An Eager and Pessimistic Space Reservation Method for Tables

Frequently Accessed by Concurrent Transactions

Kang-Woo Lee and Hyoung-Joo Kim
Dept. of Computer Science
Seoul National University
Seoul, Korea, 151-742

kwlee,hjk@oopsla.snu.ac.kr

October 8, 1998

Abstract

Space reservation is important in allocating and releasing storage space in DBMSs to
support recoverable actions. Since most existing space reservation methods are designed
to perform well when few data pages have spaces reserved by more than one transaction,
they are not suitable for some of the newly emerging applications, such as workflow and
inventory control systems. In these applications, many concurrent transactions frequently
insert and delete records into/from a relatively small table.

This paper proposes a new space reservation method that performs well for these types
of applications by extending the lock control structures to keep detailed and up-to-date
information in a reserved state. This paper also shows, by simulation, that the new method
performs better than existing ones for applications in which many concurrent transactions
frequently insert and delete records into/from a table, and even for applications where

data pages rarely have space reserved by more than one transaction.

1 Introduction

Space reservation[12, 13] is an important concept in the allocating and releasing of storage

space in DBMSs that provide record locking with flexible storage management to support

recoverable actions. Methods[8, 12] to handle space reservation have been developed, but
most of the existing methods are designed to be optimized for applications in which few
storage pages have space reserved by more than one transaction.

However, in many DBMS applications, including newly emerging applications, it is com-
monplace that a large number of concurrent transactions frequently insert and delete records
into/from a relatively small table, and therefore many storage pages are reserved by many
transactions. For example, a data container placed between the steps in a workflow man-
agement system|[3, 4, 11] is used in transferring data between steps and is often implemented
using tables. Transferring a datum through the container is realized by inserting a data record
and subsequently deleting it from the table. In inventory control systems and order processing
systems, a table is used to store order records received from clients. Order records exist in the
table only until they are processed by servers. Many clients and servers concurrently insert
and delete order records into/from the order table. A queue[l, 6] has played an important
role in transaction processing systems, and has recently been introduced to DBMSs, such as
ORACLE™ [5, 14]. Enqueue and dequeue are the main operations applied to the queue and
can be implemented by inserting and deleting of data records. For these kinds of applications
the existing methods are not suitable, and hence there is a need for a new space reservation
method.

In this paper, we propose a new space reservation method that gives better performance
for these applications as well as for traditional applications. This new method exploits the
extended control structure of the lock manager. We also present simulation results which
show that the proposed method provides better performance than existing ones, especially
when many concurrent transactions frequently insert and delete records into/from the table.

The paper is organized as follows: Section 2 briefly explains space reservation and some
existing space reservation methods. This section also discusses the problems that could arise
when existing methods are used for the applications considered in this paper. Section 3
presents a new space reservation method, and explains qualitatively why it performs better
than others under these applications. Section 4 evaluates the performance of the proposed

method and compares it to those of existing ones through simulations. Finally, our conclusions

are presented in Section 5, followed by proposals for future work.

2 Space Reservation Methods

2.1 Space Reservation Problem

When a transaction deletes or shrinks a record in a storage disk, it releases the space occupied
by the record'. This released space, called a reserved space, must not be allocated for other
transactions until the space-releasing transaction commits because, should the transaction
abort, the space might be re-used in order to rollback the action of space-releasing.

Let us assume that a transaction T3 releases 50 bytes of space in a page P that has 100
bytes of free space. In that case, the page P has 150 bytes of free space. Now, suppose
another transaction 75 allocates 80 bytes of space from the page P and commits. Then, the
page P has only 70 bytes of free space. What happens if transaction 77 is doomed to abort
its work? Transaction 77 fails to undo the space-releasing action in page P since it has only
70 bytes of free space, whereas 77 needs 100 bytes of free space to undo its actions.

To avoid this problem, the space released by the transaction 77 in the page P must be
reserved, as long as it is running. A test, called a reservation test (R-test), is introduced
to prevent a transaction allocating space reserved for other transactions. Only transactions
that pass the R-test in a page can allocate free space from the page. The allocator that fails
an R-test on a page has to seek another page. To allow R-tests to make the right decisions,
space reservation methods keep the information about the reserved state for each page that
has reserved space. Most existing methods do not keep detailed reservation information, to
avoid high costs paid in managing the information. Thus, due to the limited information, R-
tests cannot know exactly how much reserved space the page has, which would lead R-tests to
make wrong decisions; that is, R-tests may reject the space allocation requests on a page even
though it has enough free space, excluding reserved area. We refer to such R-tests ‘wasted’.
In traditional applications, wasted R-tests rarely occur since most storage pages in a table

are not in a reserved state or, if so, are reserved by at most one transaction. Therefore the

'Tn this paper, we consider only the space released by removing records. However, the results of this paper
can also be applied for the space released when records shrink.

problems caused by wasted R-tests have rarely been considered.

Space reservation methods can be classified into two categories: pessimistic and optimistic.
In pessimistic methods, an R-test is performed on a target page before it is placed in the buffer,
and it is brought into the buffer only after the R-test is passed. In optimistic methods, an
R-test is performed on the page after it is brought into the buffer. A useless buffer call might
occur when an R-test on the page fails, since allocation cannot be performed in the failed
page.

The reserved space set aside for a transaction is released after the reserving transaction
terminates. Techniques for updating reservation information upon a reserver’s termination
fall into two categories[9]: eager and lazy. An eager reservation method updates all related
reservation information immediately after a reserver terminates. A lazy reservation method
does not update reservation information upon a reserver’s termination; instead, the update is
usually delayed until another transaction finds the page having no reserved space. The lazy
methods, while reducing the overhead spent upon transaction termination, might suffer from
wasted R-tests. This is because the delayed update of reserved states tends to exaggerate the
reserved state and could cause R-tests to make wrong decisions.

