
Extracting Object-Oriented Database Schemas

from XML DTDs Using Inheritance ?

Tae-Sun Chung, Sangwon Park, Sang-Young Han, and Hyoung-Joo Kim

School of Computer Science and Engineering, Seoul National University

San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, KOREA

ftschung,swpark,syhan,hjkg@oopsla.snu.ac.kr

Abstract. As XML has become an emerging standard for information

exchange on the World Wide Web, it has gained attention in database

communities to extract information from XML seen as a database model.

Recently, many researchers have addressed the problem of storing XML

data and processing XML queries using traditional database engines.

Here, most of them have used relational database systems, while we

show in this paper that object-oriented database systems can be another

solution. Our technique generates an OODB schema from DTDs and

processes XML queries. In particular, we show that the semi-structural

part of XML data can be represented by `inheritance' and that it can be

used to improve query processing.

1 Introduction

Recently, as XML[2] has emerged as a standard for information exchange on the

World Wide Web, it has gained attention in database communities to extract

information from XML seen as a database model. As XML data is self-describing,

we can issue queries over XML documents distributed in heterogeneous sources

and get the necessary information.

There are two kinds of approaches to query XML documents. One is us-

ing special purpose query engines for semistructured data since an XML doc-

ument can be regarded as an instance of a semistructured data set[3, 8, 10, 13,

15]. The other is using traditional databases such as relational databases or

object-oriented databases for storing and querying XML documents[5, 7, 9, 16].

In particular, many approaches using RDBMSs have been proposed. That is,

XML data is converted to relational tuples and XML queries are translated to

SQL queries. However, to the best of our knowledge, there is no special work on

the problem of using OODBMSs to store and query XML data. An exception

is work in [5] that processes SGML data using an OODBMS to store and query

SGML documents1.

? This work was supported by the Brain Korea 21 Project.
1 Additionally, there is a special purpose XML query processor, Excelon[11] that is

based on an OODBMS.

In this paper, we propose a technique that stores and queries XML data

using an object-oriented database. Compared with the proposal in [5], our work

di�ers in that we use `inheritance', a key concept in object-oriented paradigms.

For example, let us assume that the following DTD is given.

<!ELEMENT person (name, address, vehicle*,(school|company))>

<!ELEMENT name (firstname?, lastname)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT vehicle (model, company, gear?)>

<!ELEMENT model (#PCDATA)>

<!ELEMENT gear (#PCDATA)>

<!ELEMENT school (name, baseball-team?, person+,url?)>

<!ATTLIST school name CDATA #CDATA REQUIRED>

<!ELEMENT baseball-team (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ELEMENT company (name, person+, url?)>

<!ATTLIST company name CDATA #CDATA REQUIRED>

<!ELEMENT alumni (name, year, school)>

<!ATTLIST alumni name CDATA #CDATA REQUIRED>

<!ELEMENT year (#PCDATA)>

Fig. 1. An example DTD

Here, the �rst line says that an element person has the name and address

sub-elements, and he or she has zero or more vehicles, and �nally, is a student

or a company employee. From the DTD declaration for the element person,

we can classify the element person into four groups: 1. ones who have one or

more vehicles and work for companies, 2. ones who have no vehicle and work

for companies, 3. ones who have one or more vehicles and are students, and 4.

ones who have no vehicle and are students. Our technique uses this information

in designing object-oriented schema by means of inheritance semantics. In the

above example, each group is de�ned as Person-1, Person-2, Person-3, and

Person-4 type classes that inherit the general class Person. Here, for example,

as Person-1 is a specialization of Person, the inheritance semantics is satis�ed.

If we design object-oriented schemas in this way, it can be used for enhancing

query evaluation. For example, if a query is related to students having vehicles,

a query processor can only traverse extents of Person-3.

This paper shows a technique of extracting OODB schemas using inheritance

and querying XML documents stored in an OODBMS.

2 Deriving an OO schema from a DTD

In previous work of [5], each class is created for each element de�nition. Here, the

choice operator(`j') is modeled by a union type, and the occurrence indicators

(`+' or `�') are represented by lists. Values (e.g. strings) of XML data are repre-

sented by O2 classes of appropriate content types (e.g., Text) using inheritance.

Figure 2 shows an object-oriented schema for the DTD in Figure 1.

class Person public type tuple(name:Name, address:Address,

vehicle:list(Vehicle),union(school:School,company:Company))

class Name public type tuple(firstname:Firstname,lastname:Lastname)

class Firstname inherit Text

class Lastname inherit Text

...

