
l

Information Processing Letters 95 (2005) 480–486

www.elsevier.com/locate/ip

A path-based node filtering method
for efficient structural joins✩ ,✩✩

Kyung-Sub Mina,∗, Hyoung-Joo Kimb

a Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Republic of Korea
b Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea

Received 11 September 2004; received in revised form 14 May 2005; accepted 18 May 2005

Available online 1 July 2005

Communicated by F.Y.L. Chin

Keywords: Databases; XML; Structural join; Node filtering; Path structure summary
nts
g.

the

es
ts,

nts.
sso
a-

all
in-

n
e-

ct.

to
hms
t do
ents

ro-
like
ro-
art-
ild
e
art-
ns/
s

bers
ced

can

tly
the

ped
1. Introduction

Evaluating structure (path) predicates on eleme
is the core operation of XML path query processin
Structural join algorithms and path indexes are
methods to handle the predicates.

Basic structural join algorithm [1,9,11] access
all the nodes corresponding to two input elemen
not considering structural predicates of the eleme
Thus, when processing a path query, a query proce
using the join algorithm should perform join oper
tions on all the elements in the query and access
the nodes in the elements. Some proprietary XML

✩ This work was supported in part by the Ministry of Informatio
& Communications, Korea, under the Information Technology R
search Center (ITRC) Support Program.
✩✩ This work was supported in part by the Brain Korea 21 Proje

* Corresponding author.
E-mail addresses: ksmin@oopsla.snu.ac.kr (K.-S. Min),

hjk@oopsla.snu.ac.kr (H.-J. Kim).
0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.ipl.2005.05.017
r

dexes [4,7] and a join algorithm [2] are proposed
reduce the access cost. However, all these algorit
still access all the nodes located in the paths tha
not match to the structural predicates on the elem
in a query.

For example, in order to retrieve the names of p
fessors in a department we can express a query
“//department/professor/name”. In this query, the p
fessor element has a structural predicate, “//dep
ment/”. Thus, it is desirable to scan only the ch
name nodes indepartments. However, even when th
professor element is located in the paths, “/dep
ment/course/professor” or “/department/publicatio
journal/professor”, existing structural join algorithm
scan all the nodes in these paths. Thus, large num
of useless intermediate result pairs can be produ
and in turn unnecessary high I/O and CPU cost
incur.

Meanwhile, path indexes [5,6,8,10] can efficien
process the structural predicates represented in
form of single paths or some pre-defined tree-sha
.

K.-S. Min, H.-J. Kim / Information Processing Letters 95 (2005) 480–486 481

ry
not
ere
uld
em
hen
sets
ich
the
go-
se
he

m,
ral
ters
fore
his
u-
all
).
m,
al-

ef-
ting
the

al-
ry

ws
We
path
P-

tal
de

ms
. [5,
e in-
to a
ck-

at
an-

rs
ed
ery.
kip
ural
S

ing
r’s
sh-

me
me

ode

an

ke a
l-
the

s
nt’

s in

are
paths. However, it is very difficult to evaluate arbitra
path queries efficiently, because these indexes do
represent all the single and tree-shaped paths. Th
fore, a query processor using path indexes first sho
find the elements needed to be joined (we call th
join elements) and their structural predicates, and t
perform a sequence of join operations on the node
corresponding to the found join elements. Here, wh
algorithm is used to find join elements determines
performance of this type of query processing al
rithms. BLAS [3] is the state-of-the-art among the
algorithms. However, it still has room for reducing t
number of join elements.

In this paper, we propose a filtering algorith
P-Filter, which efficiently evaluates the structu
predicates on join elements, and consequently fil
out the nodes not matched to the predicates, be
performing a structural join operation. To support t
algorithm, we encode all the nodes in an XML doc
ment with their path information and also encode
the paths in the XML document (we call this UPET
Also, we propose a new query processing algorith
P-QEval, using P-Filter and a query transformation
gorithm to search for the minimal join elements.

Our experimental results show that P-QEval can
ficiently process path queries compared to an exis
structural join-based query processing algorithm or
state-of-the-art path index-based query processing
gorithm, by using the P-Filter algorithm and the que
transformation algorithm.

