5, but
a ðdÿ 1Þ-dimensional hyperplane, and the equa-
tion for this ðdÿ 1Þ-dimensional hyperplane has
the common property that all indices except ki
and kj are 0. In this case, kj ¼ 1 and ki ¼ ÿ1
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because i < d. Thus, the minimum distance from
the query point to the closest side plane of an
adjacent spherical pyramid spi is jqj ÿ qij=

ffiffiffi
2
p

.
Therefore, MINDISTðq; spiÞ ¼ jqj ÿ qij=

ffiffiffi
2
p

.
4. If i > d, the equation for the closest side plane

of a spherical pyramid adjacent to the query
point is kjxj þ kixi ÿ 1 ¼ 0 (refer to Fig. 5). In
this case, kj ¼ 1 and ki ¼ 1 because i > d. Thus,
the minimum distance from the query point to
the closest side plane of an adjacent spherical
pyramid spi is jqj þ qi ÿ 1j=

ffiffiffi
2
p

. Therefore,
MINDISTðq; spiÞ ¼ jqj þ qi ÿ 1j=

ffiffiffi
2
p

. tu
Calculating the minimum distance from the query point

to a bounding slice is more complex than the case of the

minimum distance from the query point to a spherical

pyramid. However, as depicted in Fig. 6, we can present it

easily by classifying it into three cases: the case of bounding

slices which belong to the spherical pyramid containing the

query point (Case 1), the case of bounding slices that belong

to the spherical pyramid on the opposite side of the query

point (Case 2), and the case of bounding slices that belong

to a spherical pyramid adjacent to the query point (Case 3).
Lemma 2, which follows, measures the minimum

distance MINDISTðq; BSlÞ from the query point q to a

bounding slice BSl in a spherical pyramid spi.

Lemma 2 (Minimum Distance from a Query Point to a

Bounding Slice). Given a query point (q), let spj be the

spherical pyramid containing a query point, and BSl be the

bounding slice that belongs to a spherical pyramid spi. The

minimum distance from q to a bounding slice BSl,

MINDISTðq; BSlÞ, is defined as

. Case 1: (i ¼ j : the case of BSl belonging to the
spherical pyramid that contains q).

MINDISTðq; BSlÞ ¼
jdq ÿmaxðBSlÞj if dq > maxðBSlÞ
0 if minðBSlÞ � dq � maxðBSlÞ
jdq ÿminðBSlÞj if dq < minðBSlÞ:

8><>:
. Case 2: (jiÿ jj ¼ d : the case of BSl belonging to the

spherical pyramid on the opposite side of q).
Let 
 be the distance from the closest side plane of a

spherical pyramid adjacent to q and �ð� �=4Þ be the

angle of a right-angled triangle which consists of two

sides, 
 and dq sin� ¼ 

dq

� �
,

MINDISTðq; BSlÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dq

2 þminðBSlÞ2 ÿ 2dqminðBSlÞcos �þ �
2

� �r
:

. Case 3: (otherwise : the case of BSl belonging to a
spherical pyramid adjacent to q).

Let � be the length of the base line in a right-angled

triangle which consists of two sides, 
 and dq,

MINDISTðq; BSlÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� ÿmaxðBSlÞj2 þ 
2

q
if � > maxðBSlÞ


 if minðBSlÞ���maxðBSlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� ÿminðBSlÞj2 þ 
2

q
if � < minðBSlÞ;

8>>><>>>:
where

minðBSlÞ ¼ fdv j ð8v0; v; v0 2 BSl : dv � dv0 Þg
maxðBSlÞ ¼ fdv j ð8v0; v; v0 2 BSl : dv � dv0 Þg:

Proof. minðBSlÞ is dv of the point v having the smallest

value of the points belonging to BSl, while maxðBSlÞ is

dv of the point v having the largest value. We can prove

each case by using minðBSlÞ and maxðBSlÞ.