We assume that free space inventory pages (FSIPs)? are used in finding a page eligible for
an insertion. FSIPs are the pages that contain summary information on the amount of free
space in each of the set of other pages[9, 13], and they are consulted by inserters in finding a
page with sufficient free space. However, a space allocation on the page suggested by FSIPs
may sometimes fail since FSIPs keep only the summary information and do not consider space

reservation.
2.2 Existing Space Reservation Methods

2.2.1 Basic Method: BASIC

In BASIC, R-tests rely on lock compatibility tests. A transaction that releases a space in a page
locks the page in IX mode for reservation. This lock must be commit-duration[13] because

the reserved space must be kept until the reserver terminates. A transaction that wants to

>They are also called Space Map Pages (SMPs).

allocate space on a page locks the page in EX mode, and performs a space-allocating operation
only after the lock is granted; BASIC is a pessimistic method. When the page already has
some reserved space, the EX mode lock is not granted immediately since the page has already
been locked in IX mode. The space allocator locks the page in conditional and instant mode
so as not to be blocked if it already has reserved space, and to unlock it immediately after the
lock is granted since the lock is requested only to check whether it has reserved space or not.
From now on, we will call such locks, requested for reserving space and testing reservation,
reservation locks (R-locks). BASIC needs an R-lock call for each space reservation and R-test.

Since all locks are released upon the termination of a transaction, all reserved space
pertaining to the transaction is released automatically; BASIC is an eager method. Since R-
tests are performed using only lock compatibility tests, any R-tests on pages having reserved
space fail, regardless of the amount of reserved space in it, causing many R-tests to be wasted.
However, there is one exception: an allocator that is the only reserver in a page can pass the

R-test since it is the owner of the lock granted in IX mode.

2.2.2 Starburst method: STAR

STAR [8] uses three fields, FREE, RSVD, TRSVD, and TRANS, in the header of each data page.
The fields FREE and RSVD keep the total amount of free space and reserved space of the page,
respectively. The fields TRANS and TRSVD keep the identifier of the most recent transaction
that reserved space and the amount of the space in the same page respectively. To keep
track of the reserved state, these fields are updated as transactions allocate and release space
in the page. A transaction that needs B bytes of space is allowed to allocate space if B <
FREE — RSVD. If the identifier (id) of an allocator is the same as TRANS, space allocation is
allowed if B < FREE—RSVD-+ TRSVD, since the transaction can use ‘TRSVD’ bytes more of space
reserved by itself. This is the only case when a transaction can re-use its already reserved
space. Since these fields are stored in data pages, data pages must be brought into buffer
before carrying out R-tests; STAR is an optimistic method.

The main advantage of STAR is that no R-locks are required for space reservations and

R-tests. By keeping detailed information on reserved space in a page, STAR permits the trans-

action to use a page that already has some space reserved by others. Upon its termination,
a space reserver does not visit each page containing its reserved space to update the field
RSVD; STAR is a lazy method. The field RSVD is updated to be zero when the page is met by
a transaction whose TRANS is less than the ids of all active transactions. This reduces the
costs paid upon transaction termination, but it makes RSVD larger than the size of the actual
reserved space and it causes some R-tests to make wrong decisions. STAR, being optimistic,

wastes one buffer call for each failed R-test.

2.2.3 C. Mohan’s Method: CMOHAN

CMOHAN assumes that each data page is slotted and has two fields in its header called TFS
(Total Free Space) and CFS (Contiguous Free Space). TFS holds the total amount of free
space and CFS holds the size of the last free slot. NFS (Non-contiguous Free Space) is defined
as TFS — CFS.

To track reserved states, two bits, RSB1 and RSB2, are placed in the header of each page.
RSB1 has a value of ‘1’ if some of the free spaces in NFS is in a reserved state, and RSB2 has
a value of ‘17 if some of the free space in CFS is in the reserved state. A transaction, which

needs B bytes of space from a page, examines the header of the page:

e [f the values of both RSB1 and RSB2 are 0, the transaction can allocate space whenever

B < TFS, because this means that there is no reserved space in this page.

e [f the value of RSB2 is 0, but RSB1 is 1, the transaction can take up some space in CFS

whenever B < CFS, because this means that there is no reserved space in CFS.

e [f the values of both RSB1 and RSB2 are 1, the page might have reserved space in both
NFS and CFS; therefore an R-lock is requested to make sure that there is no reserved
space in the page. If the lock is granted immediately and B < TFS, the transaction is

allowed to take up the space in this page.

Since CMOHAN uses RSB1 and RSB2, the target page must be brought into the buffer before

an R-test is performed; CMOHAN is optimistic. CMOHAN is lazy in updating RSB1 and RSB2 upon

transaction termination, since revisiting and updating the corresponding pages incurs high
execution overheads. Instead, these two bits are reset when any transaction that visits a page
is sure that the page has no reserved space, using the Commit_LSN[10] technique, or the hint
from the lock manager and the buffer control blocks.

CMOHAN is designed to perform well in cases where few pages in the table are reserved by
more than one transaction. It avoids many R-lock calls in such situations since the values
of RSB1 and RSB2 of pages are likely to be 0. CMOHAN allows, though in a limited way, a
transaction that has reserved some space already in a page to re-use that space during a
subsequent space-allocating operation involving the same page. However, in CMOHAN, many
R-tests can be wasted because RSB1, RSB2 and R-locks cannot describe the details of the
reservation state. Moreover, since CMOHAN is lazy, additional R-tests may be wasted due to
incorrect values of RSB1 and RSB2. Unfortunately, the overhead paid when an R-test fails is
higher than in other methods. For each failed R-test, CMOHAN spends both one buffer call and

one R-lock, whereas BASIC spends only one R-lock and STAR spends only one buffer call.