The rest of this paper is as follows. Section 2 sho
some related work on evaluating path queries.
present a new encoding scheme for nodes and
structures in Section 3. In Section 4, we describe
Filter algorithm and P-QEval algorithm. Experimen
results are shown in Section 5. Finally, we conclu
this paper in Section 6.

2. Related work

Several path indexes and structural join algorith
have been proposed to evaluate XML path queries
6,8,10] are the representative path indexes. Thes
dexes can efficiently retrieve the nodes matched
single path or predefined specific tree paths. Sta
Tree [1] is an optimal structural join algorithm th
scans the nodes in two input sets only once. Me
-

while, Holistic Twig Join [2] eliminates large numbe
of intermediate result pairs, which will not contain
in the final result set, during processing a path qu
[4,7] presented proprietary XML node indexes to s
the nodes that need not to participate in a struct
join. As another query processing algorithm, BLA
[3] efficiently processes path queries, by encod
path information of nodes and transforming a use
query into a set of sub-queries by means of split, pu
up, and unfold algorithms.

3. Encoding scheme

In this section, we describe a new encoding sche
for nodes and paths in an XML document. We assu
that an XML document is an ordered tree T. Each n
in T holds a region,〈start, end〉, which is assigned by
visiting each node in depth-first order. Fig. 1 shows
XML data tree.

To encode the nodes and the paths of T, we ma
tree,LPTree, which holds label paths in T and their e
ement node extents in the tree nodes. Fig. 2 shows
LPTree of Fig. 1. For example,lp16 node represent
the label path ‘/deptList/dept/students/gradstude
and the node extent{. . . , (580,599), (600,619)}. Also,
we allocate a path identifier,pid, for each node in the
LPTree, which is represented by a region〈start, end〉.
For example, in Fig. 2,(4,15) is thepid of the label
path oflp4.

Using the LPTree, we construct data node set
the form of〈start, end, level,pid.start〉 for data nodes
in the extents of the tree. All encoded data nodes

Fig. 1. A part of a data tree for deptList.dtd.

482 K.-S. Min, H.-J. Kim / Information Processing Letters 95 (2005) 480–486
Fig. 2. LPTree for Fig. 1.
-

in a
t
bel

ET

imi-

m,
to

ed.
m,
al-

st,
i-

l-

s

e
a

he

e
hip

-

deptList {〈2,43,0〉, 〈3,16,0〉, . . .}
deptList# {〈1,44,0〉}
.
professor {〈5,10,3〉, 〈6,7,3〉, 〈8,9,3〉, 〈11,14,3〉, 〈12,13,3〉}
professor# {〈4,15,3〉}
paper {〈12,13,4〉}
paper# {〈11,14,4〉, 〈35,36,4〉}
abstract# {〈12,13,5〉}
name {〈6,7,4〉, . . . , 〈30,31,4〉, 〈32,33,4〉}
namef {〈5,10,4〉, 〈19,24,4〉, 〈29,34,4〉}
firstname# {〈8,9,5〉, 〈22,23,5〉, 〈32,33,5〉}
lastname# {〈6,7,5〉, 〈20,21,5〉, 〈30,31,5〉}
.

Fig. 3. UPET for Fig. 2.

stored in[pid.start, start] order. Also, we make a la
bel node set, UPET, in the form of [label_name(with
or not),{〈pid, level〉}] by using label paths. Here,la-
bel_name means an element name that appears
label path. Especially, alabel_name with # means tha
the element name appears in the last level of a la
path. And level is the position where alabel_name ap-
pears in the label path. Fig. 3 shows the part of UP
for Fig. 2. For example, thelabel_name professor ap-
pears at five label paths. All the〈pid, level〉 pairs in
UPET are stored in the [pid.start, level] order. After
encoding all the nodes and paths, the LPTree is el
nated.

4. P-Filter

In this section, we describe the filtering algorith
P-Filter, which filters out the nodes not matched
the structural predicates of the elements to be join
Also, we describe a new query processing algorith
P-QEval, using P-Filter and a query transformation
gorithm.

P-Filter algorithm is composed of two steps. Fir
it finds the pids that match to the structure pred
cate,s_pred, on each join element E. (Algorithm Fi
terElmPIDs.) To find them, it first retrieves thepids
corresponding to each label ins_pred. Then, for the
pid sets, p1,p2, . . . , pk , it sequentially performs a
semi-join like operation that extracts descendantpids
which satisfypi.start < pj .start andpi.end > pj .end
(1� i � k − 1,2� j � k, i < j − 1).

