
An Eager and Pessimistic Space Reservation Method for Tables

Frequently Accessed by Concurrent Transactions

Kang�Woo Lee and Hyoung�Joo Kim

Dept� of Computer Science

Seoul National University

Seoul� Korea� ������	

kwlee�hjk
oopsla�snu�ac�kr

October �� ����

Abstract

Space reservation is important in allocating and releasing storage space in DBMSs to

support recoverable actions� Since most existing space reservation methods are designed

to perform well when few data pages have spaces reserved by more than one transaction�

they are not suitable for some of the newly emerging applications� such as work�ow and

inventory control systems� In these applications� many concurrent transactions frequently

insert and delete records into�from a relatively small table�

This paper proposes a new space reservation method that performs well for these types

of applications by extending the lock control structures to keep detailed and up�to�date

information in a reserved state� This paper also shows� by simulation� that the new method

performs better than existing ones for applications in which many concurrent transactions

frequently insert and delete records into�from a table� and even for applications where

data pages rarely have space reserved by more than one transaction�

� Introduction

Space reservation���� ��� is an important concept in the allocating and releasing of storage

space in DBMSs that provide record locking with �exible storage management to support

�

recoverable actions� Methods�	� ��� to handle space reservation have been developed� but

most of the existing methods are designed to be optimized for applications in which few

storage pages have space reserved by more than one transaction�

However� in many DBMS applications� including newly emerging applications� it is com

monplace that a large number of concurrent transactions frequently insert and delete records

into�from a relatively small table� and therefore many storage pages are reserved by many

transactions� For example� a data container placed between the steps in a work�ow man

agement system��� �� ��� is used in transferring data between steps and is often implemented

using tables� Transferring a datum through the container is realized by inserting a data record

and subsequently deleting it from the table� In inventory control systems and order processing

systems� a table is used to store order records received from clients� Order records exist in the

table only until they are processed by servers� Many clients and servers concurrently insert

and delete order records into�from the order table� A queue��� � has played an important

role in transaction processing systems� and has recently been introduced to DBMSs� such as

ORACLETM��� ���� Enqueue and dequeue are the main operations applied to the queue and

can be implemented by inserting and deleting of data records� For these kinds of applications

the existing methods are not suitable� and hence there is a need for a new space reservation

method�

In this paper� we propose a new space reservation method that gives better performance

for these applications as well as for traditional applications� This new method exploits the

extended control structure of the lock manager� We also present simulation results which

show that the proposed method provides better performance than existing ones� especially

when many concurrent transactions frequently insert and delete records into�from the table�

The paper is organized as follows� Section � brie�y explains space reservation and some

existing space reservation methods� This section also discusses the problems that could arise

when existing methods are used for the applications considered in this paper� Section �

presents a new space reservation method� and explains qualitatively why it performs better

than others under these applications� Section � evaluates the performance of the proposed

method and compares it to those of existing ones through simulations� Finally� our conclusions

�

are presented in Section �� followed by proposals for future work�

� Space Reservation Methods

��� Space Reservation Problem

When a transaction deletes or shrinks a record in a storage disk� it releases the space occupied

by the record�� This released space� called a reserved space� must not be allocated for other

transactions until the space
releasing transaction commits because� should the transaction

abort� the space might be re
used in order to rollback the action of space
releasing�

Let us assume that a transaction T� releases �� bytes of space in a page P that has ���

bytes of free space� In that case� the page P has ��� bytes of free space� Now� suppose

another transaction T� allocates 	� bytes of space from the page P and commits� Then� the

page P has only �� bytes of free space� What happens if transaction T� is doomed to abort

its work� Transaction T� fails to undo the space
releasing action in page P since it has only

�� bytes of free space� whereas T� needs ��� bytes of free space to undo its actions�

To avoid this problem� the space released by the transaction T� in the page P must be

reserved� as long as it is running� A test� called a reservation test �R�test�� is introduced

to prevent a transaction allocating space reserved for other transactions� Only transactions

that pass the R
test in a page can allocate free space from the page� The allocator that fails

an R
test on a page has to seek another page� To allow R
tests to make the right decisions�

space reservation methods keep the information about the reserved state for each page that

has reserved space� Most existing methods do not keep detailed reservation information� to

avoid high costs paid in managing the information� Thus� due to the limited information� R

tests cannot know exactly how much reserved space the page has� which would lead R
tests to

make wrong decisions� that is� R
tests may reject the space allocation requests on a page even

though it has enough free space� excluding reserved area� We refer to such R
tests �wasted ��

In traditional applications� wasted R
tests rarely occur since most storage pages in a table

are not in a reserved state or� if so� are reserved by at most one transaction� Therefore the

�In this paper� we consider only the space released by removing records� However� the results of this paper
can also be applied for the space released when records shrink�

�

problems caused by wasted R
tests have rarely been considered�

Space reservation methods can be classi�ed into two categories� pessimistic and optimistic�

In pessimistic methods� an R
test is performed on a target page before it is placed in the bu�er�

and it is brought into the bu�er only after the R
test is passed� In optimistic methods� an