2.3 Discussion on Existing Space Reservation Methods

In the existing reservation methods, R-tests may be wasted because they use inaccurate and
out-dated information on the reservation states of pages. Since wasted R-tests rarely appear
in most traditional DBMS applications, the problems caused by wasted R-tests have so far
been ignored. However, many R-tests will be wasted when these methods are used in the ap-
plications considered in this paper: many concurrent transactions frequently insert and delete
records on the tables, since many pages might have space reserved by more than one trans-
action. Therefore the problems due to wasted R-tests should be given serious consideration,
and new reservation methods that can overcome the problem must be devised.

Frequent wasted R-tests badly affect the performance of space-allocating operations, for
the following reasons. First, FSIPs must be re-read to search for another target data page,
and the more a transaction reads FSIPs—one of the bottlenecks in DBMSs—the longer it
could block others or be blocked by others. Second, for optimistic methods such as CMOHAN

and STAR, the number of wasted buffer calls for a data page increases with wasted R-tests

and hence a transaction needs to read more pages for an insertion. This may enlarge the
working-set of transactions and lower the performance of the system owing to the heavy
paging activity. Finally, for reservation methods that use R-locks for R-tests, many R-lock
calls are wasted as the number of failed R-tests increases.

In the following sections, we propose a new space reservation method that eliminates
avoidable wasted R-tests, and show that this new method outperforms the others for appli-
cations where many concurrent transactions frequently insert and delete records into/from a

table.

3 A Proposed Space Reservation Method: NEW

This section presents an eager and pessimistic space reservation method, which extends the
lock table in order to keep the details of the reservation of pages. The lock table, consisting
of lock headers and lock entries, keeps track of the locked data. A lock header keeps the state
of a locked object, such as the name of the lock, the aggregate lock mode and a queue of
lock entries. A lock entry is assigned to each lock requester and contains information on the
requester, such as the requested lock mode, the held lock mode and the status of the lock:
granted or waiting[7, 16].

Like BASIC, NEW locks a page to reserve space and to perform an R-test on that page. The
two fields TFS and RSVD are introduced in the lock header, allocated to a locked page, to keep
the information on available space on the page. They keep the total free space and the total
reserved space of the corresponding page, respectively. For each transaction that reserves
space on a page, a lock entry is allocated for the page. The lock entry is also extended, by
attaching TRSVD, to hold the total amount of space that the transaction has reserved so far
in the page. For instance, Figure 1 shows that two pages P1 and P2 have reserved space.
Page P1 has 3500 bytes of free space, including 1000 bytes of reserved space occupied by
transactions T'1, T'2 and T'3. Transaction T'1 is the only reserver in the page P2, where there
are 500 bytes of free space.

Algorithm 1 shows the procedure that releases B bytes of space from page P. The fields

Lock Header

Lock Entry
Name : P1 TR-Name: T1
TFS :3500 | #|TRSVD: 100
=| RSVD: 1000 .
QUEUE: TR-Name: T2
& TRSVD: 300
S
ﬁ L> TR-Name: T3
5 Lock Header TRSVD: 600
3 Name : P2 Lok
| TFS :500 oc ntry
RSVD: 400 =g 12-st?30{)1
QUEUE: :

Figure 1: The extended control structure for lock table

TFS and RSVD in the lock header and TRSVD in the lock entry are updated according to the

amount of space released, B.

Algorithm 1 Releasing and reserving B bytes of space in the page P

1: release B bytes in page P

2: try to find the lock header H for page P

3: if not found then

4: allocate a new lock header H for page P

5 H.RSVD <+ 0 # the page P has no reserved space.

6: end if

7. HTFS + HTFS+ B # the total free space (TFS) expands.

8 H.RSV D + H.RSV D + B # the released space is reserved.

9: try to find lock entry E of transaction 7" in the HQUEUE.

10: if not found then

11: allocate a new lock entry E for transaction T in the H.QUEUE.

12: ETRSVD <+ 0 # the transaction has no reserved space in this page.
13: end if

14: ETRSVD <+ ETRSVD + B # the released space is reserved for transaction 7.

Algorithm 2 shows a procedure that occupies B bytes of space on page P. Since a
transaction can use all of the space except for the portion reserved by others, an R-test is
passed whenever B < TFS — RSVD + TRSVD. This means that whenever possible, in contrast
to existing methods, NEW allows a transaction to re-use space that has already been reserved
by itself during subsequent space-allocating operations involving the same page. Therefore,
NEW permits a transaction to allocate the maximum amount of space available to itself, and
hence eliminates wasted R-tests that could appear in the existing reservation methods. Since
space allocation is always performed after the R-test is passed, useless buffer calls, due to
failed R-tests, are never produced. Fields TFS and TRSVD are updated appropriately after the

space allocation is successfully completed. No buffer calls are required for the update since

these fields are resident in memory.

If a transaction performs an R-test on a page in which it has not yet reserved space, no
lock entries exist for the transaction on that page. In this case, TRSVD is assumed to be 0.
Therefore, the R-test is passed if B > TFS —RSVD(5-7). If the page has no reserved space, the
corresponding lock header might not be found in the lock table. In this case, both RSVD and
TRSVD are assumed to be 0, and TFS is assumed to be the physical page size (PAGESIZE)(8-
10) and therefore, TFS — RSVD — TRSVD becomes PAGESIZE. This means an R-test is always

successful because B is less than PAGESIZE?

Algorithm 2 Allocating of B bytes of space in page P by transaction T

1: try to find the lock header H and the lock entry E for the page P and transaction T
2: if both are found then

3 # the transaction T has already reserved ‘E. T RSV D’ bytes of space in the page P.
4: availsize <+~ HTFS — HRSVD + ETRSVD

5: else if only H is found then
6.
7
8
9

the transaction T' has reserved no space in page P.
availsize «+— HTFS — H. RSV D
: else
: # the page P has no reserved space at all.
10: availsize <+ PAGESIZE
11: end if
12: if B > availsize then
13: allocation has failed so try another page
14: end if
15: fix page P in the buffer and try to allocate B bytes from the page
16: if allocation has failed then
17: unfix the page and try another page
18: end if
19: # the transaction T prefers to use its reserved space.
20: H.RSVD < H.RSVD —min(E.TRSVD, B)
21: ETRSVD + ETRSVD —min(E.TRSVD,B)
22: HTFS + HTFS - B
23: unfix the page

On terminating, a transaction releases all reserved space that it has. This work can be
integrated with the procedure that the transaction releases all commit-duration locks granted
to itself. Algorithm 3 shows this integrated procedure. Unlike STAR and CMOHAN, the reserved
space information is updated immediately after a reserving transaction commits.