Fig. 2. An OODB schema

However, the technique has several problems as follows.

{ Since each element de�nition creates one class, several classes are created

though the classes can be inlined into one class. For example, in Figure 2,

the classes Name, Firstname, and Lastname can be inlined into the class

Person.
{ The technique does not use inheritance in designing classes. For example, if

we design the Person class in the real world, we create a class Person as a

base class and create classes Student and Employee that are subclasses of the

class Person. In this case, query processing can be improved. For example,

if a query is only targeted to the class Student, a query processor can only

traverse objects of the class Student. It need not traverse all of the Person

type classes.
{ For the occurrence indicator (`�') or optional indicator (`?'), if an object has

no value at the corresponding �eld, the �eld should be set to null. This has

drawbacks in memory e�ciency.
{ In the technique, the choice operator (`j') is modeled by a union type. How-

ever, since the ODMG[4] model, which is a standard for object database

management systems, does not support union of types, it can not be applied

to ODMG-compliant object-oriented databases directly.

So, our approach solves the above problems in the following ways:

{ By applying an inlining technique of relational databases, we inline as many

descendants of an element as possible into a single class(Section 2.1).
{ After classifying DTD elements, we reconstruct classes using inheritance(Section

2.2).

2.1 Class inlining technique

We adopt the inlining technique of relational databases proposed in [16]. The

technique in [16] inlines as many descendants of an element as possible to a

single relation.

Compared with the work in [16], our technique has two di�erent points. First,

as the traditional relational databases do not support set-valued attributes, when

an element has a sub-element with `+' or `�' expression, the sub-element is made
into a separate relation and the relationship between the element and the sub-

element is represented by introducing a foreign key. For example, in Figure 3, a

relation for \vehicle" is created and links from vehicles to persons are created by

using foreign keys. In an object-oriented model, as an occurrence indicator(`�'
or `+') can be represented by lists, we don't have to introduce a foreign key

manually. In the above example, the class Person can be represented by having

a set-valued attribute vehicle.

Second, in relational models, to represent relationships between relations, join

attributes should be created manually. However, in object-oriented models, as

relationships between classes can be represented by direct pointers, manual join

attributes don't have to be created. For instance, in Figure 3, when the relations

for \alumni" and \school" are created in relational models, the relation School

has a foreign key parentId that joins schools with alumni. In object-oriented

models, the class Alumni has an attribute school that has object identities of the

class School.

When given a DTD, the class inlining technique creates an object-oriented

schema as follows. First, Figure 3 shows a DTD graph for the DTD in Figure 1.

A DTD graph introduced in [16], represents the structure of a DTD.

company

school

person

name
name address

firstnamelastname

baseball-team

name

url

name year

alumni

*

vehicle

gear model

?

+

?

+

? ?

?

?

?

Fig. 3. A DTD graph

Next, we decide what classes to create from the DTD graph by the following

rules.

1. Classes are created for element nodes that have an in-degree of zero. Other-

wise, the element can not be reached. For example, the class for \alumni" is

created, because the element node alumni has an in-degree of zero.

2. Elements below a `�' or a `+' node are made into separate classes. This

is necessary for classes that have set-valued attributes. For instance, the

element node vehicle that is below a `�' node is made into a separate relation.
The class Person will have a set-valued attribute vehicle.

3. Nodes with an in-degree of one are inlined. For example, in Figure 3, nodes

gear or model are inlined as they have an in-degree of one.

4. Among mutually recursive elements all having in-degree one, one of them is

made into a separate relation.

5. Element nodes having an in-degree greater than one are made into separate

relations.

If we apply these �ve rules to the DTD graph in Figure 3, the classes Person,

Vehicle, Company, School, Alumni, and Url are created. Once we decide which

classes are created, we construct an object-oriented schema. In the DTD graph,

if X is an element node that is made into a separate class, it inlines all the

nodes Y that are reachable from it such that there is no node that is made into

a separate class in the path from X to Y . An object-oriented schema is created

for the DTD graph in Figure 3 as follows.

class Person public type tuple(name.firstname:string,name.lastname:string,

address:string,vehicle:list(Vehicle),school:School,company:Company)

class School public type tuple(name:string,baseball-team:string,

person:list(Person),url:Url)

class Alumni public type tuple(name:string, year:String,school:School)

class Company public type tuple(name:string,person:list(Person),url:Url)

class Url inherit Text

class Vehicle public type tuple(model:string,company:Company,gear:string)

Fig. 4. An OODB schema

2.2 Designing a schema using inheritance

XML data having irregular schema can be represented by inheritance, because

if we design the structural part of an element as a superclass and the semi-

structural part of it as subclasses, the generalization relationship between the

superclass and the subclasses is satis�ed.