R
test is performed on the page after it is brought into the bu�er� A useless bu�er call might

occur when an R
test on the page fails� since allocation cannot be performed in the failed

page�

The reserved space set aside for a transaction is released after the reserving transaction

terminates� Techniques for updating reservation information upon a reserver�s termination

fall into two categories���� eager and lazy� An eager reservation method updates all related

reservation information immediately after a reserver terminates� A lazy reservation method

does not update reservation information upon a reserver�s termination� instead� the update is

usually delayed until another transaction �nds the page having no reserved space� The lazy

methods� while reducing the overhead spent upon transaction termination� might su�er from

wasted R
tests� This is because the delayed update of reserved states tends to exaggerate the

reserved state and could cause R
tests to make wrong decisions�

We assume that free space inventory pages �FSIPs�� are used in �nding a page eligible for

an insertion� FSIPs are the pages that contain summary information on the amount of free

space in each of the set of other pages��� ���� and they are consulted by inserters in �nding a

page with su�cient free space� However� a space allocation on the page suggested by FSIPs

may sometimes fail since FSIPs keep only the summary information and do not consider space

reservation�

��� Existing Space Reservation Methods

����� Basic Method� BASIC

In BASIC� R
tests rely on lock compatibility tests� A transaction that releases a space in a page

locks the page in IX mode for reservation� This lock must be commit
duration���� because

the reserved space must be kept until the reserver terminates� A transaction that wants to

�They are also called Space Map Pages �SMPs��

�

allocate space on a page locks the page in EX mode� and performs a space
allocating operation

only after the lock is granted� BASIC is a pessimistic method� When the page already has

some reserved space� the EX mode lock is not granted immediately since the page has already

been locked in IX mode� The space allocator locks the page in conditional and instant mode

so as not to be blocked if it already has reserved space� and to unlock it immediately after the

lock is granted since the lock is requested only to check whether it has reserved space or not�

From now on� we will call such locks� requested for reserving space and testing reservation�

reservation locks �R�locks�� BASIC needs an R
lock call for each space reservation and R
test�

Since all locks are released upon the termination of a transaction� all reserved space

pertaining to the transaction is released automatically� BASIC is an eager method� Since R

tests are performed using only lock compatibility tests� any R
tests on pages having reserved

space fail� regardless of the amount of reserved space in it� causing many R
tests to be wasted�

However� there is one exception� an allocator that is the only reserver in a page can pass the

R
test since it is the owner of the lock granted in IX mode�

����� Starburst method� STAR

STAR �	� uses three �elds� FREE� RSVD� TRSVD� and TRANS� in the header of each data page�

The �elds FREE and RSVD keep the total amount of free space and reserved space of the page�

respectively� The �elds TRANS and TRSVD keep the identi�er of the most recent transaction

that reserved space and the amount of the space in the same page respectively� To keep

track of the reserved state� these �elds are updated as transactions allocate and release space

in the page� A transaction that needs B bytes of space is allowed to allocate space if B �

FREE � RSVD� If the identi�er �id� of an allocator is the same as TRANS� space allocation is

allowed if B � FREE�RSVD�TRSVD� since the transaction can use �TRSVD� bytes more of space

reserved by itself� This is the only case when a transaction can re
use its already reserved

space� Since these �elds are stored in data pages� data pages must be brought into bu�er

before carrying out R
tests� STAR is an optimistic method�

The main advantage of STAR is that no R
locks are required for space reservations and

R
tests� By keeping detailed information on reserved space in a page� STAR permits the trans

�

action to use a page that already has some space reserved by others� Upon its termination�

a space reserver does not visit each page containing its reserved space to update the �eld

RSVD� STAR is a lazy method� The �eld RSVD is updated to be zero when the page is met by

a transaction whose TRANS is less than the ids of all active transactions� This reduces the

costs paid upon transaction termination� but it makes RSVD larger than the size of the actual

reserved space and it causes some R
tests to make wrong decisions� STAR� being optimistic�

wastes one bu�er call for each failed R
test�

����� C� Mohan�s Method� CMOHAN

CMOHAN assumes that each data page is slotted and has two �elds in its header called TFS

�Total Free Space� and CFS �Contiguous Free Space�� TFS holds the total amount of free

space and CFS holds the size of the last free slot� NFS �Non
contiguous Free Space� is de�ned

as TFS� CFS�

To track reserved states� two bits� RSB� and RSB�� are placed in the header of each page�

RSB� has a value of ��� if some of the free spaces in NFS is in a reserved state� and RSB� has

a value of ��� if some of the free space in CFS is in the reserved state� A transaction� which

needs B bytes of space from a page� examines the header of the page�

� If the values of both RSB� and RSB� are �� the transaction can allocate space whenever

B � TFS� because this means that there is no reserved space in this page�

� If the value of RSB� is �� but RSB� is �� the transaction can take up some space in CFS

whenever B � CFS� because this means that there is no reserved space in CFS�

� If the values of both RSB� and RSB� are �� the page might have reserved space in both

NFS and CFS� therefore an R
lock is requested to make sure that there is no reserved

space in the page� If the lock is granted immediately and B � TFS� the transaction is

allowed to take up the space in this page�

Since CMOHAN uses RSB� and RSB�� the target page must be brought into the bu�er before

an R
test is performed� CMOHAN is optimistic� CMOHAN is lazy in updating RSB� and RSB� upon

transaction termination� since revisiting and updating the corresponding pages incurs high

execution overheads� Instead� these two bits are reset when any transaction that visits a page

is sure that the page has no reserved space� using the Commit LSN ���� technique� or the hint

from the lock manager and the bu�er control blocks�

CMOHAN is designed to perform well in cases where few pages in the table are reserved by

more than one transaction� It avoids many R
lock calls in such situations since the values

of RSB� and RSB� of pages are likely to be �� CMOHAN allows� though in a limited way� a

transaction that has reserved some space already in a page to re
use that space during a

subsequent space
allocating operation involving the same page� However� in CMOHAN� many