1. If minðBSlÞ � dq � maxðBSlÞ, then q is inside BSl.

Therefore, MINDISTðq; BSlÞ ¼ 0 because it is less

than or equal to the distance of q from any point
inside BSl. If dq > maxðBSlÞ, the distances of all

of the points in BSl from the center of the space

are less than the distance of q from the center of

the space. Therefore, MINDISTðq; BSlÞ is the

difference between dq and dv, where the point v is

in BSl and is farthest from the center of the space.

That is, MINDISTðq; BSlÞ ¼ jdq ÿmaxðBSlÞj. Final-

ly, if dq < minðBSlÞ, the distance of q from the
center is less than the distances of all of the points in

BSl from the center. Therefore, MINDISTðq; BSlÞ is

the difference between dq and dv, where the point v

is in BSl and is closest to the center. That is,

MINDISTðq; BSlÞ ¼ jdq ÿminðBSlÞj. In Fig. 6a,

MINDISTðq; BS4) is 0 because q is inside BS4. Also,

MINDISTðq; BS3Þ is jdq ÿmaxðBS3Þj because the

distances of all of the points inBS3 are less than the
distance of q. Finally, MINDISTðq; BS5Þ is jdq ÿ
minðBS5Þj because the distance of q is less than the

distances of all of the points in BS5.
2. If jiÿ jj ¼ d, spi is on the opposite side to the

spherical pyramid containing q. In this case, the
minimum distance from q to BSl inside spi is
the length of the base of a triangle which
consists of two sides, such as dq and minðBSlÞ,
and the angle between them as depicted in
Fig. 6b. By using the cosine rule [18], we can get
the length of the base of a triangle. First, the
angle of the apex of a spherical pyramid is �=2.
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Thus, the angle between dq and minðBSlÞ is
ð�þ �=2Þ, where � ¼ arcsinð
=dqÞ. Given the
lengths of two sides (b and c) and the angle
(A) between them, the cosine rule states:
a2 ¼ b2 þ c2 ÿ 2bc � cosA. Therefore, by the cosine
rule,

MINDISTðq; BSlÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dq

2 þminðBSlÞ2 ÿ 2dqminðBSlÞ � cos �þ �
2

� �r
:

Fig. 6b shows this case in a two-dimensional

example. MINDISTðq; BS8Þ is dq because

minðBS8Þ ¼ 0:

3. In this case, spi is adjacent to spj which contains q.
All subcases of this case are similar to those of
Case 1 except that the parameter for classifying
each subcase is not dq, but �. If

minðBSlÞ � � � maxðBSlÞ;

MINDIST(q; BSl) is the distance from q to the

closest side plane of spi. That is, MIND-

ISTðq; BSlÞ ¼ 
. This is similar to the subcase

ðminðBSlÞ � dq � maxðBSlÞÞ

of Case 1. If � > maxðBSlÞ, MINDIST(q; BSl) is the

length of the hypotenuse in a right-angled

triangle which consists of two sides, 
 and

j� ÿmaxðBSlÞj. Therefore,

MINDISTðq; BSlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� ÿmaxðBSlÞj2 þ 
2

q
:

Finally, if � < minðBSlÞ, MINDISTðq; BSlÞ is the

length of the hypotenuse in a right-angled

triangle which consists of two sides, 
 and

j� ÿminðBSlÞj. Therefore,

MINDISTðq; BSlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� ÿminðBSlÞj2 þ 
2

q
:

Fig. 6c shows this case in a two-dimensional

example. tu

4.2 Algorithm Description

In this section, we describe the incremental algorithm for

processing nearest neighbor or k-nearest-neighbor queries

on the SPY-TEC by using Lemmas 1 and 2.

