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1. Introduction dexes [4,7] and a join algorithm [2] are proposed to
reduce the access cost. However, all these algorithms

Evaluating structure (path) predicates on elements still access all the nodes located in the paths that do
is the core operation of XML path query processing. not match to the structural predicates on the elements

Structural join algorithms and path indexes are the N & query. _ ,
methods to handle the predicates. For example, in order to retrieve the names of pro-

Basic structural join algorithm [1,9,11] accesses fessors in a department we can express a query like
all the nodes corresponding to two input elements, “//department/professor/name?”. In this query, the pro-

not considering structural predicates of the elements, f€SSOr element has a structural predicate, *//depart-

Thus, when processing a path query, a query processorment/". Thus_;, it is desirable to scan only the child
using the join algorithm should perform join opera- N&menodes indepartments. However, even when the

tions on all the elements in the query and access all professor element is located in the paths, */depart-

the nodes in the elements. Some proprietary XML in- Ment/course/professor” or “/department/publications/

journal/professor”, existing structural join algorithms
scan all the nodes in these paths. Thus, large numbers
o This work was supported in part by the Ministry of Information ~ Of useless intermediate result pairs can be produced
& Communications, Korea, under the Information Technology Re- and in turn unnecessary high I/O and CPU cost can
search Center (ITRC) Support Program. incur.
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paths. However, it is very difficult to evaluate arbitrary while, Holistic Twig Join [2] eliminates large numbers
path queries efficiently, because these indexes do notof intermediate result pairs, which will not contained
represent all the single and tree-shaped paths. There4n the final result set, during processing a path query.
fore, a query processor using path indexes first should [4,7] presented proprietary XML node indexes to skip
find the elements needed to be joined (we call them the nodes that need not to participate in a structural
join elements) and their structural predicates, and then join. As another query processing algorithm, BLAS
perform a sequence of join operations on the node sets[3] efficiently processes path queries, by encoding
corresponding to the found join elements. Here, which path information of nodes and transforming a user’s
algorithm is used to find join elements determines the query into a set of sub-queries by means of split, push-
performance of this type of query processing algo- up, and unfold algorithms.

rithms. BLAS [3] is the state-of-the-art among these

algorithms. However, it still has room for reducing the

number of join elements. 3. Encoding scheme
In this paper, we propose a filtering algorithm, '
P-Filter, which efficiently evaluates the structural In this section, we describe a new encoding scheme

predicates on join elements, and consequently filters for nodes and paths in an XML document. We assume
out the nodes not matched to the predicates, beforethatan XML documentis an ordered tree T. Each node
performing a structural join operation. To support this in T holds a region{start, end), which is assigned by
algorithm, we encode all the nodes in an XML docu- visiting each node in depth-first order. Fig. 1 shows an
ment with their path information and also encode all XML data tree.

the paths in the XML document (we call this UPET). To encode the nodes and the paths of T, we make a
Also, we propose a new query processing algorithm, tree,LPTree, which holds label paths in T and their el-
P-QEval, using P-Filter and a query transformation al- €ment node extents in the tree nodes. Fig. 2 shows the
gorithm to search for the minimal join elements. LPTree of Fig. 1. For examplelpl6 node represents

Our experimental results show that P-QEval can ef- the label path ‘/deptList/dept/students/gradstudent’
ficiently process path queries compared to an existing and the node exteifit. ., (580, 599), (600, 619)}. Also,
structural join-based query processing algorithm or the We allocate a path identifiepjd, for each node in the
state-of-the-art path index-based query processing al-LPTree, which is represented by a regigtart, end).
gorithm, by using the P-Filter algorithm and the query For example, in Fig. 2(4, 15) is thepid of the label
transformation algorithm. path oflp4.