R
tests can be wasted because RSB�� RSB� and R
locks cannot describe the details of the

reservation state� Moreover� since CMOHAN is lazy� additional R
tests may be wasted due to

incorrect values of RSB� and RSB�� Unfortunately� the overhead paid when an R
test fails is

higher than in other methods� For each failed R
test� CMOHAN spends both one bu�er call and

one R
lock� whereas BASIC spends only one R
lock and STAR spends only one bu�er call�

��� Discussion on Existing Space Reservation Methods

In the existing reservation methods� R
tests may be wasted because they use inaccurate and

out
dated information on the reservation states of pages� Since wasted R
tests rarely appear

in most traditional DBMS applications� the problems caused by wasted R
tests have so far

been ignored� However� many R
tests will be wasted when these methods are used in the ap

plications considered in this paper� many concurrent transactions frequently insert and delete

records on the tables� since many pages might have space reserved by more than one trans

action� Therefore the problems due to wasted R
tests should be given serious consideration�

and new reservation methods that can overcome the problem must be devised�

Frequent wasted R
tests badly a�ect the performance of space
allocating operations� for

the following reasons� First� FSIPs must be re
read to search for another target data page�

and the more a transaction reads FSIPs�one of the bottlenecks in DBMSs�the longer it

could block others or be blocked by others� Second� for optimistic methods such as CMOHAN

and STAR� the number of wasted bu�er calls for a data page increases with wasted R
tests

�

and hence a transaction needs to read more pages for an insertion� This may enlarge the

working
set of transactions and lower the performance of the system owing to the heavy

paging activity� Finally� for reservation methods that use R
locks for R
tests� many R
lock

calls are wasted as the number of failed R
tests increases�

In the following sections� we propose a new space reservation method that eliminates

avoidable wasted R
tests� and show that this new method outperforms the others for appli

cations where many concurrent transactions frequently insert and delete records into�from a

table�

� A Proposed Space Reservation Method� NEW

This section presents an eager and pessimistic space reservation method� which extends the

lock table in order to keep the details of the reservation of pages� The lock table� consisting

of lock headers and lock entries� keeps track of the locked data� A lock header keeps the state

of a locked object� such as the name of the lock� the aggregate lock mode and a queue of

lock entries� A lock entry is assigned to each lock requester and contains information on the

requester� such as the requested lock mode� the held lock mode and the status of the lock�

granted or waiting��� ���

Like BASIC� NEW locks a page to reserve space and to perform an R
test on that page� The

two �elds TFS and RSVD are introduced in the lock header� allocated to a locked page� to keep

the information on available space on the page� They keep the total free space and the total

reserved space of the corresponding page� respectively� For each transaction that reserves

space on a page� a lock entry is allocated for the page� The lock entry is also extended� by

attaching TRSVD� to hold the total amount of space that the transaction has reserved so far

in the page� For instance� Figure � shows that two pages P� and P� have reserved space�

Page P� has ���� bytes of free space� including ���� bytes of reserved space occupied by

transactions T�� T� and T�� Transaction T� is the only reserver in the page P�� where there

are ��� bytes of free space�

Algorithm � shows the procedure that releases B bytes of space from page P � The �elds

	

Lo
ck

 T
ab

le

Lock Header

Name : P2
TFS : 500
RSVD: 400
QUEUE:

Lock Header

Name : P1
TFS : 3500
RSVD: 1000
QUEUE:

TRSVD: 100
TR-Name: T1

TRSVD: 300
TR-Name: T2

TRSVD: 600
TR-Name: T3

Lock Entry

TRSVD: 400
TR-Name: T1

Lock Entry

Figure �� The extended control structure for lock table

TFS and RSVD in the lock header and TRSVD in the lock entry are updated according to the

amount of space released� B�

Algorithm � Releasing and reserving B bytes of space in the page P
�� release B bytes in page P
�� try to �nd the lock header H for page P
	� if not found then

� allocate a new lock header H for page P
�� H�RSV D � � 	 the page P has no reserved space�
�� end if

� H�TFS � H�TFS
B 	 the total free space �TFS� expands�
�� H�RSV D � H�RSV D
B 	 the released space is reserved�
�� try to �nd lock entry E of transaction T in the H�QUEUE�

��� if not found then

��� allocate a new lock entry E for transaction T in the H�QUEUE�
��� E�TRSV D � � 	 the transaction has no reserved space in this page�
�	� end if

�
� E�TRSV D � E�TRSVD
B 	 the released space is reserved for transaction T �

Algorithm � shows a procedure that occupies B bytes of space on page P � Since a

transaction can use all of the space except for the portion reserved by others� an R
test is

passed whenever B � TFS� RSVD � TRSVD� This means that whenever possible� in contrast

to existing methods� NEW allows a transaction to re
use space that has already been reserved

by itself during subsequent space
allocating operations involving the same page� Therefore�

NEW permits a transaction to allocate the maximum amount of space available to itself� and

hence eliminates wasted R
tests that could appear in the existing reservation methods� Since

space allocation is always performed after the R
test is passed� useless bu�er calls� due to

failed R
tests� are never produced� Fields TFS and TRSVD are updated appropriately after the

space allocation is successfully completed� No bu�er calls are required for the update since

�

these �elds are resident in memory�

If a transaction performs an R
test on a page in which it has not yet reserved space� no

lock entries exist for the transaction on that page� In this case� TRSVD is assumed to be ��

Therefore� the R
test is passed if B � TFS�RSVD������ If the page has no reserved space� the

corresponding lock header might not be found in the lock table� In this case� both RSVD and

TRSVD are assumed to be �� and TFS is assumed to be the physical page size �PAGESIZE��	�

��� and therefore� TFS � RSVD � TRSVD becomes PAGESIZE� This means an R
test is always

successful because B is less than PAGESIZE�

Algorithm � Allocating of B bytes of space in page P by transaction T

�� try to �nd the lock header H and the lock entry E for the page P and transaction T
�� if both are found then

	� 	 the transaction T has already reserved E�TRSVD� bytes of space in the page P �

� availsize� H�TFS �H�RSV D
E�TRSVD

�� else if only H is found then

�� 	 the transaction T has reserved no space in page P �
� availsize� H�TFS �H�RSV D

�� else

�� 	 the page P has no reserved space at all�
��� availsize� PAGESIZE

��� end if

��� if B � availsize then

�	� allocation has failed so try another page
�
� end if

��� �x page P in the bu�er and try to allocate B bytes from the page
��� if allocation has failed then

�� un�x the page and try another page
��� end if

��� 	 the transaction T prefers to use its reserved space�
��� H�RSV D � H�RSV D �min�E�TRSVD�B�
��� E�TRSV D � E�TRSVD �min�E�TRSVD�B�
��� H�TFS � H�TFS �B

�	� un�x the page

On terminating� a transaction releases all reserved space that it has� This work can be

integrated with the procedure that the transaction releases all commit
duration locks granted

to itself� Algorithm � shows this integrated procedure� Unlike STAR and CMOHAN� the reserved

space information is updated immediately after a reserving transaction commits�

We believe that NEW is suitable for applications in which many concurrent transactions

frequently insert and delete records into�from the tables� because it eliminates wasted R
tests

�In this paper� we do not consider allocating space larger than the physical page size�

��

Algorithm � Integrated �unlock
all procedure for transaction T

�� for all lock entries E allocated to transaction T do

�� if E is allocated for reserving space then
	� �nd the corresponding lock header H of E�

� H�RSV D � H�RSV D �E�TRSVD 	 the reserved space shrinks�
�� else

�� release the lock E�
� end if

�� end for

and useless bu�er calls that could often occur in these applications if existing methods are

used�

As mentioned in Section ���� FSIPs sometimes suggest wrong pages during space alloca

tion� and this may cause useless bu�er calls� NEW� however� can �lter these pages out before

the page is placed in the bu�er� since the exact total free space �TFS� is known to R
tests�

According to Algorithm �� such pages fail R
tests� This allows NEW to further reduce the

number of useless bu�er calls� However� since TFS is provided for only the pages whose lock

headers exist in the lock table� space allocation on a page having no reserved space might

su�er useless bu�er calls as in other methods� To minimize such useless bu�er calls� the lock

header of the page is not returned to the pre
allocated pool� even if the page becomes free

of reserved space� but instead is kept in the lock table until the pre
allocated pool becomes

empty� Some of the useless bu�er calls are avoided by this modi�ed scheme�

NEW� like BASIC� needs a lock call for every space reservation and R
test� but we consider

that this overhead is relatively low when compared to the overall costs of inserting and

deleting a record on the table� NEW also requires additional shared memory resources for

extended lock headers and lock entries� However� this will not impact on the system� given

the memory available in current DBMSs� In the next section we will show by simulation

that our method outperforms other methods� especially when there are many transactions

inserting and deleting in the system�

��

Parameter Meaning Assigned Value

CPUMIPS Instruction rate of CPU �� MIPS
NClients Number of clients ���� clients
PAGESIZE Size of a page �K bytes
MaxRecSize Maximum record size ��� bytes
MinRecSize Minimum record size ��� bytes
MaxTransSz Maximum no� of records inserted�deleted ��
MinTransSz Minimum no� of records inserted�deleted �
MaxDiskTime Maximum disk access time �� milliseconds
MinDiskTime Minimum disk access time �� milliseconds
LogDiskTime Log disk access time � milliseconds
LogGenInstr No� of instr� per generating a log record ��� instructions
FSIPUpdInstr No� of instr� per update an entry in FSIP �� instructions
FixInstr No� of instr� per �x�un�x pair ��� instructions
RLockNEWInstr No� of instr� per R
lock�unlock pair in NEW ��� instructions
RLockInstr No� of instr� per R
lock�unlock pair in other

methods
��� instructions

RecInsInstr No� of instr� per inserting a record ����� instructions
RecDelInstr No� of instr� per deleting a record ����� instructions
CompactInstr No� of instr� per compaction ����� instructions
InsFailInstr No� of instr� per failed insertion �� instructions
CommitOvhd No� of instr� per transaction commit ����� instructions

Table �� Simulation parameters and their values

� Simulation

��� Simulation Model

We have developed a simulation model using C��SIM��� to evaluate the performance of NEW

and compared it with that of other methods� Three workloads� SMALL
FF� LARGE
NF

and QUEUE� are developed for evaluation� Workload
independent simulation parameters are

listed in Table � with their assigned values�

The simulation models a transaction processing system where clients issue transactions

that insert and delete records into�from a table� Each client executes only one transaction at

a time� and the new transaction is not started until the running one terminates� The number

of clients �NClients� varies from � to �� and de�nes the number of concurrent transactions�

The size of a transaction is de�ned by the number of insertions and deletions performed by

the transaction and is selected randomly in the range of MinTransSz to MaxTransSz�

��

The table is implemented as a collection of pages of PAGESIZE bytes each� and stored

in a disk� The access time of the disk is selected randomly in the range of MinDiskTime

to MaxDiskTime milliseconds for each I�O operation� The size of the record to be inserted

is chosen randomly in the range MinRecSize to MaxRecSize bytes� A log disk is provided

to store the log records generated during simulation� the access time of which is de�ned

as LogDiskTime milliseconds� LogGenInstr speci�es the number of instructions required to

generate a log record�

FixInstr speci�es the number of instructions required to �x the page into the bu�er� in

cluding the un�x cost to subsequently release the �xed page� RecInsInstr and RecDelInstr

are� respectively� the instructions required to allocate and release space in the page �xed in

the bu�er� Sometimes� a space
allocating operation requires a compaction of free space slots

scattered over the page to make a large one� CompactInstr is the cost for a compaction

action� InsFailInstr is the overhead spent when the page� �xed in the bu�er� is found to

have insu�cient available space at record insertion time�

When free space in a page is changed� the corresponding FSIP entry might be updated to

keep up with the page� The ways to update FSIPs in all space reservation methods are same�

FSIPUpdInstr is the cost required to update an entry in the FSIP� RLockInstr is the number

of instructions for an R
lock required to reserve space and an R
test for the methods BASIC�

STAR and CMOHAN� For NEW� we assigned RLockInstrNEW instructions for an R
lock since it

pays more instructions to keep reservation information in the lock table�

For the workloads SMALL
FF and LARGE
NF� we assume that the table for insert

ing�deleting records is implemented by a heap �le� The heap �le is a �le structure on which

no special rules are imposed when a record is inserted� unlike a keyed
sequential �le or an

indexed �le where the position �i�e� page� to be inserted is de�ned from the key value of a

record� Many techniques� called page allocation� have been developed� whose purpose is to

choose a page when a record is inserted into a heap �le with the objective of maximizing

space utilization and minimizing search time�

We have implemented most of the existing page allocations known from the literature�

First
Fit �FF�� Next
Fit �NF�� a variation of FF used in DB� �DB��� and NF with four

��

witnesses �WH�� and have carried out simulations under each scheme� FF searches for a

target from the beginning of the �le� and selects a page that has enough free space for a new

record to be inserted� NF searches for a target page from the page where the last record

was inserted� When failing to �nd a page� it continues searching from the beginning of the

�le� DB� works like FF if the size of the newly inserted record is less than that of the last

inserted one� otherwise it works like NF� WH �rst refers to witness� the in
memory table

holding candidate pages indexed by their free space sizes� to �nd the target page� and if this

fails� it works like NF� More details of these techniques are given and their performances are

extensively evaluated in ����

��� Workload SMALL�FF� Small File with Small Bu�er Pools

Due to the space limitations of this paper� we present only the results of an experiment carried

out under FF for this workload� Experiments under other page allocation techniques have

been carried out for this workload and show similar results� FF was chosen because it shows

the bene�ts of NEW most clearly and it is easy to explain why NEW gives better performance

than other space reservation methods under FF�

Workload SMALL
FF is designed for the applications considered in this paper in which

many concurrent transactions frequently insert and delete records into�from a small table�

The table has some records ����� before the experiment starts� To penalize methods that

generate many useless bu�er calls� only �� bu�er pages are assigned� Under this workload�

many pages are expected to be reserved by more than one transaction at a time� which is

favorable to NEW�

Figure � shows the number of failed R
tests generated in inserting a record into the table�

As more clients are added to the system� BASIC� CMOHAN and STAR produce more than fourteen

failed R
tests per insertion� while NEW generates only about three failed R
tests� This shows

that using detailed and up
to
date reservation information during R
tests is very e�ective in

reducing the number of failed R
tests� In fact� in CMOHAN and STAR more than twelve R
tests

are wasted due to inaccurate and out
dated reservation information�

Figure � shows the number of wasted bu�er calls produced per insertion� In CMOHAN and

��

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 o

cc
ur

re
nc

e

Number of clients

BASIC(FF)
CMOHAN(FF)

STAR(FF)
NEW(FF)

Figure �� Number of failed R
tests generated
per insertion

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 b

uf
fe

r
fix

 c
al

ls

Number of clients

BASIC(FF)
CMOHAN(FF)

STAR(FF)
NONE(FF)
NEW(FF)

Figure �� Number of wasted bu�er calls gen

erated per insertion

Reservation Method Avoidable FSIP Failed Lock Total

BASIC � ���� � ����

CMOHAN ����	 ���� ���� �����

STAR ���	� � � ��	�

NONE � ��� ��		 ����

NEW � ���� ���� ����

Table �� A breakdown in the wasted bu�er calls of �� clients under SMALL
FF

STAR� the number of bu�er calls increases as the number of failed R
tests increases� because

these methods are optimistic� Therefore� every failed R
test results in useless bu�er calls�

Since NEW is pessimistic� the number of wasted bu�er calls per insertion is hardly a�ected

by the number of failed R
tests� and remains almost � which is ideal� Though BASIC is

also pessimistic� the number of bu�er calls is slightly greater than that in NEW� since FSIPs

sometimes suggest wrong pages ����� times per insertion��

In this �gure� we plot the number of bu�er calls for the case �NONE� where no space

reservation is applied during a record insertion� Interestingly� the number of bu�er calls spent

in NONE is larger than those in NEW and BASIC� This is due to the fact that an insertion could

fail because a lock for the newly inserted record is not granted immediately� If the name of the

newly inserted record is the same as that of the one deleted by another active transaction� the

record
level lock for this record is not granted immediately because the deleter had already

locked the record in the exclusive mode� We assume� for this case� that the transaction will