Algorithm 1:

Processing the incremental nearest neighbor query
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1: for i ¼ 0 to 2dÿ 1 do

2: dist = MINDIST(q; spi); /*Using Lemma 1*/

3: ENQUEUE(queue, spi, dist);

4: end for

5:

6: while not ISEMPTY(queue) do

7: Element = DEQUEUE(queue);

8: if Element is a spherical pyramid then

9: for each bounding slice in a spherical pyramid do

10: dist = MINDISTðq; BSlÞ; /* Using Lemma 2*/

11: ENQUEUE(queue, BSl, dist);

12: end for

13: else if Element is a bounding slice then

14: for each object in a bounding slice do

15: dist = DIST_QUERY_TO_OBJðq; objectÞ;
16: ENQUEUE(queue, object, dist);

17: end for

18: else /* Element is a object */

19: report element as the next nearest object

20: end if

21: end while

Algorithm 1 shows the algorithm for processing the

nearest neighbor query. In lines 1 - 4, the distances of each

spherical pyramid from the query point are calculated by

using Lemma 1, and then information about each spherical

pyramid and its distance are inserted into the priority

queue. Since the distance is used as a key in the priority

queue, the spherical pyramid closest to the query point is at

the head of the queue. The while-loop of lines 6 - 21 is the

main loop for the algorithm. In line 7, the first element in

the head of the queue is dequeued and, according to the

type of the element, appropriate operations will be

performed. If the type of the element dequeued is a

spherical pyramid, as depicted in lines 8 - 12, the distances

of each bounding slice in the spherical pyramid from the

query point are calculated, and then information of each

bounding slice and its distance are inserted into the queue

by using Lemma 2. If the type is a bounding slice, as

depicted in lines 13 - 17, the distances of each object in the

bounding slice from the query point are calculated, and

then inserted into the queue. Finally, if the type is an object,

it is reported as the next nearest-neighbor object. The first

reported object is naturally the nearest neighbor to the

query point. Since the element with the smallest distance

from the query point is at the head of the queue, the

reported object is always the next nearest object to the query

point.

It is a very simple task to extend Algorithm 1 for

processing k-nearest-neighbor queries. If we control the

number of reported nearest neighbors in the while-loop of

Algorithm 1, we can easily process the k-nearest-neighbor

query.

4.3 Example

As an example, suppose that we want to find the three
nearest neighbors to the query point q in the SPY-TEC given
in Fig. 4. Below, we show the steps of the algorithm and the

contents of the priority queue. Algorithm 1 must compute

the distances between q and the spherical pyramids or

bounding slices. Table 1 shows these distances (SP means

spherical pyramid and BS means bounding slice). When

depicting the contents of the priority queue, the spherical

pyramids and bounding slices are listed with their distances

from the query point q, in order of increasing distance. The

objects are denoted in bold letters (e.g., a). The algorithm

starts by enqueueing SP0 � SP3, after which it executes the

following steps:

1. Enqueue SP0 � SP3. Queue :

f½SP1; 0�; ½SP2; 4�; ½SP0; 21�; ½SP3; 33�g:

2. Dequeue SP1, enqueue BS3; BS4; BS5. Queue :

f½BS4; 0�; ½BS5; 2�; ½SP2; 4�;
½BS3; 14�; ½SP0; 21�; ½SP3; 33�g:

3. Dequeue BS4, enqueue e. Queue :

f½BS5; 2�; ½SP2; 4�; ½BS3; 14�;
½e; 19�; ½SP0; 21�; ½SP3; 33�g:

4. Dequeue BS5, enqueue f. Queue :

f½SP2; 4�; ½f ; 12�; ½BS3; 14�;
½e; 19�; ½SP0; 21�; ½SP3; 33�g:

5. Dequeue SP2, enqueue BS6; BS7. Queue :

f½BS7; 4�; ½BS6; 8�; ½f ; 12�; ½BS3; 14�;
½e; 19�; ½SP0; 21�; ½SP3; 33�g:

6. Dequeue BS7, enqueue h. Queue :

f½h; 6�; ½BS6; 8�; ½f ; 12�; ½BS3; 14�;
½e; 19�; ½SP0; 21�; ½SP3; 33�g:

7. Dequeue h, report h as nearest neighbor. Queue :
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f½BS6; 8�; ½f ; 12�; ½BS3; 14�;
½e; 19�; ½SP0; 21�; ½SP3; 33�g:

8. Dequeue BS6, enqueue g. Queue :

f½f ; 12�; ½BS3; 14�; ½e; 19�;
½SP0; 21�; ½SP3; 33�; ½g; 35�g:

9. Dequeue f, report f as second nearest neighbor.
Queue :

f½BS3; 14�; ½e; 19�; ½SP0; 21�; ½SP3; 33�; ½g; 35�g:

10. Dequeue BS3, enqueue d. Queue :

f½d; 16�; ½e; 19�; ½SP0; 21�; ½SP3; 33�; ½g; 35�g:

11. Dequeue d, report d as third nearest neighbor.

Since the elements in the priority queue are sorted in
increasing order of distance, sp1 containing the query point
q is at the head of the queue. In line 7 of Algorithm 1, sp1 is
dequeued, and then BS3, BS4, and BS5 in sp1 are enqueued
in increasing order of their distances from the query point.
Now, BS4 is at the head of the queue because it has the
smallest distance. BS4 is dequeued, and then the objects in
BS4 are enqueued. In this example, since we assume that
only one object is contained in a bounding slice, the object e
in BS4 is enqueued. These operations are repeated until the
user finds as many nearest neighbors as desired.

5 EXPERIMENTAL EVALUATION

We performed various experiments to show the practical
impact of the incremental nearest-neighbor algorithm on
the SPY-TEC and compared it to the R*-tree and the X-tree,
as well as the sequential scan.

The R*-tree has been chosen for comparison because it is
most commonly used in multidimensional indexing appli-
cations, and the X-tree was proposed as an indexing
structure for high-dimensional data. Thus, we included
these techniques in our experiments. Recently, the criticism
arose that index-based query processing is generally
inefficient in high-dimensional data spaces and that
sequential scan processing yields better performance in this
case [21], [25]. According to [21], the performance evalua-
tions of high-dimensional nearest-neighbor queries must
include a comparison to the sequential scan as a sanity
check. Therefore, we also included the sequential scan in
our experiments.

For clear comparison, we implemented the incremental
nearest-neighbor algorithm on the R*-tree and the X-tree
using the algorithm proposed in [12]. We used the hybrid
memory/disk-based priority queue proposed in [12], where
the contents of the priority queue are stored in the memory
or disk according to the distances of the queue elements.
For more detail, refer to Section 4.8 in [12].

All experiments were performed on a SUN SPARC
20 workstation with 128 MByte main memory and 10 GByte
secondary storage. The block size used for our experiments
was 4 KBytes, and all index structures were allowed to use

the same amount of cache that hold about 1-8 percent of the
database size. For a strict experimental environment, we
measured the performance from a “cold start”—that is,
execute as if previous tests have not loaded crucial data into
system caches. That is, before performing each query, we
flushed the operating system buffer cache by doing a
recursive read on the dummy file with a big size.

We mainly focused on the experiments using clustered
data and real data sets which are meaningful workloads for
high-dimensional nearest-neighbor queries. However, we
also performed the experiment on uniformly distributed
data sets as a sanity check, even though it is not suitable for
evaluating the performance of index structures in high
dimensionality [21]. The number of block accesses, total
search time, and CPU time for each query were recorded.
The graphs throughout this section show the results of these
experiments.

5.1 Clustered Gaussian Data

Clustered Gaussian data sets were created for 4-24 dimen-
sions. Each data sets consisted of 20,000 - 100,000 data points
that were partitioned into 10 clusters. The points for the
clustered data sets were generated in the range [0, 1] for each
dimension. In order to create clustered data sets, 10 points
were chosen from the uniform distribution and a Gaussian
distribution with a standard deviation 0.05 was centered at
each point. For each clustered data set, we performed
10-nearest neighbor queries with 100 query points that were
taken from within the data set itself. Thus, the result was
evaluated as the average of 100 random trials.