DTD Automata First, for each element that is made into a separate class, we

abstract a DTD as a set of (n : P) pairs. Here, let N be a set of element names,

n 2 N , and P is either a regular expression over N or PCDATA which denotes

a character string.

For an element e and the corresponding DTD declaration (n : P), the

regular expression P can be divided into �ve categories as follows. If r, r1, and

r2 are regular expressions that DTDs represent, L(r), L(r1), and L(r2) are the

languages that can be described by the regular expressions.

1. case r = r1; r2 : The languages that r denotes are the concatenation of L(r1)

and L(r2).

2. case r = r1jr2 : L(r) is the union of L(r1) and L(r2).

3. case r = r1+: This represents more than one repetition of the same structure.

4. case r = r1�: This is the same as case 3 except that it permits zero repetitions
of the same structure.

5. case r = r1?: This represents zero or one occurrence of the same structure.

Among these �ve categories, cases 2,4, and 5 result in subclasses, while case 1

and 3 don't result in subclasses. This is because in cases 1 and 3, XML data

that conforms to the DTD has attributes of the same form. The reason case 4

becomes information is because whether or not an element has an attribute can

be represented by specialization. On the other hand, whether an element has

one attribute or more than one can not be explained by specialization.

So, we de�ne the following relaxed regular expression to extract only the

necessary information in classifying elements.

De�nition 1 (Relaxed Regular Expression). A relaxed regular expression

is constructed from a given regular expression as follows.

1. r1; r2) r1; r2

2. r1jr2) r1jr2

3. r+) r

4. r�) r + j?) rj?(by rule 3)

5. r?) rj?

Example 1. In Figure 1, the DTD declaration for the element person is ab-

stracted to (person: (name, address, vehicle*, (schooljcompany))), and we get

(person : (name; address; (vehiclej?); (schooljcompany))) after applying the

relaxed regular expression.

DTD automata are constructed in the following ways. Let (ni : P
0

i
) be an

expression which is obtained by applying relaxed regular expressions to each

DTD declaration (ni : Pi). We construct automation Ai by Algorithm 1 with a

new regular expression niP
0

i

2.

qo qfStart
a

Fig. 5. r = a

Theorem 1. There always exists an automaton M constructed by Algorithm 1

for the input regular expression r, and if L(M) is the language accepted by M ,

and L(r) is the language which is describable by the regular expression r , then

L(M) = L(r).

We omit the proof for lack of space.

Example 2. Figure 6 shows an automaton constructed by Algorithm 1 for the el-

ement person after applying the relaxed regular expression, i.e. (person : (name;

address; (vehiclej?); (schooljcompany))).

2 In this paper, we occasionally omit the concatenation operator, that is, niP
0

i =

ni; P
0

i .

Algorithm 1 The construction of DTD automata

1: Input: A relaxed regular expression r

2: Output: An automaton M

3: procedure Make DTD Automata(regular expression r)

4: if r = a (a 2
P

) then

5: Construct an automaton M as shown in Figure 5;

6: return M ;

7: else if r = r1jr2 then

8: M1 = (Q1;
P

1
; �1; q1; F1) Make DTD Automata(r1);

9: M2 = (Q2;
P

2
; �2; q2; F2) Make DTD Automata(r2);

10: Construct the new automaton M = (Q1 � fq1g [Q2 �
fq2g;

P
1
[
P

2
; �; [q1; q2]; F1 [F2) from the automata M1 and M2, where

� is de�ned by

1. �(q; a) = �1(q; a) for q 2 Q1 � fq1g and a 2
P

1
,

2. �(q; a) = �2(q; a) for q 2 Q2 � fq2g and a 2
P

2
,

3. �([q1; q2]; a) = �1(q1; a) where a 2
P

1
,

4. �([q1; q2]; a) = �2(q2; a) where a 2
P

2
;

11: else f r = r1; r2 g
12: M1 = (Q1;

P
1
; �1; q1; F1) Make DTD Automata(r1);

13: M2 = (Q2;
P

2
; �2; q2; F2) Make DTD Automata(r2);

14: Let the �nal states F1 of M1 be states f1; f2; :::; fm (m � 1).