��

seek another page for insertion instead of waiting for the lock� Table � shows a breakdown of

wasted bu�er calls issued for �� clients� The number under the column Avoidable means the

number of wasted bu�er calls that could have been avoided if the R
test had been performed

before the page was brought into the bu�er� The number under the column FSIP denotes

the number of wasted bu�er calls issued because the FSIPs suggested wrong pages� Finally�

the number under the column Failed Lock denotes the number of wasted bu�er calls issued

because record lock was not granted immediately�

This table shows that most of the wasted bu�er calls in NONE are due to the failed record

lock� It also shows that most of the wasted bu�er calls in CMOHAN and STAR originate from the

fact that data pages are brought into the bu�er before R
tests are executed� The pessimistic

reservation method is far more e�ective than the optimistic one when many pages are reserved

by more than one transaction� The di�erence in the number of wasted bu�er calls between

BASIC and NEW is due to the pages wrongly suggested by FSIPs� Since NEW can use the exact

total free space size of the page from the corresponding lock header during R
tests� it can

�lter these pages out and the R
test prevents them from being read into the bu�er�

Figure � shows the number of R
locks requested in inserting a record� In BASIC and NEW�

the number of R
locks plots the same curve as that in Figure �� since an R
lock is required

for each R
test� STAR� which does not use locks for R
tests� shows no R
lock calls� In CMOHAN�

owing to the optimization technique� the number of R
locks starts at � and remains less than

�� until �� clients are added to the system� However� the number then rapidly increases and

becomes larger than that in NEW when the number of clients exceeds ��� This shows that

the bene�ts gained from the optimization of CMOHAN are o�set by the wasted R
tests due to

wrong decisions� as more pages have space reserved by more than one transaction� NEW saves

more R
locks than CMOHAN in this situation�

Figure � shows the elapsed transaction execution time� In all methods except NEW� the

execution time increases as more than �� clients are added to the system� This is because

BASIC� CMOHAN and STAR su�er heavy paging activity as more pages are brought into the bu�er

per insertion� as shown in Figure �� which makes the total working
set of transactions larger

than the bu�er pool size� Figure shows the average number of accesses of di�erent pages per

�

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 R

-lo
ck

 c
al

ls

Number of clients

BASIC(FF)
CMOHAN(FF)

STAR(FF)
NEW(FF)

Figure �� Number of R
locks to insert a record

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50

m
ili

se
co

nd
s

Number of clients

BASIC(FF)
CMOHAN(FF)

STAR(FF)
NEW(FF)

Figure �� Elapsed transaction processing time

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 p

ag
es

Number of clients

BASIC(FF)
CMOHAN(FF)

STAR(FF)
NEW(FF)

Figure � Number of pages touched

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50

m
ili

se
c

Number of clients

BASIC(FF)
CMOHAN(FF)

STAR(FF)
NONE(FF)
NEW(FF)

Figure �� I�O waiting time per transaction

transaction� For CMOHAN and STAR� the number of di�erent pages accessed increases rapidly

and exceeds �� Accessing only the pages that pass the R
test� NEW and BASIC show a far

fewer number of di�erent pages accessed than the others� Moreover� since NEW does not su�er

wasted bu�er calls due to pages wrongly suggested by FSIPs� the number of pages touched

remains the same though the number of clients increases� Figure � shows the average amount

of waiting time for I�Os experienced per transaction� When comparing this with Figure �� we

can con�rm that the gaps in elapsed transaction execution time between NEW and the other

methods mainly originate from the I�O waiting time gap�

In this experiment� we �nd that CMOHAN� STAR and BASIC perform very poorly when

compared to NEW for applications where many concurrent transactions frequently insert and

delete records on a relatively small table� This is because R
tests using inaccurate and out

��

dated information on reserved pages frequently make wrong decisions� Moreover� optimistic

methods such as CMOHAN and STAR can trigger a heavy paging activity� since they also produce

many bu�er calls during insertions as the number of failed R
tests increases� In contrast� NEW

gives very good performance for these applications� since the R
tests always make the right

decisions using detailed and up
to
date reservation information and only the pages that are

passed by R
tests are accessed� which minimizes the bu�er calls required during insertions�

��� Workload LARGE�NF� Large File with Large Bu�er Pools

In workload LARGE
NF� we want to evaluate the performance of NEW for cases in which the

bene�ts of NEW are minimized while the bene�ts of other methods are maximized� First� in

order for each page to be reserved by at most one transaction� we assigned a set of pages in the

table to each client� which is allowed to delete records only from the dedicated set of pages�

Second� we start the simulation using a table that has many more data pages� and deletions are

performed on a wider range of pages so that fewer pages are in the reserved state at one time�

which increases the chance of meeting a non
reserved page during insertions� Third� the bu�er

pool has many bu�er slots to eliminate performance degradation due to high paging activity�

which is the main cause of the reduced performance of the traditional methods in workload

SMALL
FF� During this experiment� there was no paging activity for bu�er replacements�

Finally� for this workload we carried out this experiment under NF page allocation� The NF

method prevents each client starting to �nd data pages from the �rst page in the table� and

consequently the insertion point �oats over the table as records are inserted� Since each client

uses its own insertion point� fewer clients at a time start from the same page for insertions�

These features reduce the number of failed R
tests� and therefore are bene�cial to CMOHAN�

BASIC and STAR�

Figure 	 shows the number of failed R
tests in inserting a record� Since few pages have

space reserved by more than one transaction� the number of failed R
tests is considerably

reduced for all reservation methods� when compared to workload SMALL
FF� NEW still shows

a minimum number of failed R
tests as the number of active transactions increases� Figure �

shows the number of wasted bu�er calls issued in inserting a record� and Table � shows a

�	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 b

uf
fe

r
fix

 c
al

ls

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure 	� Number of failed R
tests per inser

tion

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 b

uf
fe

r
fix

 c
al

ls

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure �� Number of bu�er calls to insert a
record