In the first experiment on clustered data sets, we
measured the performance behavior while we varied data
space dimension. For this experiment, we created six files
with the dimensionalities 4, 8, 12, 16, 20, and 24. The
database size was set to 100,000 points. Thus, each cluster
contained 10,000 points.

Fig. 7 shows the total search time and cache configura-
tion of the index structures used in our experiments.
Although the search time of all of the index structures
increase with growing dimension, the SPY-TEC signifi-
cantly outperforms the R*-tree, the X-tree, and the sequen-
tial scan in all cases. However, the R*-tree and the X-tree are
beaten by the sequential scan as might have been expected.

In a four-dimensional space, the SPY-TEC performs
10-nearest-neighbor queries 37.37 times faster than the
R*-tree, 36.02 time faster than the X-tree, and 6.96 times
faster than the sequential scan. Even in 24-dimensional
space, the SPY-TEC performs the queries 5.97 times faster
than the R*-tree, 5.80 times faster than the X-tree, and
1.12 times faster than the sequential scan.

In Fig. 8, we show a more detailed comparison of the
number of block accesses and CPU time. The performances
of the number of block accesses and CPU time show a
similar behavior to that of the total search time except that
the R*-tree and the X-tree access fewer blocks than does the
sequential scan. As depicted in Fig. 8a, the speed-up with
respect to the number of block accesses ranges between 1.48
and 5.63 over the R*-tree, between 1.41 and 5.63 over the
X-tree, and between 5.33 and 48.05 over the sequential scan.
The speed-up in the number of block accesses reaches its
highest value with its lowest dimension and is decreasing
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with growing dimensions. In Fig. 8b, the speed-up in CPU
time is analogous to that of the number of block accesses,

but is higher than it except in the case of the sequential scan.

The speed-up in CPU time ranges between 4.25 and 37.38

over the R*-tree, between 4.16 and 34 over the X-tree, and
between 4 and 21 over the sequential scan. Although the

R*-tree and the X-tree access fewer blocks than does the

sequential scan, they use more CPU time. On the other

hand, the SPY-TEC always uses less CPU time than other

related techniques in all cases. Although the algorithm to
process the query in the SPY-TEC seems to be complex

when computing the minimum possible distances between

the query point and bounding slices, it can compute the

distances easily by classifying the cases (in Lemma 2) using
simple comparison operations.

In our second experiment on this series, we measured
the performance behavior while varying the database size.
For this experiment, we varied the database size from
20,000 to 100,000 in a 16-dimensional data space.

Fig. 9 shows the total search time and cache configura-
tion of the index structures used in our experiments. As
expected, the SPY-TEC significantly outperforms all the
other techniques presented. The speed-up of the SPY-TEC
in the total search time seems to be almost constant and
ranges between 9.80 and 12.68 over the R*-tree, between
9.44 and 12.65 over the X-tree, and between 1.94 and 2.39
over the sequential scan.

In Fig. 10, we show a more detailed comparison, namely,
the number of block accesses and CPU time needed for
processing the queries. The performance behavior of the
number of block accesses and of CPU time are analogous to
that of the total search time except that the R*-tree and the
X-tree access fewer blocks than does the sequential scan. In
Fig. 10a, the speed-up with respect to the number of block
accesses seems to be almost constant and ranges between
1.33 and 1.97 over the R*-tree, between 1.33 and 1.89 over
the X-tree, and between 8.16 and 8.89 over the sequential
scan. And, as depicted in Fig. 10b, the speed-up in CPU
time is higher than that of the number of block accesses
except in the case of the sequential scan, but is analogous to
it. The speed-up in CPU time seems to be almost constant
and ranges between 6.00 and 8.79 over the R*-tree, between
5.94 and 8.46 over the X-tree, and between 5.40 and 6.24
over the sequential scan.