We believe that NEW is suitable for applications in which many concurrent transactions

frequently insert and delete records into/from the tables, because it eliminates wasted R-tests

3In this paper, we do not consider allocating space larger than the physical page size.

10

Algorithm 3 Integrated “unlock-all” procedure for transaction T
1: for all lock entries E allocated to transaction 7' do
if E is allocated for reserving space then
find the corresponding lock header H of E.
H.RSVD < HRSVD — ETRSVD # the reserved space shrinks.
else
release the lock E.
end if
end for

and useless buffer calls that could often occur in these applications if existing methods are
used.

As mentioned in Section 2.1, FSIPs sometimes suggest wrong pages during space alloca-
tion, and this may cause useless buffer calls. NEW, however, can filter these pages out before
the page is placed in the buffer, since the exact total free space (TFS) is known to R-tests.
According to Algorithm 2, such pages fail R-tests. This allows NEW to further reduce the
number of useless buffer calls. However, since TFS is provided for only the pages whose lock
headers exist in the lock table, space allocation on a page having no reserved space might
suffer useless buffer calls as in other methods. To minimize such useless buffer calls, the lock
header of the page is not returned to the pre-allocated pool, even if the page becomes free
of reserved space, but instead is kept in the lock table until the pre-allocated pool becomes
empty. Some of the useless buffer calls are avoided by this modified scheme.

NEW, like BASIC, needs a lock call for every space reservation and R-test, but we consider
that this overhead is relatively low when compared to the overall costs of inserting and
deleting a record on the table. NEW also requires additional shared memory resources for
extended lock headers and lock entries. However, this will not impact on the system, given
the memory available in current DBMSs. In the next section we will show by simulation
that our method outperforms other methods, especially when there are many transactions

inserting and deleting in the system.

11

Parameter

Meaning ‘

Assigned Value

CPUMIPS
NClients
PAGESIZE
MaxRecSize
MinRecSize
MaxTransSz
MinTransSz
MaxDiskTime
MinDiskTime
LogDiskTime
LogGenInstr
FSIPUpdInstr
FixInstr
RLockNEWInstr
RLockInstr

RecInsInstr
RecDellnstr
CompactInstr
InsFaillnstr
CommitOvhd

Instruction rate of CPU

Number of clients

Size of a page

Maximum record size

Minimum record size

Maximum no. of records inserted/deleted

Minimum no. of records inserted/deleted

Maximum disk access time

Minimum disk access time

Log disk access time

. of instr. per generating a log record

. of instr. per update an entry in FSIP

. of instr. per fix/unfix pair

. of instr. per R-lock/unlock pair in NEW
of instr. per R-lock/unlock pair in other

methods

. of instr. per inserting a record

. of instr. per deleting a record

. of instr. per compaction

. of instr. per failed insertion

. of instr. per transaction commit

50 MIPS

1-50 clients

2K bytes

250 bytes

150 bytes

10

5

30 milliseconds
10 milliseconds
5 milliseconds
500 instructions
10 instructions
200 instructions
250 instructions
220 instructions

1,000 instructions
1,000 instructions
2,000 instructions
50 instructions

1,000 instructions

4.1

4 Simulation

The simulation models a transaction processing system where clients issue transactions

Table 1: Simulation parameters and their values

Simulation Model

listed in Table 1 with their assigned values.

12

We have developed a simulation model using C++SIM|[2] to evaluate the performance of NEW
and compared it with that of other methods. Three workloads, SMALL-FF, LARGE-NF

and QUEUE, are developed for evaluation. Workload-independent simulation parameters are

that insert and delete records into/from a table. Each client executes only one transaction at
a time; and the new transaction is not started until the running one terminates. The number
of clients (NClients) varies from 1 to 50 and defines the number of concurrent transactions.
The size of a transaction is defined by the number of insertions and deletions performed by

the transaction and is selected randomly in the range of MinTransSz to MaxTransSz.

The table is implemented as a collection of pages of PAGESIZE bytes each, and stored
in a disk. The access time of the disk is selected randomly in the range of MinDiskTime
to MaxDiskTime milliseconds for each I/O operation. The size of the record to be inserted
is chosen randomly in the range MinRecSize to MaxRecSize bytes. A log disk is provided
to store the log records generated during simulation, the access time of which is defined
as LogDiskTime milliseconds. LogGenInstr specifies the number of instructions required to
generate a log record.

FixInstr specifies the number of instructions required to fix the page into the buffer, in-
cluding the unfix cost to subsequently release the fixed page. RecInsInstr and RecDelInstr
are, respectively, the instructions required to allocate and release space in the page fixed in
the buffer. Sometimes, a space-allocating operation requires a compaction of free space slots
scattered over the page to make a large one. CompactInstr is the cost for a compaction
action. InsFailInstr is the overhead spent when the page, fixed in the buffer, is found to
have insufficient available space at record insertion time.

When free space in a page is changed, the corresponding FSIP entry might be updated to
keep up with the page. The ways to update FSIPs in all space reservation methods are same.
FSIPUpdInstr is the cost required to update an entry in the FSIP. RLockInstr is the number
of instructions for an R-lock required to reserve space and an R-test for the methods BASIC,
STAR and CMOHAN. For NEW, we assigned RLockInstrNEW instructions for an R-lock since it
pays more instructions to keep reservation information in the lock table.