Construct the new automaton M = (Q1 � F1 [Q2 � fq2g [
f[f1; q2]; [f2; q2]; :::; [fm; q2]g;

P
1
[
P

2
; �; q1; F2) from the automata M1 and M2,

where � is de�ned by

1. �(q; a) = �1(q; a) for q 2 Q1 � F1, �1(q; a) 6= fk (where 1 � k � m), and

a 2
P

1
,

2. �(q; a) = �2(q; a) for q 2 Q2 � q2 and a 2
P

2
,

3. �([fk; q2]; a) = �2(q2; a) for all k(where k = 1; 2; :::; m) and a 2
P

2
,

4. �(qf ; a) = [fk; q2] for all qf which satis�es �1(qf ; a) = fk(where 1 � k � m)

and a 2
P

1
;

15: end if

16: return M

name address
school

company

company

school

vehicle
person

Fig. 6. A DTD automaton

Classi�cation of DTD elements using DTD automata As the DTD au-

tomata are constructed from relaxed regular expressions, they contain informa-

tion only about concatenations and unions. Here, the diverging points in au-

tomata become those of classifying DTD elements. So, by recording the labels

at diverging points we can classify the DTD elements.

Figure 7 shows a classi�cation tree from the DTD automaton of the element

person in Figure 6, and the corresponding classi�cation table. Here, the DTD el-

ement person is divided into 4 groups according to its label sets, namely fvehicle,
schoolg, fvehicle, companyg, fschoolg, and fcompanyg.

vehicle

company school companyschool

1 3 42

1 fvehicle, schoolg

2 fvehicle, companyg

3 fschoolg

4 fcompanyg

Fig. 7. A classi�cation tree and a classi�cation table

The fact that each element is classi�ed into several groups stems from the

exibility of XML data, and it becomes a hint to a query processor. This is

because if a query is targeted to certain groups only, a query processor can only

traverse the groups targeted.

We created a superclass from the structural part of an element and sev-

eral subclasses that inherit the class. The subclasses are created from the semi-

structural part of the element. For example, for the element person, the class

Person has attributes name and address. Further, subclasses are created that

inherit it and has attributes fvehicle, schoolg, fvehicle, companyg, fschoolg, and
fcompanyg. In this way, an object-oriented schema is created as follows.

class Person public type tuple(name.firstname:string,name.lastname:string,

address:string)

class Person1 inherit Person type tuple(vehicle:list(Vehicle),

school:School)

class Person2 inherit Person type tuple(vehicle:list(Vehicle),

company:Company)

class Person3 inherit Person type tuple(school:School)

class Person4 inherit Person type tuple(company:Company)

...

Fig. 8. An OODB schema

3 Query Language

Several query languages including XML-QL[6], UnQL[3], Lorel[1], and XQL(from

Microsoft) have been proposed to query semistructured data. The semistructured

query languages are based on the following regular path expression that expands

the path expression[12] of object-oriented database query languages.

De�nition 2. (Regular Path Expression) A regular path expression is in the

form of H.P, where

1. H is an object name or a variable denoting an object,

2. P is a regular expression over labels in an DTD, i.e. P = labelj(P jP)j(P:P)jP�.

We should solve two problems to convert semistructured query languages

based on regular path expressions to object-oriented query languages. First,

as object-oriented query languages do not support processing the alternation

operator(`j') that stems from (P jP) in the regular path expression, we should

make a routine that processes it. We adapt the alternation elimination technique

proposed in [14]. For example, the regular path expression person:(schooljcompany)

:name is converted to (person:school:name) [(person:company:name).

Second, we should process arbitrary complex queries, i.e. nested recursive

queries that stems from (P�) in the regular path expression. In [14], the authors

suggest a technique that replaces all regular expression operators with possi-

ble path instantiations using DataGuides[10] that are structural summaries of

databases. We suggest a similar technique using DTDs. First, we de�ne a simple

regular path expression as follows.

De�nition 3. (Simple Regular Path Expression) A simple regular path expres-

sion is a sequence H:p1:p2:::::pn where

1. H is an object name or a variable denoting an object,

2. pi (where 1 � i � n) is a label in an DTD or wild-card \�" which denotes

any sequence of labels.

Compared to the regular path expression, it is simple, but can process almost all

XML queries. We show that queries that have simple regular path expressions

can be converted to object-oriented queries. Our technique can be generalized

to regular path expressions.