Through the experiments using clustered data, we found
that the SPY-TEC significantly outperforms the R*-tree, the
X-tree, and the sequential scan in all cases. We also found
that, although the R*-tree and the X-tree access fewer blocks
than does the sequential scan, they are still beaten by the
sequential scan in the total search time. These results may
be explained by the fact that the R*-tree tends to have low
fanout and a high degree of overlap between bounding
regions in higher dimensions, and the X-tree has the
overhead of performing disk management operations to
create and maintain supernodes produced by the splitting
algorithm that minimizes the overlap in the directory
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nodes. These drawbacks of the R*-tree or the X-tree degrade

the performance of query processing in high-dimensional

data spaces. However, since the SPY-TEC uses a data space

partitioning strategy which produces no overlap in the

index nodes, and can take advantage of all of the benefits of

a Bþ-tree, the nearest-neighbor algorithm of the SPY-TEC

yields better performances than those of other related

techniques such as the X-tree and the R*-tree in higher

dimensions as well as lower dimensions.

5.2 Real Data

Since one may argue that synthetic databases such as

uniformly distributed data are not realistic in high-dimen-

sional data spaces, we also used real data in our experi-

ment. To show the practical impact of our technique for real

data sets, we performed experiments using 12-dimensional

Fourier points [26] which correspond to contours of

industrial parts. As in the previous experiments, we

performed 10-nearest-neighbor queries with 100 query

points that were selected from the real data itself, and

varied the database size from 20,000 to 100,000.
Fig. 11 shows the total search time of the experiment

using real data sets. In this experiment, we observed a

similar result to that of the experiments using clustered

Gaussian data sets. That is, the SPY-TEC significantly

outperforms all the other techniques including the sequen-

tial scan regardless of the database size.
From this result, we found that the real data consists

of well-formed clusters which are meaningful workloads

for high-dimensional nearest-neighbor queries. The speed-

up of the SPY-TEC in the total search time seems to be

almost constant and ranges between 9.52 and 11.69 over

the R*-tree, between 9.05 and 11.18 over the X-tree, and

between 1.49 and 1.76 over the sequential scan.
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In Fig. 12, we show the number of block accesses and
CPU time for a more detailed comparison. The performance
behavior of the number of block accesses and of CPU time
are analogous to that of the total search time except that the
R*-tree and the X-tree access fewer blocks than does the
sequential scan.

In Fig. 12a, the speed-up with respect to the number of
block accesses seems to be almost constant and ranges
between 1.30 and 1.41 over the R*-tree, between 1.30 and
1.39 over the X-tree, and between 6.11 and 6.63 over the
sequential scan. The speed-up in CPU time is analogous to
that of the number of block accesses, but is higher than it
except in the case of the sequential scan. The speed-up in
CPU time ranges between 6.09 and 7.47 over the R*-tree,
between 5.94 and 7.14 over the X-tree, and between 3.47 and
4.01 over the sequential scan.

Through the experiments using real data, we found that
the SPY-TEC significantly outperforms all the other
techniques presented in all cases.

5.3 Uniform Data

Uniform data sets were created for 4-24 dimensions. Each

data sets consisted of 20,000 - 100,000 points that were

uniformly generated in the range [0, 1] for each dimension.

For each uniform data set, we performed 10-nearest-neighbor

queries with 100 query points that were taken from within the

data set itself.
In our first experiment, we measured the performance

behavior while we varied data space dimension. For this
experiment, we created six files with the dimensionalities 4,
8, 12, 16, 20, and 24. The database size was set to 100,000
points.

Fig. 13 shows the total search time and cache configura-
tion of the index structures used in our experiments. As
expected, the search time of all of the index structures
increases with growing dimension. For all cases, the
sequential scan outperforms the R*-tree and the X-tree.
This is not a surprising result. In uniformly distributed data
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and query points, as dimensionality increases, the differ-
ence in distance between the nearest neighbor and any
other point in the data set becomes very small [21]. Thus,
most index structures have to access most of the blocks and
compute the distance between the query point and almost
all points in the data set for higher dimensional data spaces.
Although the SPY-TEC outperforms the sequential scan in
lower dimensions (under eight dimensions), it also does not
yield a better performance than the sequential scan in high-
dimensional data spaces.