Reservation Method Avoidable FSIP Failed Lock Total

BASIC � ���� � ����

CMOHAN ���� ���� � ����

STAR ���� ���� � ����

NEW � ���� � ����

Table �� A breakdown of wasted bu�er calls at �� clients under LARGE
NF

breakdown in wasted bu�er calls issued during insertion of �� clients� The number of wasted

bu�er calls that can be avoided is signi�cantly reduced because most R
tests are passed for

this workload� Instead� the most useless bu�er calls are wasted due to wrong pages being

suggested by FSIPs� Since those pages wrongly suggested by FSIPs are recognized only after

they are brought into the bu�er� BASIC� though pessimistic� shows as many wasted bu�er calls

as CMOHAN and STAR� On the other hand� in NEW� since most of the pages wrongly suggested

by FSIPs are �ltered out during R
tests� almost no wasted bu�er calls are generated�� and

therefore NEW yields the fewest useless bu�er calls among reservation methods�

Figure �� shows the number of R
locks issued in inserting a record by each space reserva

tion method as clients are added to the system� CMOHAN saves many R
locks and shows almost

� R
locks even when many clients are added to the system� Although we do not present the

graph in this paper� CMOHAN also generates fewer than ��� R
locks for a record deletion� This

�In fact� NEW can �lter out all pages wrongly suggested by FSIPs and guarantee no wasted bu�er calls from
this cause� However� to avoid the complex implementation of the R�test in NEW� we reduced the level of R�test
requirements when we implemented NEW in this simulation�

��

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 lo

ck
 c

al
ls

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Number of R
lock calls per record
insertion

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

0 5 10 15 20 25 30 35 40 45 50

m
ili

se
c

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Elapsed transaction processing
time

implies that CMOHAN reduces R
locks most when pages are rarely reserved by more than one

transaction� For both BASIC and NEW� the number of R
locks increases as the number of failed

R
tests increases� Since BASIC generates more failed R
tests� the number of R
locks for BASIC

increases faster than that for NEW�

Figure �� and Figure �� show the elapsed transaction execution time and the number of

transactions processed per second� respectively� NEW shows a ������� times better performance

result than others� and all methods except NEW plot curves similar to one another� which

implies that the performance gains from saving R
locks in CMOHAN and STAR have little e�ect

on the performance of transactions as the number of clients increases� Instead� we think

that the performance in this workload is mainly dependent on the bu�er page latch waiting

time� A failed R
test requires additional access to FSIPs and other data pages� The more

a transaction �xes data pages and FSIPs� the greater the chance of the transaction blocking

other transactions or being blocked by others� since �xing data pages and FSIPs requires EX

mode and SH mode latches of the page� respectively� Moreover� block time would be relatively

long for data pages because it takes a long time to complete the insertion of a record onto a

page� it includes the generation of a log record� lock requests� sometimes space compaction

and FSIP update�

Figure �� plots the overall bu�er latch waiting time experienced by a transaction� The

time gap between NEW and other methods is ��������� milliseconds per transaction of ��

��

130

140

150

160

170

180

190

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 tr

an
sa

ct
io

ns

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Number of transactions processed
per second

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50

m
ili

se
c

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Total bu�er page waiting time per
transaction

clients� which is almost the same as the elapsed time gap as shown in Figure ��� where it is

��������� milliseconds per transaction�

From the result of this experiment� we found that the e�ects of failed R
tests are minimal

for applications in which few pages are reserved� However� NEW is still a good reservation

method for these kinds of applications because it eliminates some of the wasted bu�er calls

due to wrongly suggested FSIPs� and shortens bu�er page latch waiting time when many

concurrent transactions frequently insert and delete records on the table�

��� Workload QUEUE� Queue with Large Bu�er Pools

In workload QUEUE� we evaluate the performance of several space reservation methods when

they are used on queues� In this experiment� we have implemented a modi�cation of the

strict
FCFS queue� where the system allows concurrent dequeue operations and ignores the

occasional out
of
order dequeuing��� ���� Before starting the experiment� we enqueued ����

records in the queue to prevent it from becoming empty and a dequeuing transaction failing

to get a record from it� This also ensures that an enqueuing transaction hardly ever sees a

reserved record� because the queue has enough records so that the head and the tail of the

queue never exist on the same page of the queue� We think that this is very advantageous

for CMOHAN and STAR� As for LARGE
NF� su�cient bu�er pages ����� are allocated to the

bu�er to eliminate performance degradation from high paging activity� which is the main

��

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 b

uf
fe

r
fix

 c
al

ls

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Number of wasted bu�er calls in
inserting a record

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 lo

ck
 c

al
ls

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Number of R
lock calls per record
insertion

Reservation Method Avoidable FSIP Failed Lock Total

BASIC � ��	� � ��	�

CMOHAN ���� ��� � ����

STAR ���	 ��� � ����

NEW � ���� ���� ����

Table �� A breakdown of wasted bu�er calls at �� clients under QUEUE

cause of the reduced performance of traditional methods� as shown in SMALL
FF� During

this experiment� there was no paging activity for bu�er replacement�

Figure �� shows the number of wasted bu�er calls issued in inserting a record� and Table �

shows a breakdown of wasted bu�er calls issued in an insertion of �� clients� Since few

pages have space reserved by more than one transaction� the number of wasted bu�er calls is

considerably reduced for all reservation methods compared to workload SMALL
FF� However�

NEW still generates the fewest wasted bu�er calls as the number of active transactions increases�

Most of the wasted bu�er calls� as in LARGE
NF� are produced due to pages being wrongly

suggested by FSIPs� Filtering out most of the wrongly suggested pages� NEW generates almost

no wasted bu�er calls�

Figure �� shows the number of R
locks issued in inserting a record as clients are added to

the system� CMOHAN saves many R
locks and shows almost � R
locks even when many clients

are added� which implies that CMOHAN reduces the number of R
locks the most because a

transaction hardly sees a reserved page during an enqueuing operation� For BASIC and NEW�

��

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

0 5 10 15 20 25 30 35 40 45 50

m
ili

se
c

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure �� Elapsed transaction processing
time

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

m
ili

se
c

Number of clients

BASIC(NF)
CMOHAN(NF)

STAR(NF)
NEW(NF)

Figure ��� Total bu�er page waiting time per
transaction

the number of R
locks starts at � and increases with the number of failed R
tests�

Figure � and Figure �� show the elapsed transaction execution time and the overall bu�er

latch waiting time experienced by a transaction� respectively� For the same reason mentioned

in Section ���� the time gap ���������� between NEW and other methods in Figure � is due

to the bu�er latching time gap ���������� between them� In particular� this is because all

transactions that try to enqueue records at one time �x the same data page of the queue �i�e�

the head page of the queue�� The more frequently a transaction �xes data pages� the more

transactions might be blocked and the longer transactions might have to wait� because only

one transaction at a time is allowed to �x the head of the queue� Also� it takes a long time to

complete the enqueuing of a record in a page� including generation of a log record and lock

requests�

� Conclusions and Future Work

Space reservation must be handled carefully to perform space
allocating operations e�ciently�

Since previous methods assume that pages in a table �or �le� are rarely reserved by more than

one transaction� many R
tests and useless bu�er �x calls are wasted� This impacts on the

performance of space
allocating operations�

We have proposed a new eager and pessimistic space reservation method� which minimizes

the number of R
tests and useless bu�er calls in applications where many concurrent trans

��

actions frequently insert or delete records into�from tables� This can be achieved by keeping

detailed and up
to
date reservation information in the lock table� The proposed method fur

ther reduces failed bu�er calls because it �lters out wrong pages suggested by FSIPs� This

makes the proposed method perform better than other methods even in applications in which

few pages are reserved by more than one transaction�

We expect that TFS in the lock header will be a good source from which to select a

page during record insertion� instead of using FSIPs� Therefore� we are currently working

on devising a page allocation method for the heap �le� This page allocation method directly

accesses the �elds TFS and RSVD in the lock header in order to select a page� We expect that

this integration of a page allocation method and a space reservation method through the lock

table would shorten the path length of the insertion routine and give a better solution to the

free space management of heap �les�

References

��� Philip A� Berstein and Eric Newcomer� Principles of Transaction Processing� Data

Management Systems� Morgan Kaufman Publishers� Inc�� �����

��� Department of Computing Science� University of Newcastle upon Tyne� �C��SIM

User�s Guide�� public release ��� edition� http���cxxsim�ncl�ac�uk�

��� Hector Garcia
Molina� Dieter Gawlick� Johannes Klein� Karl Kleissner� and Kenneth

Salem� �Coordinating Multi
Transaction Activities � Technical Report CS
TR
���
���

Princeton University� February �����

��� Hector Garcia
Molina and Kenneth Salem� �Services for a Work�ow Management Sys

tem � IEEE Database Engineering bulletin� ������������ March �����

��� Dieter Gawlick� �Messaging�Queuing in Oracle	TM � In Proc	 of the Conf	 on Data

Engineering� pages �	� February ���	�

�� Jim Gray� �THESIS� Queues are Databases � In HPTS
� Position Paper� �����

��

��� Jim Gray and Andreas Reuter� Transaction Processing� Concepts and Techniques� Mor

gan Kaufman Publishers� Inc�� �����

�	� B� G� Lindsay� C� Mohan� and M� H� Pirahesh� �Method for Reserving Space Needed

for �Rollback Actions � IBM Technical Disclosure Bulletin� �������������� November

��	�

��� Mark L� McAuli�e� Michael J� Carey� and Marvin H� Solomon� �Towards E�ective and

E�cient Free Space Management � In Proc	 of the ACM SIGMOD Conf	 on Management

of Data� pages �	������ Montreal� Canada� June ����

���� C� Mohan� �Commit LSN� A Novel and Simple Method for Reducing Locking and Latch

ing in Transaction Processing Systems � In Proc	 of the Conf	 on VLDB� Brisbane�

Australia� August �����

���� C� Mohan� G� Alonso� R� G!unth!or� and M� Kamath� �Exotica� A Research Perspective

on Work�ow Management Systems � IEEE Database Engineering bulletin� �	���������

March �����

���� C� Mohan and Don Haderle� �Algorithms for Flexible Space Management in Transaction

Systems Supporting Fine
Granulairty Locking � In Proc	 of International Conference on

Extending Database Technology� Cambridge� United Kingdom� March �����

���� C� Mohan� Don Haderle� Bruce Lindsay� Hamid Pirahesh� and Peter Schwarz� �ARIES�

A Transaction Recovery Method Supporting Fine
Granularity Locking and Partial Roll

backs Using Write
Ahead Logging � ACM Transactions on Database Systems� ���������

��� March �����

���� Oracle Corporation� �Oracle�TM Server Application Developer�s Guide�� June �����

���� Peter M� Schwarz and Alfred Z� Spector� �Synchronizing Shared Abstract Types � ACM

Transactions on Computer Systems� ������������� August ��	��

��

��� Tobin J� Lehman Vibby Gottemukkala� �Locking and Latching in a Memory
Resident

Database System � In Proc	 of the Conf	 on VLDB� pages �������� Vancouver� Canada�

August �����

�

