
XML Query Processing Using Signature and
DTD�

Sangwon Park1, Yoonra Choi2, and Hyoung-Joo Kim3

1 Department of Digital Contents, Sejong Cyber University, Seoul, Korea
swpark@cybersejong.ac.kr

2 Korea Computer Communications, Ltd., Seoul, Korea
yulla@unisql.com

3 School of Computer Science and Engineering, Seoul National University, Seoul,
Korea

hjk@oopsla.snu.ac.kr

Abstract. Having emerged as a standard web language, XML has be-
come the core of e-business solution. XML is a semistructured data that
is represented as graph, which is a distinctive feature compared to other
data dealt with existing database. And query is represented as regular
path expression, which is evaluated by traversing each node of the graph.
In XML document with DTD, the DTD may be able to provide many
valuable hints on query optimization, because it has information on the
structure of the document. Using signature and information from DTD,
we can minimize the traverse of nodes and quickly execute the XML
query of regular path expression fast.

1 Introduction

One of the most attractive technologies in the 21st century would be XML.
Various kinds of standards have been established, and much more data will be
represented by XML. XML is very similar to semistructured data[1,2] which is
based on the OEM model.

The query on semistructured data often contains regular path expression
which requires much more flexible query processing than the ones for relational
or object oriented databases for retrieving irregular and sometimes unknown
structure. Several indexing methods for semistructured data are proposed[6,8,
9].

The signature method has been proposed to process queries[3,5,11,14]. This
method reduces the search space according to result value from bit operations
of hash values. When an XML data is stored in object repositories and each
node is stored as an object, the signature method can be used, which decreases
the number of fetching nodes during query processing[10]. However this method
has a problem that the signature bits can be saturated when the number of
sub elements or the depth of the tree is increased. And at the same time, there
� This work was supported by the Brain Korea 21 Project.

K. Bauknecht, A M. Tjoa, G. Quirchmayr (Eds.): EC-Web 2002, LNCS 2455, pp. 162–171, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

XML Query Processing Using Signature and DTD 163

&13
name year

&22

work

artist

name

"Edgar" "Degas"

work

artist

"Two Laundress"

"Edouard Manet"

coworker

first last

"Claude Monet"

artist

name

name

"1889""Sunflower"

&11

&25

&2 &3

trend

"Impressionism"

&18 &19 &20
"Postimpressionism"

trend

&21

&23 &24 &26

&27

&14

reference

url

"http://www.moma.org"

&5

&6 &7 &8 &9 &10

&4 work

&12

&15 &16 &17

&1
Arts

Fig. 1. DOM graph

has been studies on query processing using DTD information which has the
structural hints as to an XML document[13].

In this paper we propose to improve the performance of query processing
using both signature and DTD which are helpful to reduce the search space.
To do this, we first find all possible paths suitable for the given query in DTD
declaration and merge them into one query graph. Whenever visiting each node
in DOM, we compare between the signature of a node in the data graph and the
query graph. It reduces the search space and minimize the number of fetching
node in object repositories.

The remainder of this paper is organized as follows: Section 2 presents related
works. Section 3 briefly explains what a signature is. The sequential steps of
query optimization using signature and DTD are given in Section 4 and 5. And
Section 6 discuss the experimental results. Finally, conclusions and future works
are presented in Section 7.

2 Related Work

The query on XML often contains regular path expressions. This means the
expression of a query contains wild cards like *, $, and so on. DataGuide[6]
can decrease query processing time by the path index which gives a dynamic
outline of the structure of semistructured data. But this is only applicable to
the query with single regular expression and not applicable to the query with
complex regular expression having various ones. The 2-Index[9] overcomes the
weak point of previous work, but the size of indexes may be the square of the
data nodes. T-Index partially solved the problems in 2-Index, but still could not
overcome the problem where indexes can not cover all possible paths.

164 S. Park, Y. Choi, and H.-J. Kim

The query processing techniques using signature also have been largely stud-
ied [3,5,14,10]. In relational database, the signature technique is used to select
matched tuples by select condition[3]. The signature is used in object-oriented
database to reduce page I/O when evaluate the path expression[14]. However,
regular path expressions can not be processed by these methods.

Lore[7] and eXcelon[4] are the representative databases that deal with
semistructured data or XML. These keep the structure of graph for atypical
data and store the nodes of the graph as objects. As the query is processed by
visiting nodes of a tree, the reduction of the node fetching is the key point for
query optimization.

3 Preview on Signature

XML data can be depicted as a tree such as Figure 1. If each node in this graph
is stored as an object in object repository, the objects have to be visited when
evaluating regular path expression.

The method of generating a signature is the similar to the one of [5] where
a signature is built from hash values of element labels. Each node of DOM tree
is stored as an object with a signature. The signature of each node is hash
value from label of the matching element. An upper node contains signature
information of the lower nodes and the signature is generated by bit-wise ORing
of the signatures of lower nodes. Let the hash value of a node ni be Hj , the
signature be Si, and the child node of ni be nj . On this assumption, it is true
that Si = Hi ∨ (

∨
j Sj). For example, the signature value of node &9 in Figure

1 is the result of bit-wise ORing of the signatures of nodes &17, &18, and the
hash values to names of the nodes.

An example for traversing nodes of DOM tree using signature is as follows.
For node &2 in Figure 1, the bit-wise AND of signatures results in like

H“coworker” ∧ S&2 ≡ H“coworker”

So it is possible that the node with label of coworker exists in the sub-tree of
node &2. But in the case of node &4, the result is

H“coworker” ∧ S&4 �= H“coworker”

In this case, we can be sure that there is no node having the label, coworker, in
the sub-tree, and thus we need not visit the child nodes of &4 [10].

4 Building DOM Based on Signature

As we have seen in Section 3, we traverse the sub-tree of a node only when
the value of bit-wise AND of signature of the visited node and hash value of
the required element is equal to the hash value. Otherwise, the sub-tree are not
visited, which would reduce the search space and eventually speed up query
processing.

XML Query Processing Using Signature and DTD 165

<!ELEMENT Arts (artist+,work+)>
<!ELEMENT artist (name,work,coworker?>
<!ATTLIST artist name CDATA \#IMPLIED>
<!ELEMENT work (#PCDATA | name | trend | year)*>
<!ELEMENT reference (url)>
<!ATTLIST reference url CDATA #IMPLIED>
<!ELEMENT coworker (artist)>
<!ELEMENT name (#PCDATA | (first, last))>
<!ELEMENT trend (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

Fig. 2. DTD

1
Arts

work3

5coworker

42artist

6name

first

7 8

yeartrend

reference

last

1110

9

url

Fig. 3. DTD graph

However, if there is more elements or if the sub-tree is deeper, it is more likely
that all bits of signature are set to ‘1’. We call thus saturation. If saturation
occurs in node ni, the equation Hl ∧ Si ≡ Hl is true even if the label l does not
exist in the sub-tree of node ni. This problem can be solved by extracting only
indeterminate elements.

4.1 Extraction of Indeterminate Elements

Unlike [10], this paper does not obtain hash values from all elements. Figure 2
is DTD of the Figure 1. The DTD can be depicted as Figure 3. Following the
definition in DTD, each element can be separated into either determinate or
indeterminate one. It can be judged by the definition of sub-element of an el-
ement. There is a quantity indicator attached to the sub-element such as ‘?’,
‘*’, or ‘+’. The mark ‘?’ or ‘*’ means that this element may not appear in the
XML document. While ‘+’ means that this element must appear in the XML

166 S. Park, Y. Choi, and H.-J. Kim

Table 1. Hash values of the labels

Arts 00000000 first 11000110 artist 00000000 last 11011000
work 00000000 trend 11111100 reference 00000000 year 10001111
coworker 11001110 url 00000000 name 11000110

Table 2. Signatures of each Node

&1 11111111 &2 11111110 &3 11111110 &4 11111111 &5 00000000
&6 11000110 &7 11111110 &8 11001110 &9 11011110 &10 00000000
&11 11000110 &12 11111100 &13 10001111 &14 00000000 &15 11111100
&16 11001110 &17 11000110 &18 11011000 &24 11000110

document once or more time. The former is an indeterminate element, while the
latter is called a determinate one.

And a sequence connector of sub-elements may be ‘,’ or ‘|’. The connector
‘,’ means that the elements will be enumerated in order. On the other hand, ‘|’
means that only one of the elements connected by ‘|’ may appear but it can not be
known in advance which one will appear in the actual XML document. Therefore,
the elements connected by ‘,’ are determinate, while the ones connected by ‘|’
are indeterminate.

Definition 1 The element with quantity indicator is ‘?’ or ‘*’ and the elements
connected by ‘|’ are defined as indeterminate. All the other elements are defined
as determinate.

4.2 Generating DOM Based on Signature

It is assumed that each node in DOM tree is stored as an object with a signature.
The signature of each node is evaluated by bit-wise ORing from hash values and
signatures of child nodes. The process for calculating the signature of a node
follows Algorithm 1.

5 Query Optimization Using a Query Graph

5.1 Generating Query Graph

We extract all paths satisfying the given query in advance, which means that
we are filtering the sequences of labels to visit. We visit only the nodes on the
paths which limit the scope of search. This section will explain how all paths for
the given query is extracted.

Example 1 The NFA of regular path expression Arts.*.name is as follows.
This is generated by the rules defined in [10].

XML Query Processing Using Signature and DTD 167

Algorithm 1 MakeSignature(node)
1: s ← 0
2: if node is an Element or Attribute node then
3: for each ChildNode of node do
4: s ← s ∨ MakeSignature(ChildNode) /* bit-wise ORing */
5: if node is indeterminate then
6: s ← s ∨ hash value of node
7: end if
8: end for
9: end if
10: node.signature ← s

2

6

3

1

Arts

5

name

name

name

artist
work

artist

coworker

{0x00, 0xc6, 0xce}

{0x00, 0xc6, 0xce}
{0xc6}

{0x00}
{0xc6}

{0x00, 0xc6, 0xce}

{0x00, 0xc6, 0xce}

{0xc6}

Fig. 4. Query Graph

1
any name

3 52 4 6

ε

ε

εεArts

We transform the regular path expression into NFA. Example 1 shows the
NFA of a regular path expression. Then we traverse the DOM graph such as
Figure 3 to get a query graph. Figure 4 is the query graph of the query in
Example 1. The labels of the query graph is different from the DTD graph. The
label of a node is attached to in-coming edges. The signature of the query graph
is made by propagating the hash value of the indeterminate label from final node
to the start node. The detailed algorithm is described in [12].

5.2 Query Optimization Using a Query Graph

The signature of each node in the DOM tells which labels exist in the sub-tree.
And the signature list in the query graph represents the summary of required
labels satisfying the given query. Especially in the case of signature list, only

168 S. Park, Y. Choi, and H.-J. Kim

indeterminate elements are considered. By comparing the label and the signature
of the node in DOM and the edge in query graph, we determine whether to
traverse the sub-tree of the node or not. If the labels are not the same or even if
the signature of the node of DOM is not matched with any others in the signature
list of the edge in query graph, we will not traverse the sub-tree. Algorithm 2 is
the scan operator which returns the nodes satisfying the query in DOM tree.

The function ForwardLabel() first compares the labels between the DOM
and the query graph. If they are the same, then it compares the signatures
between them. This means that we reduce the search space by filtering the
nodes through the query paths first and comparing the signatures next.

Algorithm 2 next()
1: /* states: state set of QueryGraph */
2: node ← next node by DFS from DOM
3: while node is not NULL do
4: forwardLabel(states,node)
5: if existFinal(states) then
6: return node
7: end if
8: if isReject(states) then
9: node ← next node by DFS from DOM
10: end if
11: end while

Example 2 If the nodes in the DOM of Figure 1 have the signatures of Table 2,
the node fetching process for query of Example 1 using query graph is as follows.