In Fig. 14, we show a more detailed comparison, namely
the number of block accesses and CPU time needed for
processing the queries. As depicted in Fig. 14a, the index
structures including the SPY-TEC, the R*-tree, and the
X-tree access fewer blocks than does the sequential scan.
However, they execute the query with random I/O’s. Thus,

they have the heavy penalty associated with doing random
I/O’s as opposed to sequential I/O’s. Therefore, although
the index structures including the SPY-TEC access fewer
blocks, they do not yield a better performance than the
sequential scan in the total search time.

However, as we will discuss in Section 5.4, these results
should not be interpreted to mean that high-dimensional
nearest-neighbor queries on the SPY-TEC is never mean-
ingful. The important fact is that the SPY-TEC significantly
outperforms competitive index structures such as the
R*-tree and the X-tree. It turned out that both the number
of block accesses and CPU time of the SPY-TEC are better
than those of the R*-tree, the X-tree, and the sequential scan.
When the dimension is below 20, the R*-tree and the X-tree
access fewer blocks than does the sequential scan. However,
they have to access more blocks than the sequential scan
when the dimension is above 20. This effect may be
explained by the fact that the R*-tree and the X-tree have
to access most leaf nodes as well as most internal nodes in
higher dimensions.

Through the experiments using uniform data, we found
that, although the SPY-TEC does not yield a better
performance than the sequential scan in the total search
time, it yields a better performance than all the other
techniques including the sequential scan in the number of
block accesses and CPU time. It also significantly outper-
forms competitive index structures such as the R*-tree and
the X-tree in all cases.

5.4 Summary of Experiments

A number of conclusions can be drawn from these
experiments. First, in the experiments on uniform data,
although the SPY-TEC significantly outperforms other
related techniques such as the R*-tree and the X-tree in
higher dimensions as well as lower dimensions, it still does
not yield a better performance than the sequential scan
except in lower dimensions (under eight dimensions). In this
experiment, the SPY-TEC accesses fewer blocks and uses less
CPU time than does the sequential scan. However, it
executes the query with random I/O’s that may be a heavy
penalty in total running time as the R-tree or the X-tree does.

However, as mentioned above, the results of the
experiments on uniform data should not be interpreted to

1484 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 13. Total search time depending on the dimensionality and cache

configuration (Uniform Data). (a) Total search time (sec.). (b) Cache

configuration.

Fig. 14. Number of block accesses versus CPU time (Uniform Data). (a) Block access. (b) CPU time (sec.).



mean that high-dimensional nearest-neighbor queries on
the SPY-TEC is never meaningful. According to [21], most
high-dimensional index techniques including the SS-tree,
the SR-tree, etc., are usually beaten by the sequential scan in
high-dimensional data space. Thus, the authors of [21]
argued that there exist situations in which high-dimen-
sional nearest-neighbor queries are meaningful and that the
evaluations of nearest-neighbor techniques should focus on
those situations in which index-based query processing
may be more efficient than the sequential scan.

In fact, a uniform data set is not realistic in high-
dimensional data spaces and unsuitable for evaluating the
performance of index structures in high dimensionality [21],
[28]. We observed this point by identifying some high-
dimensional workloads for which the SPY-TEC significantly
outperforms other related techniques including the sequen-
tial scan. In the experiments using clustered Gaussian data
and real data, we found that the SPY-TEC significantly
outperforms the R*-tree, the X-tree, and the sequential scan
in all cases.

Finally, we also observed that, although the R*-tree and
the X-tree access fewer blocks than does the sequential scan
in clustered Gaussian data and real data having high
dimensionality, they still need a lot of CPU time. Therefore,
they do not yield a good performance in high-dimensional
data spaces regardless of any workloads used in our
experiments.

6 CONCLUSIONS

The SPY-TEC is based on a special partitioning strategy
which divides the d-dimensional data space first into
2d spherical pyramids and then cuts each spherical pyramid
into several bounding slices. In this paper, we proposed the
incremental nearest-neighbor algorithm on the SPY-TEC.
We also introduced a metric that can be used to guide an
ordered best-first traversal when finding nearest neighbors
on the SPY-TEC. The metric (MINDIST), the minimum
possible distance of the query point from a spherical
pyramid or a bounding slice, produces the most optimistic
ordering possible when finding nearest neighbors on the
SPY-TEC. We implemented the incremental nearest-neigh-
bor algorithm on the SPY-TEC and performed extensive
experiments using clustered Gaussian data, real data, and
uniform data sets, to show the practical impacts of these
algorithms. Through the experiments, we showed that the
incremental algorithm on the SPY-TEC clearly outperforms
that of the X-tree, the R*-tree, and the sequential scan in
clustered data and real data sets.

Recently, in many applications that require the nearest-
neighbor algorithm in high-dimensional data spaces, fast
searching is a much more important issue than exact
searching. Therefore, algorithms that return an approximate
result rather than an exact result have been developed,
thereby saving search time in computing it [12]. Arya et al.
[23], [24] proposed the concept of the ð1þ "Þ-approximate
nearest-neighbor search for this purpose. This concept is
that, given any positive real ", a data point p is a ð1þ
"Þ-approximate nearest neighbor of the query point q if its
distance from q is within a factor of ð1þ "Þ of the distance to
the true nearest neighbor. They also generalized the
approximate nearest-neighbor procedure to the problem

of computing approximations to the k nearest neighbors of
a query point. In [24], it was found that in moderate
dimensions, significant savings in running time can be
achieved by computing the approximate k nearest neigh-
bors as opposed to the exact k nearest neighbors. Moreover,
with relatively high probability, the result is the same in the
exact and approximate cases. We can easily extend
Algorithm 1 to provide the approximate nearest-neighbor
search on the SPY-TEC. The only change required to
Algorithm 1 to make it the approximate nearest-neighbor
search is in the key used for the spherical pyramids and
bounding slices in the priority queue. That is, before
enqueueing spherical pyramids and bounding slices, we
multiply their distances by ð1þ "Þ. Actually, we implemen-
ted the approximate nearest-neighbor algorithm on the
SPY-TEC. And, through the experiments, we found that
there are significant reductions in block accesses and CPU
time when finding the approximate k nearest neighbors as
opposed to the exact k nearest neighbors.

As depicted in Fig. 3 or Fig. 4, the outer slice, that is the
farthest slice from the center, is not topologically equivalent
to a usual slice. The outer slice of a spherical pyramid has
2dÿ1 corners in a d-dimensional data space. And, the corners
that belong to the outer slice are not closely located with one
another and they don’t even touch. However, as mentioned
in Section 3.1, the points in these corners are stored in the
same data page because a slice as well as the outer slice
corresponds to one data page of the Bþ-tree. Also, in a
d-dimensional data space, one corner consists of d outer
slices that are adjacent. Thus, although the points in one
corner are closely located with one another, they may fall
into d different outer slices.

These topological features of the outer slice degrade the
performance of processing k-nearest-neighbor queries on
the SPY-TEC. That is, if the query sphere is large and
includes a corner in a d-dimensional space, all of the outer
slices of d spherical pyramids must be accessed for
processing the query. We think that our technique may
perform worse than other index structures for highly
skewed data distributions or queries toward the corners
or axes of the data spaces.

However, none of the index structures proposed so far
can handle highly skewed data or queries efficiently [25].
We plan to address the problem of handling highly skewed
data or queries in our future work. We also plan to study
the parallel version of the nearest-neighbor algorithm on the
SPY-TEC using an efficient declustering technique that
distributes the data onto the disks so that the data which
has to be read when executing a query are distributed as
equally as possible among the disks.
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