For example, when E is thename element and
s_pred of E is “//professor//name”, FilterElmPID
extracts{(5,10,3), (6,7,3), (8,9,3), (11,14,3), (12,
13,3)} for profess label and{(5,10,4), (19,24,4),

(29,34,4)} for name# label. Then, it performs on
semijoin-like operation between the two sets. As
result, it produces{(5,10,4)} as thepid set ofname el-
ement. Thus, all the nodes in{(19,24,4), (29,34,4)}
are filtered out.

For all the join elements, P-Filter performs t
above algorithm. As a result, it obtains thepid sets
for the elements. Next, it additionally filters out som
pids that do not satisfy path containment relations
(we call this PCR) between the filteredpid sets. (Al-
gorithm FilterPCRPIDs.) In this step, all thepids that
do not satisfy PCR with anypid sets are eliminated.

As a simple example, assume that two elementspa-
per (E1) andabstract (E2) should be joined, and pro
duce result pairs in the form of〈paper,abstract〉. And

K.-S. Min, H.-J. Kim / Information Processing Letters 95 (2005) 480–486 483

ew
l.)
ue-

ated
al)
ng
he
by

o-

ber
ins
ry.
st

the
ec-
er,

al,
-art
in
s
B
ri-
the

s of
en.

hich
s,
ip,

he

ery
al.
l-

up
the filteredpids ofpaper label are{(11,14,4), (35,36,
4)}, and those ofabstract# label are{(12,13,5)}. As
a result of checking PCR between thepid sets, it finds
that thepid (35,36,4) of E1 has no match withpids
of E2 and filters out thepid from E1.

Based on this P-Filter algorithm, we present a n
query processing algorithm. (Algorithm P-QEva
To process a query, P-QEval first transforms the q
ry into 〈a join element, its structural predicate〉 pairs.
Here, a join element means an element that is loc
in significant positions (branch, terminal, or retriev
in a query. P-QEval finds join elements, while visiti
query nodes in depth-first order. Next, it filters out t
nodes that need not to participate in join operations
using P-Filter. Then, it performs a structural join alg
rithm like holistic twig join [2] on the join elements.

By using this algorithm, we can reduce the num
of joins because the algorithm does not perform jo
on the elements not in significant position in a que
Also, we can significantly reduce CPU and I/O co
because the algorithm filters out the nodes in thepids
that need not participate in join operation.

5. Experimental results

In this section, we present preliminary results of
experiments that were performed to verify the eff
tiveness of the proposed filtering algorithm, P-Filt
and our query processing algorithm, P-QEval.

To show the effectiveness of P-Filter and P-QEv
we compared its performance with the state-of-the
XML query processing algorithms, Holistic Twig Jo
[2] and BLAS [3]. The query processing algorithm
were implemented on Windows 2000 with 256 M
memory and 40 GB hard disk using C++. All expe
mental data sets were syntactically generated using
DTD shown in Fig. 4. For these data sets, two type
path queries, linear and branch (twig), were chos
For each type, we prepared 3 queries, each of w
holds only parent-child (we call it P/C) relationship
one ancestor-descendant (we call it A/D) relationsh
or two or more A/D relationships. Table 1 shows t
prepared queries.

Fig. 5 shows the performance results on the qu
processing algorithms, HTJ, BLAS-PU, and P-QEv
In the figure, HTJ represents Holistic Twig Join a
gorithm, BLAS-PU represents BLAS using push-
Algorithm: P-Filter(E)

E: the set of join elements.
[steps]
1. for each element e in E do
2. e.pidset:= FilterElmPIDs(e. predicate);
3. FilterPCRPIDs(E);

Algorithm: FilterElrnPIDs (p)

p: a structure predicate in the form of a linear path expression,
e.g., //dept//professor//name for a join elementname.

[steps]
1. L := all label names in p.
2. R := { }
3. F := the entries in UPET that match to the first label name in L.
4. for (each label e in L) do
5. S:= the entries in UPET that match to e.
6. CurF:= the cursor for entries of F.
7. CurS:= the cursor for entries of S.
8. while (CurF!= NULL 88 CurS!= NULL) do
9. if (CurF. start< CurS. start) then CurF++;
10. else if (CurF. start> CurS. start) then CurS++;
11. else
12. if (CurF. level< CurS. level) then append CurS to R.
13. CurS++;
14. end if.
15. end while.
16 F := R;
17. end for.

Algorithm: FilterPCRPIDs(E)

E: the set of join elements.
[steps]
1. while (a join element in E is not joined) do
2. select two join elements ea (ancestor) and ed (descendant)

in bottom-up fashion.
[ed, can be a join element that was filtered by joining with

its descendant join element or a leaf element that is not
joined with any element.]

3. for (each entry, x in e, and y in ed) do
4. if (x contains y) then link x with y and y.linkcount++;
5. if (x does not contain any entry in ed) then
6. if (x joined with other descendant element, e0, and

has a link with an entry, z, of e0) then
7. z.linkcount- -;
8. if (z.linkcount= = 0) then
9. recursively perform 6, 7 on descendant entries of z.
10. end if.
11. remove x from e.
12. end if.
13. end for.
14. end while.

Algorithm 1. P-Filter.

484 K.-S. Min, H.-J. Kim / Information Processing Letters 95 (2005) 480–486

e,
nt),

,

)
l.)
el.)

sing
o-

go-
As
ce.
-

ery
of

for-
S-
ave
is

e-
zes
re-
TJ

l is
PU
el-
do
ry

tor
ilter
y

er-
gi-
gh

lex
in
ta

hm
ess

s

Algorithm: P-QEval(Q)

Q: input query
E: the set of join elements
e: a join element
e.name: element name,
e.predicate: structural predicate on e,
e.type: branch(B), terminal(T), or retrieval(R),
e.joinelm: the ancestor (parent) element that is to be joined with
e.joincond: the join condition (parent–child, ancestor-descenda
e.pidset (filtered)pid list of e.

[steps]
1. while (not visited all the query nodes in Q) do

// query transformation
2. e:= the next query node (in depth-first order)
3. if (e is branch, terminal, or retrieval element) then
4. set e.name, e.predicate, e.type.
5. if (an ancestor join element exists) then
6. e.joinelm:= a;
7. e.joincond= containment relationship between a and e
8. end if,
9. append e into E,
10. end if,
11. end while,
12. P-Filter(E); // filter out pids for join elements
13. Perform a structural join algorithm for the elements in E.

Algorithm 2. P-QEval.

Table 1
Query set

Q1 /deptList/department/professor/name (SPE: only P/C rel.
Q2 //dept List/department//professor/name (SPE: two A/D re
Q3 //deptList//department//professor//name (SPE: four A/D r
Q4 //paper[title]/author/name (TPE: only P/C rel.)
Q5 //paper[title]/author//name (TPE: two A/D rel.)
Q6 //paper[//title]//author//name (TPE: four A/D rel.)

algorithm, and P-QEval represents a query proces
algorithm using P-Filter and HTJ (step 13 in Alg
rithm 2).

Fig. 5(a) shows the performance of these al
rithms when the data size is fixed to 60.3 Mbytes.
shown the figure, HTJ shows the worst performan
Meanwhile, the performance of BLAS-PU is very sim
ilar to that of P-QEval when all the elements in a qu
hold only P/C relationships. But, as the number
elements with A/D relationship increases, the per
mance of P-QEval is much better than that of BLA
PU. Especially, when all the elements in a query h
A/D relationship, the performance of BLAS-PU
similar or lower than that of HTJ.
Fig. 4. deptList.dtd.

To check the scalability of the algorithms, we pr
pared 4 data sets with incrementally different si
and evaluated the query Q2. Fig. 5(b) shows the
sult. As shown the figure, the response times of H
and BLAS-PU linearly increase but that of P-QEva
nearly constant. This is because HTJ and BLAS-
perform join operations on all elements or some
ements with A/D relationships, however, P-QEval
not perform any join operation for a simple path que
irrespective of the existence of A/D relationships.

Meanwhile, the size of UPET is an important fac
to determine whether P-QEval makes use of P-F
algorithm. If the size of UPET is large, P-Filter ma
incur much I/O and CPU cost. However, in our exp
iments, we confirmed that the size of UPET is negli
ble and it can be managed in main memory. Althou
the structure of an XML data can be very comp
and irregular, generally the number of label paths
an XML data is extremely smaller than that of da
nodes. Thus, the cost of performing P-Filter algorit
is negligible in the aspect of the overall cost to proc
a query.

Cost analysis. Let a query Q be composed ofn ele-
ments,e1, e2, . . . , en, and|ei | is the number of node
in an elemente − i (1 � i � n). To evaluate Q, HTJ

K.-S. Min, H.-J. Kim / Information Processing Letters 95 (2005) 480–486 485
Fig. 5. Experimental results.
is

s
re-

or
nt
de
ts
nt

nly
al,

es.
and

val
um-
ller

er
e
the
us,
bel
r of

red

m,
hs

oin
ess-
ts
and

we
ms
ms,
ing
ng
c-

ng

ri-
L

ti-
1.

th

ffi-
B,

ad-
1,

la-
B,
performs (n − 1) join operations. Thus, the cost
O(|e1| + |e2| + · · ·+ |en|). On the contrary, BLAS-PU
and P-QEval transform Q intol linear path expression
and perform join operations on them. Thus, they
quire (l − 1) join operations. Sincel � n, the costs
of BLAS-PU and P-QEval are always smaller than
equal to that of HTJ. Meanwhile, P-QEval is differe
from BLAS-PU in its query transformation and no
filtering algorithm. Ifb is the number of child elemen
in branch points andd is the number of descenda
elements, BLAS-PU transforms Q into(b + d) path
expressions. On the contrary, P-QEval picks up o
the elements in significant positions (branch, termin
and retrieval) together with their structural predicat
If some elements are located in descendant axis
their locations are not significant positions, P-QE
does not select them as join elements. Thus, the n
ber of elements selected by P-QEval is always sma
or equal to(b+d) and the join cost may much small
than BLAS-PU. In addition, P-QEval filters out th
nodes that do not match to structural predicates on
selected join elements before join operations. Th
when the elements are located in two or more la
paths, P-QEval may access much smaller numbe
nodes than BLAS-PU if some label paths are filte
out by P-Filter.

6. Conclusions

In this paper, we proposed a filtering algorith
P-Filter, which filters out all the nodes in the pat
that do not match to the structural predicates of j
elements. Also, we proposed a new query proc
ing algorithm, P-QEval, which finds join elemen
and evaluates the query based on the elements
P-Filter algorithm. From our experimental results,
observed that our algorithm significantly outperfor
existing state-of-the-art query processing algorith
by filtering out large number of nodes and reduc
the number of joins. We also confirm that our filteri
algorithm can be easily combined with existing stru
tural join algorithms, thereby significantly enhanci
the performance of them.

References

[1] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. S
vastava, Y. Wu, Structural joins: a primitive for efficient XM
query pattern matching, in: ICDE, 2002, pp. 141–153.

[2] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: op
mal XML pattern matching, in: SIGMOD, 2002, pp. 310–32

[3] Y. Chen, S.B. Davidson, Y. Zheng, BLAS: an efficient XPa
processing system, in: SIGMOD, 2004.

[4] S. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, C. Zaniolo, E
cient structural joins on indexed XML documents, in: VLD
2002, pp. 263–274.

[5] B. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, M. Sh
mon, A fast index for semistructured data, in: VLDB, 200
pp. 341–350.

[6] R. Goldman, J. Widom, DataGuides: Enabling query formu
tion and optimization in semistructured databases, in: VLD
1997, pp. 436–445.

486 K.-S. Min, H.-J. Kim / Information Processing Letters 95 (2005) 480–486

L
3–

er-
02,

r

ex
G-

an,
an-
[7] H. Jiang, H. Lu, W. Wang, B.C. Ooi, XR-tree: indexing XM
data for efficient structural joins, in: ICDE, 2003, pp. 25
263.

[8] R. Kaushik, P. Bohannon, J.F. Naughton, H.F. Korth, Cov
ing indexes for branching path queries, in: SIGMOD, 20
pp. 134–144.

[9] Q. Li, B. Moon, Indexing and querying XML data for regula
path expressions, in: VLDB, 2001, pp. 361–370.
[10] H. Wang, S. Park, W. Fan, P.S. Yu, ViST: a dynamic ind
method for querying XML data by tree structures, in: SI
MOD, 2003, pp. 110–121.

[11] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G.M. Lohm
On supporting containment queries in relational database m
agement systems, in: SIGMOD, 2001, pp. 425–436.