First the node &1 is read, then the state set S={2}. As the nodes are visited
in the DFS order, first child &2 is read and S={3}. Again the first child &6 is
read and S={4}, where query graph arrives the final state. So the node &6 is
returned. The state transition occurs only when the label and the signature of the
node is equal to those of the edge of query graph.

The sibling of node &6 is node &7, where S={5} and the label to appear in
the query graph is name. But not even if child of &7 do not have the label name
at all, therefore we do not traverse the sub-tree of &7. Instead &8, the sibling
node of &7, is read. By doing this repeatedly, the nodes &6, &24, &9 and &11
are returned in sequence as a result.

6 Experimental Results

In this section, we will analyze the experimental results of two methods of query
optimization, i.e.,the one using signatures only[10] and the other, proposed in this
paper, using signature and DTD together. As can be seen from the comparison

XML Query Processing Using Signature and DTD 169

Table 3. Characteristics of the XML Files

No. of Nodes File Size
Shakespeare 537,621 7.5 Mbytes
Bibliography 19,854 247 Kbytes

The Book of Mormon 142,751 6.7 Mbytes

Table 4. Queries Used in the Experiment

Q1 Shakespeare PLAY//STAGEDIR
Q2 Shakespeare //SPEECH//STAGEDIR
Q3 The Book of Mormon tstmt//p
Q4 The Book of Mormon //sura/epigraph
Q5 Bibliography bibliography//‘in.*’/year
Q6 Bibliography //misc

results of the number of node fetching and the number of page I/O, the latter
method shows the better efficiency than the first.

6.1 Conditions of Experiment

The programs are coded by JAVA, and the data used in this experiment are
Shakespeare, The Book of Mormon, and Michael Lay’s bibliography. Six queries
are used and are described in Table 4. The first queries for each document retrieve
the nodes which are located on the specific path. And the second queries retrieve
the nodes located at arbitrary positions of DOM tree. The signature technique
for query optimization of [10] is targeted to compare with the technique of this
paper.

6.2 Performance Evaluation

In Figure 5, the vertical axis represents the number of node fetching and the
horizontal axis represents the size of signature. A zero sized signature means the
method not using signature.

In Figure 5 (a), the number of fetching nodes has decreased to 1/40. In the
case of Q3 at Figure 5 (b), the number of fetching nodes has decreased 1/10
and 1/7 times for 0 and 1 byte of signature, respectively, and 1/1660 for two or
more bytes. And for Q4, the number of fetching nodes decreased to 1/10 times as
small as the one of [10] for zero size signature, and the number of fetching nodes
converges for one more bytes of signature. Even in (c), the number of fetching
nodes decreased to half in Q5 and decreased from half to less converging point
in Q6.

As we have seen from the results in Figure 5, the query optimization using
both signature and DTD greatly decreases the number of fetching nodes. Espe-
cially the number of fetching nodes is dramatically dropped for one or two bytes

170 S. Park, Y. Choi, and H.-J. Kim

0

100000

200000

300000

400000

500000

600000

0 1 2 3 4 5

N
o.

 o
f F

et
ch

ed
 N

od
e

Signature Size (bytes)

Q1-SIG
Q1-DTD
Q2-SIG

Q2-DTD

(a) Q1, Q2

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1 2 3 4 5

N
o.

 o
f F

et
ch

ed
 N

od
e

Signature Size (bytes)

Q3-SIG
Q3-DTD
Q4-SIG

Q4-DTD

(b) Q3, Q4

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 1 2 3 4 5

N
o.

 o
f F

et
ch

ed
 N

od
e

Signature Size (bytes)

Q5-SIG
Q5-DTD
Q6-SIG

Q6-DTD

(c) Q5, Q6

Fig. 5. The number of fetching nodes

of signature, and maintained for more bytes of signature. This is a very strong
point that the performance of less bytes signature is equivalent to larger ones,
because we are able to decrease the bytes of signature.

The results show that the performance improvement of query optimization
is better for the graph of long depth, but is less for the graph of wide breath.
This is related to the fact that the deeper the graph, the greater the probability
of signature saturation to occur. Bibliography is the data with the structure
of slight depth and wide breath. Considering the results of Q3 and Q4, the
difference in the number of fetching nodes fetching between the method of [10]
and the one proposed in this paper is less than the difference in Q1 and Q2 for
Shakespeare.

And as in Q3, if the regular path expression like ’//’ is not contained in the
path expression of query, the number of fetching nodes largely decreases. This
is because the query path in DTD is determined uniquely.

7 Conclusion

In the previous sections, we have proposed the technique of XML query optimiza-
tion using both signature and DTD. By processing the regular path expression
with query graph, the numbers of fetching nodes. largely decreased. Especially
it shows greater efficiency improvement with even smaller size of signature than
the one of [10]. This eventually means that the small size of storage for a node
is needed.

XML Query Processing Using Signature and DTD 171

Contrary to the efficiency improvement in the selection query, the insertion
and deletion queries cause propagation overheads to change signatures of parent
nodes. In the latter case, the cost usually exceeds the one of selection query.
But most queries on XML document are selections, therefore this paper do not
consider the modification queries. The process of changing the signatures of each
node in DOM is like the algorithm in [10].

The DTD given by XML v1.0 is insufficient in the respect of providing the
accurate and comprehensive information on the structure of XML document.
XML schema is the definition format that can overcome such defects in DTD.
Thus, the performance of query optimization may be improved by using XML
schema and research on it should be considered as future work.

References

1. Serge Abiteboul. Querying Semistructured Data. International Conference on
Database Theory, January 1997.

2. P. Buneman. Semistructured Data. ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 1997.

3. Walter W. Chang and Hans J. Schek. A Signature Access Method for the Starburst
Database System. VLDB, 1989.

4. eXcelon. An XML Data Server For Building Enterprise Web Applications.
http://www.odi.com/products/white papers.html, 1999.

5. Chris Faloutsos. Signature files: Design and Performance Comparison of Some
Signature Extraction Methods. SIGMOD, 1985.

6. Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. VLDB, 1997.

7. Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer
Widom. Lore: A Database Management System for Semistructured Data. SIG-
MOD Record, 26(3), 9 1997.

8. Jason McHugh and Jennifer Widom. Query Optimization for XML. VLDB, 1999.
9. Tova Milo and Dan Suciu. Index Structures for Path Expressions. ICDT, 1999.
10. Sangwon Park and Hyoung-Joo Kim. A New Query Processing Technique for XML

Based on Signature. 7th International Conference on DASFAA, pages 22–29, April
2001.

11. R. Sacks-Davis, A. Kent, and K. Ramamohanarao. Multikey Access Methods Based
on Superimposed Coding Techniques. TODS, 12(4), 1984.

12. Sangwon Park and Yoonra Choi and Hyoung-Joo Kim. XML Query Optimization
using Signature and DTD. Technical report http://swpark.pe.kr/publication.html,
November 2001.

13. Tae-Sun Chung and Hyoung-Joo Kim. Extracting Indexing Information from XML
DTDs. Information Processing Letters, 81(2), 2002.

14. Hwan-Seung Yong, Sukho Lee, and Hyoung-Joo Kim. Applying Signatures for
Forward Traversal Query Processing in Object-Oriented Databases. ICDE, 1994.

	XML Query Processing Using Signature and DTD
	Introduction
	Related Work
	Preview on Signature
	Building DOM Based on Signature
	Extraction of Indeterminate Elements
	Generating DOM Based on Signature

	Query Optimization Using a Query Graph
	Generating Query Graph
	Query Optimization Using a Query Graph

	Experimental Results
	Conditions of Experiment
	Performance Evaluation

	Conclusion
	References