For the workloads SMALL-FF and LARGE-NF, we assume that the table for insert-
ing/deleting records is implemented by a heap file. The heap file is a file structure on which
no special rules are imposed when a record is inserted, unlike a keyed-sequential file or an
indexed file where the position (i.e. page) to be inserted is defined from the key value of a
record. Many techniques, called page allocation, have been developed, whose purpose is to
choose a page when a record is inserted into a heap file with the objective of maximizing
space utilization and minimizing search time.

We have implemented most of the existing page allocations known from the literature:

First-Fit (FF), Next-Fit (NF), a variation of FF used in DB2 (DB2), and NF with four

13

witnesses (WH), and have carried out simulations under each scheme. FF searches for a
target from the beginning of the file, and selects a page that has enough free space for a new
record to be inserted. NF searches for a target page from the page where the last record
was inserted. When failing to find a page, it continues searching from the beginning of the
file. DB2 works like FF if the size of the newly inserted record is less than that of the last
inserted one; otherwise it works like NF. WH first refers to witness, the in-memory table
holding candidate pages indexed by their free space sizes, to find the target page, and if this
fails, it works like NF. More details of these techniques are given and their performances are

extensively evaluated in [9].

4.2 Workload SMALL-FF: Small File with Small Buffer Pools

Due to the space limitations of this paper, we present only the results of an experiment carried
out under FF for this workload. Experiments under other page allocation techniques have
been carried out for this workload and show similar results. FF was chosen because it shows
the benefits of NEW most clearly and it is easy to explain why NEW gives better performance
than other space reservation methods under FF.

Workload SMALL-FF is designed for the applications considered in this paper in which
many concurrent transactions frequently insert and delete records into/from a small table.
The table has some records (130) before the experiment starts. To penalize methods that
generate many useless buffer calls, only 32 buffer pages are assigned. Under this workload,
many pages are expected to be reserved by more than one transaction at a time, which is
favorable to NEW.

Figure 2 shows the number of failed R-tests generated in inserting a record into the table.
As more clients are added to the system, BASIC, CMOHAN and STAR produce more than fourteen
failed R-tests per insertion, while NEW generates only about three failed R-tests. This shows
that using detailed and up-to-date reservation information during R-tests is very effective in
reducing the number of failed R-tests. In fact, in CMOHAN and STAR more than twelve R-tests
are wasted due to inaccurate and out-dated reservation information.

Figure 3 shows the number of wasted buffer calls produced per insertion. In CMOHAN and

14

18 18
BASIC(FF) —— BASIC(FF) —~—
16 FCMOHAN(EF). - 16 FCMOHAN(EF). ==
STAR(EF) & STAR(FF) =
EW(FF) -x NONE(FF) -x:-
14 " 14 EW(RF) s
M 2
2 12 812
g &
3 —
910 L 10
8 5
“— o
> 8 5 8
7 —
38 8
E s £ 6
‘ 2 A
4 : e 4) e o
0 . !;,f/qr“'/”/ﬂ‘i o R ,/4/
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 2: Number of failed R-tests generated Figure 3: Number of wasted buffer calls gen-
per insertion erated per insertion

| Reservation Method | Avoidable | FSIP | Failed Lock | Total |

BASIC 0| 1.07 0| 1.07
CMOHAN 13.18 | 0.95 0.01 | 14.14
STAR 12.83 4 0] 16.83
NONE 0| 0.69 2.88 | 3.57
NEW 0 0.01 0.14 | 0.15

Table 2: A breakdown in the wasted buffer calls of 50 clients under SMALL-FF

STAR, the number of buffer calls increases as the number of failed R-tests increases, because
these methods are optimistic. Therefore, every failed R-test results in useless buffer calls.
Since NEW is pessimistic, the number of wasted buffer calls per insertion is hardly affected
by the number of failed R-tests, and remains almost 0 which is ideal. Though BASIC is
also pessimistic, the number of buffer calls is slightly greater than that in NEW, since FSIPs
sometimes suggest wrong pages (1.07 times per insertion).

In this figure, we plot the number of buffer calls for the case (NONE) where no space
reservation is applied during a record insertion. Interestingly, the number of buffer calls spent
in NONE is larger than those in NEW and BASIC. This is due to the fact that an insertion could
fail because a lock for the newly inserted record is not granted immediately. If the name of the
newly inserted record is the same as that of the one deleted by another active transaction, the
record-level lock for this record is not granted immediately because the deleter had already

locked the record in the exclusive mode. We assume, for this case, that the transaction will

15

seek another page for insertion instead of waiting for the lock. Table 2 shows a breakdown of
wasted buffer calls issued for 50 clients. The number under the column Avoidable means the
number of wasted buffer calls that could have been avoided if the R-test had been performed
before the page was brought into the buffer. The number under the column FSIP denotes
the number of wasted buffer calls issued because the FSIPs suggested wrong pages. Finally,
the number under the column Failed Lock denotes the number of wasted buffer calls issued
because record lock was not granted immediately.

This table shows that most of the wasted buffer calls in NONE are due to the failed record
lock. It also shows that most of the wasted buffer calls in CMOHAN and STAR originate from the
fact that data pages are brought into the buffer before R-tests are executed. The pessimistic
reservation method is far more effective than the optimistic one when many pages are reserved
by more than one transaction. The difference in the number of wasted buffer calls between
BASIC and NEW is due to the pages wrongly suggested by FSIPs. Since NEW can use the exact
total free space size of the page from the corresponding lock header during R-tests, it can
filter these pages out and the R-test prevents them from being read into the buffer.

Figure 4 shows the number of R-locks requested in inserting a record. In BASIC and NEW,
the number of R-locks plots the same curve as that in Figure 2, since an R-lock is required
for each R-test. STAR, which does not use locks for R-tests, shows no R-lock calls. In CMOHAN,
owing to the optimization technique, the number of R-locks starts at 0 and remains less than
1, until 20 clients are added to the system. However, the number then rapidly increases and
becomes larger than that in NEW when the number of clients exceeds 35. This shows that
the benefits gained from the optimization of CMOHAN are offset by the wasted R-tests due to
wrong decisions, as more pages have space reserved by more than one transaction. NEW saves
more R-locks than CMOHAN in this situation.