The rest of this paper is as follows. Section 2 shows ~ Using the LPTree, we construct data node sets in
some related work on evaluating path queries. We the form of(start, end, level, pid.start) for data nodes
present a new encoding scheme for nodes and pathln the extents of the tree. All encoded data nodes are
structures in Section 3. In Section 4, we describe P-
Filter algorithm and P-QEval algorithm. Experimental
results are shown in Section 5. Finally, we conclude (2,625 Ores2.2513]

this paper in Section 6. proft
3,230

deptList[1,2514]

[621,624]
gradstudent
[600,619]

2. Related work 14,21

paper
[243,246] : lastname

lastname
[586.,569]

firstname firstname
[582,585] PaPer  [602,605]
[615,618]

Several path indexes and structural join algorithms | &
have been proposed to evaluate XML path queries. [5,
6,8,10] are the representative path indexes. These in- jestamefrsinane s
dexes can efficiently retrieve the nodes matched to a |~ ' abstract * Tirstname
single path or predefined specific tree paths. Stack- e e
Tree [1] is an optimal structural join algorithm that
scans the nodes in two input sets only once. Mean- Fig. 1. A part of a data tree for deptList.dtd.

lastname
[238,241]
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Label paths:

Ip1{fdeptList) —{(1,2514),. . }

Ip2{fdeptList/dept) —{ (2,625}, ..., (1832,2513) }
ib.él(fdeptL\sUdept/prolesUprofessor) — {21,

Ip10(/deptListdeptistudents) — { (231,620),... }
Ip11{/deptlist/dept/students/undergradstudent) — { (232,247), ... }
{
[

I[.:.1 6{/deptList/deptistudents/gradstudent) — { (580,599), (600,619), ... }

Ip22(/deptListideptiaddress) — [ (621.624), .}

[6.7] /e [1213]
(2021] [22.23] 130311 [3233]
Fig. 2. LPTree for Fig. 1.
deptlist ~ {(2,430),(3,16,0)....} the structural predicates of the elements to be joined.
deptList#  {(1, 44, 0)}

Also, we describe a new query processing algorithm,

P-QEval, using P-Filter and a query transformation al-

professor 5,10, 3), (6,7,3),(8,9,3), (11, 14, 3), (12,13, 3)}

professor# §§4 15, 3)} gorithm.

paper {(12,13,4)} P-Filter algorithm is composed of two steps. First,
pﬁpter#t# %EE ig’gii(%’ 36.4)} it finds the pids that match to the structure predi-
abstrac 13, . . .
name (6.7.4). ... (30,31 4, (32,33 4)) cate,s pred, on eqch join elgmgnt E. (Algonthm Fil-
namef ((5.10,4). (19, 24, 4), (29, 34, 4)} terEImPIDs_.) To find them, |t_f|rst retrieves thuéds
firstname# {(8,9,5), (22 23,5), (32,33, 5)} corresponding to each label sxpred. Then, for the
lastname#  {(

6,7,5), (20,21 5), (30,31, 5)} pid sets, p1, p2, ..., pr, it sequentially performs a
semi-join like operation that extracts descendads
which satisfyp; .start < p;.start andp;.end > p;.end
A<i<k=-1,2<j<ki<j—1).
stored in[pid.start, start] order. Also, we make a la- For example, when E is theame element and
bel node set, UPET, in the form ofapel_name(with s pred of E is “//professor//name”, FilterEImMPIDs
# or not),{(pid, level)}] by using label paths. Hertg- ~ €xtracts{(5,10.3), (6,7, 3), (8,9, 3), (11, 14,3), (12,
bel_name means an element name that appears in a 13 3)} for profess label and{(5,10,4), (19,24, 4),
label path. Especially, kabel_namewith # means that (29,34, 4)} for name# label. Then, it performs one
the element name appears in the last level of a label Semijoin-like operation between the two sets. As a
path. And level is the position wherdabel name ap- result, it produces(5, 10, 4)} as thepid set ofnameel-
pears in the label path. Fig. 3 shows the part of UPET ement. Thus, all the nodes {19, 24, 4), (29, 34, 4)}
for Fig. 2. For example, thiabel_name professor ap-  are filtered out.
pears at five label paths. All thgid, level) pairs in For all the join elements, P-Filter performs the
UPET are stored in thepid.start, level] order. After above algorithm. As a result, it obtains tpel sets
encoding all the nodes and paths, the LPTree is elimi- for the elements. Next, it additionally filters out some
nated. pids that do not satisfy path containment relationship

(we call this PCR) between the filterg@itt sets. (Al-
gorithm FilterPCRPIDs.) In this step, all tipeds that
4. P-Filter do not satisfy PCR with angid sets are eliminated.
As a simple example, assume that two elempats
In this section, we describe the filtering algorithm, per (E1) andabstract (E2) should be joined, and pro-
P-Filter, which filters out the nodes not matched to duce result pairs in the form gpaper, abstract). And

Fig. 3. UPET for Fig. 2.
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the filteredpids of paper label are{(11, 14, 4), (35, 36,
4)}, and those ofbstract# label are{(12, 13,5)}. As Algorithm: P-Filter(E)
a result qf checking PCR between thid sets, |_t fl.nds E: the set of join elements.
that thepid (35, 36,4) of E1 has no match witpids [steps]
of E2 and filters out theid from E1. 1. for each element e in E do
Based on this P-Filter algorithm, we present a new 2. e.pidset= FilterEImPIDs(e. predicate);
; ; ; _ 3. FilterPCRPIDs(E);
query processing algorithm. (Algorithm P-QEval.)
To process a query, P-QEval first transforms the que-
ry into (a join element, its structural predicatpairs. Algorithm: FilterEIrnPIDs (p)
Here, a join element means an element that is locatedp: a structure predicate in the form of a linear path expression,
in significant positions (branch, terminal, or retrieval)  e.g., //dept//professor//name for a join elemeatte.
in a query. P-QEval finds join elements, while visiting  [steps] _
query nodes in depth-first order. Next, it filters out the ;f ?'}' label names in p.
nqdes thgt need not t'o participate in join opgrqtlons bY 3. F.— the entries in UPET that match to the first label name in L.
using P-Filter. Then, it performs a structural join algo- 4. for (each label e inL ) do
rithm like holistic twig join [2] on the join elements. 5. S:=the entries in UPET that match to e.
By using this algorithm, we can reduce the number ? gUFE: tne CUFSOFIOF entries 0; g
PG H F . urS:= the cursor for entries of S.
of joins because the glgqnthm does n.o.t pe_rform joins o° =2 (CurFi— NULL 88 CurS!— NULL ) do
on the elements not in significant position in a query. g

> Y if ( CurF. start< CurS. start ) then CurF++;
Also, we can significantly reduce CPU and I/O cost 10.  else if (CurF. start CurS. start) then CurS++:;

because the algorithm filters out the nodes inpiuks 11.  else
that need not participate in join operation. 12. if (CurF. level< CurS. level ) then append CurS to R.
13. CurS++,
14.  endif.
. 15. end while.
5. Experimental results 16 F:=R;
17. end for.

In this section, we present preliminary results of the
experiments that were performed to verify the effec-
tiveness of the proposed filtering algorithm, P-Filter, —
and our query processing algorithm, P-QEval. E: the set of join elements.

. . [steps]

To show the effectiveness of P-Filter and P-QEval, 1. while ( a join element in E is not joined ) do
we compared its performance with the state-of-the-art 2. select two join elementg,gancestor) andg(descendant)
XML gquery processing algorithms, Holistic Twig Join in bottom-up fashion.

[2] and BLAS [3]. The query processing algorithms [fetd,dcan be ;iotif‘ ‘?'e”I‘e”t ‘hta‘ Wals ﬁ:felred by tl"t)r‘]”it”_g Witth
were implemented on Windows 2000 with 256 MB f's descendant join element of a leat element fhat IS no

. . . joined with any element. ]
memory and 40 GB hard disk using C++. All experi- 3 ¢ (each entry, xin e, and y injedo

Algorithm: FilterPCRPIDs(E)

mental data sets were syntactically generated using thea. if (x contains y ) then link x with y and y.linkcount-++;
DTD shown in Fig. 4. For these data sets, two types of 5. if (x does not contain any entry i ¢ then
path queries, linear and branch (twig), were chosen. 6 if (x joined with other descendant elemery, and

has a link with an entry, z, ofge) then
z.linkcount- -;
if ( z.linkcount==0) then

For each type, we prepared 3 queries, each of which
holds only parent-child (we call it P/C) relationships, g

one ancestor-descendant (we call it A/D) relationship, o. recursively perform 6, 7 on descendant entries of z.
or two or more A/D relationships. Table 1 shows the 10. end if.
prepared gueries. 11. remove x from e.

Fig. 5 shows the performance results on the query g efgfof'

processing algorithms, HTJ, BLAS-PU, and P-QEval. 14 end while.
In the figure, HTJ represents Holistic Twig Join al-
gorithm, BLAS-PU represents BLAS using push-up Algorithm 1. P-Filter.
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Algorithm: P-QEval(Q)

Q: input query

E: the set of join elements

e: ajoin element

e.name: element name,

e.predicate: structural predicate on e,

e.type: branch(B), terminal(T), or retrieval(R),

e.joinelm: the ancestor (parent) element that is to be joined with e,
e.joincond: the join condition (parent—child, ancestor-descendant),
e.pidset (filteredpid list of e.

[steps]
1. while (not visited all the query nodes in Q) do
/I query transformation

2. e:=the next query node (in depth-first order)

3. if (eis branch, terminal, or retrieval element) then

4. set e.name, e.predicate, e.type.

5. if (an ancestor join element exists ) then

6. e.joinelm:= a;

7. e.joincond= containment relationship between a and e,
8. end if,

9. append e into E,

10. endif,

11. end while,

12. P-Filter(E); [l filter out pids for join elements
13. Perform a structural join algorithm for the elements in E.

Algorithm 2. P-QEval.

Table 1

Query set

Q1 /deptList/department/professor/name (SPE: only P/C rel.)
Q2  //dept List/department//professor/name (SPE: two A/D rel.)
Q3  //deptList//department//professor//name (SPE: four A/D rel.)
Q4  /lpaper title]/author/name (TPE: only P/C rel.)

Q5  [/lpaper title]/author//name (TPE: two A/D rel.)

Q6  /Ipaper[/ititle]//author//name (TPE: four A/D rel.)

K.-S Min, H.-J. Kim/ Information Processing Letters 95 (2005) 480486

deptList
Ldepartment(+)
- professor(+) — email, tel
name - lastname, firstname
public ations
joumnal(+) —title, year
Lpaper(+) - title
Lauthor(+) - name — lastname, firstname
conferenc e{+) —title, year
Lpaper(+) - title
L author(+) - name — lastname, firstname
- staff(+) — email, tel
name - lastname, firsthame
I gradstudent(+) — email, lab
name - lastrname, firstname
course(+) — title, grade
f L professor — name - lastname, firstname
public ations
joumnal(+) —title, year
Lpaper(+) - title
Lauthor(+) - name — lastname, firstname
conferenc e{+) —title, year
Lpaper(+) - title
L author(+) - name — lastname, firstname
Lyndergradstudent(+) — email
l1:narn|3 - lastname, firstname
course{+) — tile, grade
L professor — name - lastname, firstname

Fig. 4. deptList.dtd.

To check the scalability of the algorithms, we pre-
pared 4 data sets with incrementally different sizes
and evaluated the query Q2. Fig. 5(b) shows the re-
sult. As shown the figure, the response times of HTJ
and BLAS-PU linearly increase but that of P-QEval is
nearly constant. This is because HTJ and BLAS-PU
perform join operations on all elements or some el-
ements with A/D relationships, however, P-QEval do
not perform any join operation for a simple path query
irrespective of the existence of A/D relationships.