3.1 Translating simple regular path expressions without the `�'

operator

In this section, we deal with simple regular path expressions without the `�' oper-
ator. In this case, we can convert it to object-oriented database query languages

easily. For example, consider the following Lorel-like semistructured query.

select X.name.firstname, X.name.lastname

from person X, X.vehicle Y

where X.address = "Seoul", Y.model = "EF-Sonata", Y.gear="auto"

The query asks for the �rst and last name of the person who has a vehicle

\EF-Sonata" with an automatic transmission. The query is converted to the

following object-oriented database query languages.

select tuple(f:p."name.firstname",l:p."name.lastname")

from p in Person,y in p.Vehicle

where p.address = "Seoul", y.model = "EF-Sonata", y.gear="auto"

When the query is processed, the number of target classes can be reduced. That

is, in the database schema in Figure 8, as the variable p bound to the class Person

has an attribute vehicle, only the instances of the class Person1, Person2 are

traversed.

3.2 Converting simple regular path expressions with the `�'

operator

Queries having the expression `�' that denotes any sequence of paths are fre-

quently used in XML queries by those who do not know database schema. For

example, consider the following query.

select u

from person.*.url u

The query requires all urls that are reachable by the paths that �rst, have

the edge person followed by any sequence of arbitrary edges, and next, have

the edge url. As object-oriented database query languages do not support this

kind of queries directly, we convert the path expression with the `�' operator to
possible path instantiations using the DTD graph in Section 2.1. Here, operators

in the DTD graph are excluded.

The `�' expression in the above query is replaced with the paths school,

company, and vehicle.company. Thus, the query is converted to the following

Lorel-like query.

select u

from (person.school.url|person.company.url|

person.vehicle.company.url) u

Next, The query is converted to the following object-oriented query.

select u

from p in Person,s in p.school,c in p.company,v in p.vehicle

v2 in v.company, u in (s.url,c.url,v2.url)

4 Conclusion

In this paper, we showed that object-oriented databases can be another solution

for storing and querying XML data. We propose a technique that creates object-

oriented schemas from DTDs. In particular, we solve the problem of impedance

mismatch that stems from the exibility of XML data by using inheritance. That

is, by representing the semi-structural part of XML data using inheritance, our

technique solves the null value problem and enhances query processing.

We showed that XML queries composed of simple regular path expressions

are converted to object-oriented database query languages and the results of

queries to XML data. Here, we suggest a technique that removes the `�' expres-
sion by using DTDs.

References

1. S. Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet Wiener.

The lorel query language for semistructured data. International Journal on Digital

Libraries, 1996.
2. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (XML)

1.0. Technical report, W3C Recommendation, 1998.
3. Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query lan-

guage and optimization techniques for unstructured data. In Proceedings of the

ACM SIGMOD International Conference on the Management of Data, 1996.
4. R.G.G. Cattell. The object database standard: ODMG-93. Morgan Kaufmann

Publishers, 1994.
5. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Docu-

ments to Novel Query Facilities. In Proceedings of the ACM SIGMOD International

Conference on the Management of Data, 1994.
6. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Query language for

XML. In Proceedings of Eighth International World Wide Web Conference, 1999.
7. Alin Deutsch, Mari Fernandez, and Dan Suciu. Storing semistructed data with

STORED. In Proceedings of the ACM SIGMOD International Conference on the

Management of Data, 1999.
8. Mary Fernandez and Dan Suciu. Optimizing regular path expressions using graph

schemas. In IEEE International Conference on Data Engineering, 1998.
9. Daniela Florescu and Donald Kossmann. Storing and querying XML data using

an RDBMS. IEEE Data Engineering Bulletin, 1999.
10. Roy Goldman and Jennifer Widom. DataGuides: enabling query formulation and

optimization in semistructured databases. In Proceedings of the Conference on

Very Large Data Bases, 1997.
11. http://www.odi.com/excelon. 2000.
12. M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceed-

ings of the ACM SIGMOD International Conference on the Management of Data,

1992.
13. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database

management system for semistructured data. SIGMOD Record, 1997.
14. J. McHugh and J. Widom. Compile-Time Path Expansion in Lore. In Proceedings

the Workshop on Query Processing for Semistructured Data and Non-Standard

Data Formats, 1999.
15. Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings

of the International Conference on Database Theory, 1999.
16. Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun Zhang, David DeWitt,

and Je�rey F. Naughton. Relational Databases for Querying XML Documents:

Limitations and Opportunities. In Proceedings of the Conference on Very Large

Data Bases, 1999.