Figure 5 shows the elapsed transaction execution time. In all methods except NEW, the
execution time increases as more than 35 clients are added to the system. This is because
BASIC, CMOHAN and STAR suffer heavy paging activity as more pages are brought into the buffer
per insertion, as shown in Figure 3, which makes the total working-set of transactions larger

than the buffer pool size. Figure 6 shows the average number of accesses of different pages per

16

18 700

BASIC(EF) —— BASIC(EF) —~—
16 -CMOHAN(EF). = CMOHANEF ,:; e
STAR(FF) o~ 600 STAR(EE) 5
14 EW(EF) - , EW(EF)
o 500
g 12
El 3
210 g400
14 / o
S g g
g -§300
E 6
z 200
4 - ok
5 e 100
War//* - ——
O ek O PR
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 4: Number of R-locks to insert a record Figure 5: Elapsed transaction processing time

30 600
: BASIC(EF) —~—
BASIC(EF) —~— CMOHAN(EF) ——
25 | CMOHAN(EE) -~ / 500 STAR(EE) -&:-
STAR(EF) & - NONE(FF) -x--
EW(EF) - EW(EF) —
» 20 : 400
<3
©
5 8
S 15 2300
2 €
£
p=}
Z 10 200
Spo = S — —— 100
0 0 Lo
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients
Figure 6: Number of pages touched Figure 7: I/O waiting time per transaction

transaction. For CMOHAN and STAR, the number of different pages accessed increases rapidly
and exceeds 26. Accessing only the pages that pass the R-test, NEW and BASIC show a far
fewer number of different pages accessed than the others. Moreover, since NEW does not suffer
wasted buffer calls due to pages wrongly suggested by FSIPs, the number of pages touched
remains the same though the number of clients increases. Figure 7 shows the average amount
of waiting time for I/Os experienced per transaction. When comparing this with Figure 5, we
can confirm that the gaps in elapsed transaction execution time between NEW and the other
methods mainly originate from the I/O waiting time gap.

In this experiment, we find that CMOHAN, STAR and BASIC perform very poorly when
compared to NEW for applications where many concurrent transactions frequently insert and

delete records on a relatively small table. This is because R-tests using inaccurate and out-

17

dated information on reserved pages frequently make wrong decisions. Moreover, optimistic
methods such as CMOHAN and STAR can trigger a heavy paging activity, since they also produce
many buffer calls during insertions as the number of failed R-tests increases. In contrast, NEW
gives very good performance for these applications, since the R-tests always make the right
decisions using detailed and up-to-date reservation information and only the pages that are

passed by R-tests are accessed, which minimizes the buffer calls required during insertions.

4.3 'Workload LARGE-NF: Large File with Large Buffer Pools

In workload LARGE-NF, we want to evaluate the performance of NEW for cases in which the
benefits of NEW are minimized while the benefits of other methods are maximized. First, in
order for each page to be reserved by at most one transaction, we assigned a set of pages in the
table to each client, which is allowed to delete records only from the dedicated set of pages.
Second, we start the simulation using a table that has many more data pages, and deletions are
performed on a wider range of pages so that fewer pages are in the reserved state at one time,
which increases the chance of meeting a non-reserved page during insertions. Third, the buffer
pool has many buffer slots to eliminate performance degradation due to high paging activity,
which is the main cause of the reduced performance of the traditional methods in workload
SMALL-FF. During this experiment, there was no paging activity for buffer replacements.
Finally, for this workload we carried out this experiment under NF page allocation. The NF
method prevents each client starting to find data pages from the first page in the table, and
consequently the insertion point floats over the table as records are inserted. Since each client
uses its own insertion point, fewer clients at a time start from the same page for insertions.
These features reduce the number of failed R-tests, and therefore are beneficial to CMOHAN,
BASIC and STAR.

Figure 8 shows the number of failed R-tests in inserting a record. Since few pages have
space reserved by more than one transaction, the number of failed R-tests is considerably
reduced for all reservation methods, when compared to workload SMALL-FF. NEW still shows
a minimum number of failed R-tests as the number of active transactions increases. Figure 9

shows the number of wasted buffer calls issued in inserting a record, and Table 3 shows a

18

BASIC(NF) —~— BASIC(NF) —~—
1.4 | CMOHAN(NF) -+ ; 1.4 | CMOHAN(NF) -+

EW(NF) ~ - EW(NF) =

I
N

[

[

o
o

Number of buffer fix calls
o
ee]

Number of buffer fix calls
o
ee]

I
~

0.2 0.2 y
0

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 8: Number of failed R-tests per inser- Figure 9: Number of buffer calls to insert a
tion record

‘ Reservation Method ‘ Avoidable ‘ FSIP ‘ Failed Lock ‘ Total ‘

BASIC 0| 1.05 0] 1.05
CMOHAN 0.04 | 0.91 0] 095
STAR 0.14 | 1.29 0] 1.43
NEW 0| 0.01 0| 0.01

Table 3: A breakdown of wasted buffer calls at 50 clients under LARGE-NF

breakdown in wasted buffer calls issued during insertion of 50 clients. The number of wasted
buffer calls that can be avoided is significantly reduced because most R-tests are passed for
this workload. Instead, the most useless buffer calls are wasted due to wrong pages being
suggested by FSIPs. Since those pages wrongly suggested by FSIPs are recognized only after
they are brought into the buffer, BASIC, though pessimistic, shows as many wasted buffer calls
as CMOHAN and STAR. On the other hand, in NEW, since most of the pages wrongly suggested
by FSIPs are filtered out during R-tests, almost no wasted buffer calls are generated*, and
therefore NEW yields the fewest useless buffer calls among reservation methods.

Figure 10 shows the number of R-locks issued in inserting a record by each space reserva-
tion method as clients are added to the system. CMOHAN saves many R-locks and shows almost
0 R-locks even when many clients are added to the system. Although we do not present the

graph in this paper, CMOHAN also generates fewer than 0.4 R-locks for a record deletion. This

“In fact, NEW can filter out all pages wrongly suggested by FSIPs and guarantee no wasted buffer calls from
this cause. However, to avoid the complex implementation of the R-test in NEW, we reduced the level of R-test
requirements when we implemented NEW in this simulation.

19

25 7.4

BASIC(NF) ——
BASIC(NF) —— 7.2 FGMOHAN(NF)
CMOHAN(NF) -+ STAR(NF) -o--
STAR(NF) - 7 NEW(NF)
2 EW(NF)
6.8
o
E 6.6
% 15
o $6.4
5 - - Te2
F U '
£ 6
3
z
5.8
0.5 56 -k
54 & =
o — — S . 5.2
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 10: Number of R-lock calls per record Figure 11: Elapsed transaction processing
insertion time

implies that CMOHAN reduces R-locks most when pages are rarely reserved by more than one
transaction. For both BASIC and NEW, the number of R-locks increases as the number of failed
R-tests increases. Since BASIC generates more failed R-tests, the number of R-locks for BASIC
increases faster than that for NEW.

Figure 11 and Figure 12 show the elapsed transaction execution time and the number of
transactions processed per second, respectively. NEW shows a 1.2-1.3 times better performance
result than others, and all methods except NEW plot curves similar to one another, which
implies that the performance gains from saving R-locks in CMOHAN and STAR have little effect
on the performance of transactions as the number of clients increases. Instead, we think
that the performance in this workload is mainly dependent on the buffer page latch waiting
time. A failed R-test requires additional access to FSIPs and other data pages. The more
a transaction fixes data pages and FSIPs, the greater the chance of the transaction blocking
other transactions or being blocked by others, since fixing data pages and FSIPs requires EX
mode and SH mode latches of the page, respectively. Moreover, block time would be relatively
long for data pages because it takes a long time to complete the insertion of a record onto a
page; it includes the generation of a log record, lock requests, sometimes space compaction
and FSIP update.

Figure 13 plots the overall buffer latch waiting time experienced by a transaction. The

time gap between NEW and other methods is 1.14-1.72 milliseconds per transaction of 50

20

190 2

1.8 tBASIG(N
= § CMOHAN(

1 N 16 TAR(
- . EW(

180

jubiu
+

i
>

£ ‘

J3n3 i
@

EW(NF) > 1.4

=
]
o

1.2

1

0.8

=
a
o

Number of}_(ansactions
[o2]
o
milisec

0.6

0.4 A
140 v
| 0.2
=
‘/&R/«A
130 0 S

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 12: Number of transactions processed Figure 13: Total buffer page waiting time per
per second transaction

clients, which is almost the same as the elapsed time gap as shown in Figure 11, where it is
1.15-1.75 milliseconds per transaction.

From the result of this experiment, we found that the effects of failed R-tests are minimal
for applications in which few pages are reserved. However, NEW is still a good reservation
method for these kinds of applications because it eliminates some of the wasted buffer calls
due to wrongly suggested FSIPs, and shortens buffer page latch waiting time when many

concurrent transactions frequently insert and delete records on the table.

4.4 'Workload QUEUE: Queue with Large Buffer Pools

In workload QUEUE, we evaluate the performance of several space reservation methods when
they are used on queues. In this experiment, we have implemented a modification of the
strict-FCFS queue, where the system allows concurrent dequeue operations and ignores the
occasional out-of-order dequeuing[l, 15]. Before starting the experiment, we enqueued 1000
records in the queue to prevent it from becoming empty and a dequeuing transaction failing
to get a record from it. This also ensures that an enqueuing transaction hardly ever sees a
reserved record, because the queue has enough records so that the head and the tail of the
queue never exist on the same page of the queue. We think that this is very advantageous
for CMOHAN and STAR. As for LARGE-NF, sufficient buffer pages (250) are allocated to the

buffer to eliminate performance degradation from high paging activity, which is the main

21

2.5 3.5
BASIC(NF) ——
BASIC(NF) —— CMOHANINE) —--
CMOS#ﬁgE E; e 3 STAREF FZ o
.
2 EW(NF) EW(NF) -
]
é ﬂ2.5
= 5
T15 X 2
2 8
=] —
o o
S 315
g 1 g
2 =]
§ z 1 P____ﬂ,,/ﬂr/
0.5
0.5
}—"“/&/ .
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 14: Number of wasted buffer calls in Figure 15: Number of R-lock calls per record
inserting a record insertion

‘ Reservation Method ‘ Avoidable ‘ FSIP ‘ Failed Lock ‘ Total ‘

BASIC 0| 1.82 0] 1.82
CMOHAN 0.27 | 1.76 0] 203
STAR 0.38 | 1.63 0| 201
NEW 0| 0.04 0.01 | 0.05

Table 4: A breakdown of wasted buffer calls at 50 clients under QUEUE

cause of the reduced performance of traditional methods, as shown in SMALL-FF. During
this experiment, there was no paging activity for buffer replacement.

Figure 14 shows the number of wasted buffer calls issued in inserting a record, and Table 4
shows a breakdown of wasted buffer calls issued in an insertion of 50 clients. Since few
pages have space reserved by more than one transaction, the number of wasted buffer calls is
considerably reduced for all reservation methods compared to workload SMALL-FF. However,
NEW still generates the fewest wasted buffer calls as the number of active transactions increases.
Most of the wasted buffer calls, as in LARGE-NF, are produced due to pages being wrongly
suggested by FSIPs. Filtering out most of the wrongly suggested pages, NEW generates almost
no wasted buffer calls.