Meanwhile, the size of UPET is an important factor
to determine whether P-QEval makes use of P-Filter

algorithm, and P-QEval represents a query processingalgorithm. If the size of UPET is large, P-Filter may

algorithm using P-Filter and HTJ (step 13 in Algo-
rithm 2).

Fig. 5(a) shows the performance of these algo-
rithms when the data size is fixed to 60.3 Mbytes. As

shown the figure, HTJ shows the worst performance.

Meanwhile, the performance of BLAS-PU is very sim-

ilar to that of P-QEval when all the elements in a query
hold only P/C relationships. But, as the number of
elements with A/D relationship increases, the perfor-
mance of P-QEval is much better than that of BLAS-

incur much 1/0 and CPU cost. However, in our exper-

iments, we confirmed that the size of UPET is negligi-

ble and it can be managed in main memory. Although
the structure of an XML data can be very complex

and irregular, generally the number of label paths in
an XML data is extremely smaller than that of data

nodes. Thus, the cost of performing P-Filter algorithm

is negligible in the aspect of the overall cost to process
a query.

PU. Especially, when all the elements in a query have Cost analysis. Let a query Q be composed nfele-

A/D relationship, the performance of BLAS-PU is
similar or lower than that of HTJ.

ments,e1, ez, ..., e,, andle;| is the number of nodes
in an element — i (1<i < n). To evaluate Q, HTJ
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[OHT OBLAs-PU BP-GEval | ‘—Q—HTJ — B BLAS-PU —%—P-QEval

45 .

0 20 »

35 .

30 30 //
3 o5 _ — Z 25
E =
s - /
3 20 3 -
2 2

15 15 //I

10 " ./l/

=] 5
5 i
0 ¢ ¢
o I
30.7M 60.3M 90.1M 120.3M
Ql Q2 a3 Q4 a5 a6
[queries] [data size]
(a) (b)

Fig. 5. Experimental results.

performs (n — 1) join operations. Thus, the cost is that do not match to the structural predicates of join
O(le1] + |e2| + - - -+ |en]). On the contrary, BLAS-PU  elements. Also, we proposed a new query process-
and P-QEval transform Q intdinear path expressions  ing algorithm, P-QEval, which finds join elements
and perform join operations on them. Thus, they re- and evaluates the query based on the elements and
quire (I — 1) join operations. Since < n, the costs  P-Filter algorithm. From our experimental results, we
of BLAS-PU and P-QEval are always smaller than or observed that our algorithm significantly outperforms
equal to that of HTJ. Meanwhile, P-QEval is different  existing state-of-the-art query processing algorithms,
from BLAS-PU in its query transformation and node py filtering out large number of nodes and reducing
filtering algorithm. If5 is the number of child elements  the number of joins. We also confirm that our filtering

in branch points and is the number of descendant  4gorithm can be easily combined with existing struc-

elements, BLAS-PU transforms Q inté + d) path tural join algorithms, thereby significantly enhancing
expressions. On the contrary, P-QEval picks up only ¢, performance of them.

the elements in significant positions (branch, terminal,
and retrieval) together with their structural predicates.
If some elements are located in descendant axis and
their locations are not significant positions, P-QEval References
does not select them as join elements. Thus, the num-
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nodes that do not match to structural predicates on the [2 N Bruno, N. Koudas, D. Srivastava, Holistic twig joins: opti-
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. [3] Y. Chen, S.B. Davidson, Y. Zheng, BLAS: an efficient XPath
when the elements are located in two or more label processing system, in: SIGMOD, 2004.
paths, P-QEval may access much smaller number of [4] S. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, C. Zaniolo, Effi-
nodes than BLAS-PU if some label paths are filtered cient structural joins on indexed XML documents, in: VLDB,
out by P-Filter. 2002, pp. 263-274.
[5] B. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, M. Shad-
mon, A fast index for semistructured data, in: VLDB, 2001,
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