Figure 15 shows the number of R-locks issued in inserting a record as clients are added to
the system. CMOHAN saves many R-locks and shows almost 0 R-locks even when many clients
are added, which implies that CMOHAN reduces the number of R-locks the most because a

transaction hardly sees a reserved page during an enqueuing operation. For BASIC and NEW,

22

10.5 3

10 L. BASIC(NF) =
CMOHAN(NF) -+
95 STAR(NF) - - 25
EW(NF) -~ / BASIC(NF) —~—
9 7 CMOHAN(NF) -+
/ 2 TAR(NF). -
8.5 va EW(NF) -
o 8 / o
Q 4 Q
2 v 215
€75 : €
7
6.5 = !
!/
6
" 0.5 |/
55 rﬂ!‘/‘/‘ /
5 0 Mr”“"
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of clients Number of clients

Figure 16: Elapsed transaction processing Figure 17: Total buffer page waiting time per
time transaction
the number of R-locks starts at 1 and increases with the number of failed R-tests.

Figure 16 and Figure 17 show the elapsed transaction execution time and the overall buffer
latch waiting time experienced by a transaction, respectively. For the same reason mentioned
in Section 4.3, the time gap (2.22-2.3) between NEW and other methods in Figure 16 is due
to the buffer latching time gap (2.19-2.26) between them. In particular, this is because all
transactions that try to enqueue records at one time fix the same data page of the queue (i.e.
the head page of the queue). The more frequently a transaction fixes data pages, the more
transactions might be blocked and the longer transactions might have to wait, because only
one transaction at a time is allowed to fix the head of the queue. Also, it takes a long time to
complete the enqueuing of a record in a page, including generation of a log record and lock

requests.

5 Conclusions and Future Work

Space reservation must be handled carefully to perform space-allocating operations efficiently.
Since previous methods assume that pages in a table (or file) are rarely reserved by more than
one transaction, many R-tests and useless buffer fix calls are wasted. This impacts on the
performance of space-allocating operations.

We have proposed a new eager and pessimistic space reservation method, which minimizes

the number of R-tests and useless buffer calls in applications where many concurrent trans-

23

actions frequently insert or delete records into/from tables. This can be achieved by keeping
detailed and up-to-date reservation information in the lock table. The proposed method fur-
ther reduces failed buffer calls because it filters out wrong pages suggested by FSIPs. This
makes the proposed method perform better than other methods even in applications in which
few pages are reserved by more than one transaction.

We expect that TFS in the lock header will be a good source from which to select a
page during record insertion, instead of using FSIPs. Therefore, we are currently working
on devising a page allocation method for the heap file. This page allocation method directly
accesses the fields TFS and RSVD in the lock header in order to select a page. We expect that
this integration of a page allocation method and a space reservation method through the lock
table would shorten the path length of the insertion routine and give a better solution to the

free space management of heap files.

References

[1] Philip A. Berstein and Eric Newcomer. Principles of Transaction Processing. Data

Management Systems. Morgan Kaufman Publishers, Inc., 1997.

[2] Department of Computing Science, University of Newcastle upon Tyne. “C++SIM

User’s Guide”, public release 1.5 edition. http://cxxsim.ncl.ac.uk.

[3] Hector Garcia-Molina, Dieter Gawlick, Johannes Klein, Karl Kleissner, and Kenneth
Salem. “Coordinating Multi-Transaction Activities”. Technical Report CS-TR-247-90,

Princeton University, February 1990.

[4] Hector Garcia-Molina and Kenneth Salem. “Services for a Workflow Management Sys-

tem”. IEEE Database Engineering bulletin, 17(1):40-44, March 1994.

[5] Dieter Gawlick. “Messaging/Queuing in Oracle8™”. In Proc. of the Conf. on Data

Engineering, pages 66-68, February 1998.

[6] Jim Gray. “THESIS: Queues are Databases”. In HPTS 95 Position Paper, 1995.

24

7]

[10]

[11]

[12]

[13]

[14]

[15]

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Mor-

gan Kaufman Publishers, Inc., 1993.

B. G. Lindsay, C. Mohan, and M. H. Pirahesh. “Method for Reserving Space Needed
for “Rollback” Actions”. IBM Technical Disclosure Bulletin, 29(6):2743-2746, November
1986.

Mark L. McAuliffe, Michael J. Carey, and Marvin H. Solomon. “Towards Effective and
Efficient Free Space Management”. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 389-400, Montreal, Canada, June 1996.

C. Mohan. “Commit_LSN: A Novel and Simple Method for Reducing Locking and Latch-
ing in Transaction Processing Systems”. In Proc. of the Conf. on VLDB, Brisbane,

Australia, August 1990.

C. Mohan, G. Alonso, R. Gunthor, and M. Kamath. “Exotica: A Research Perspective
on Workflow Management Systems”. IEEE Database Engineering bulletin, 18(1):19-26,
March 1995.

C. Mohan and Don Haderle. “Algorithms for Flexible Space Management in Transaction
Systems Supporting Fine-Granulairty Locking”. In Proc. of International Conference on

Ezxtending Database Technology, Cambridge, United Kingdom, March 1994.

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. “ARIES:
A Transaction Recovery Method Supporting Fine-Granularity Locking and Partial Roll-
backs Using Write-Ahead Logging”. ACM Transactions on Database Systems, 17(1):94—
162, March 1992.

Oracle Corporation. “Oracle8TM Server Application Developer’s Guide”, June 1997.

Peter M. Schwarz and Alfred Z. Spector. “Synchronizing Shared Abstract Types”. ACM

Transactions on Computer Systems, 2(3):223-250, August 1984.

25

[16] Tobin J. Lehman Vibby Gottemukkala. “Locking and Latching in a Memory-Resident
Database System”. In Proc. of the Conf. on VLDB, pages 533-544, Vancouver, Canada,
August 1992.

26

