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Abstract

Relationships, in addition to entities, are important in real-world database modeling. In particular, many object oriented

database applications including CAD/CAM, CASE and multi-media need to model various and complex relationships, especially

the ‘part–whole’ relationship. Without the built-in relationship supports from DBMSs, there is a huge overhead in managing

relationships from application development to maintenance, since the relationships should be hard-coded within the application

program itself.

In this paper, we propose a powerful ‘part–whole’ relationship model, which naturally extends the ODMG-3.0 object database

standard. The proposed relationship model can support almost all of the relationship functionalities existing in the contemporary

relational database model and the object oriented data model. In order to design and implement this relationship model, we

seamlessly extend the ODMG-3.0 relationship using the inheritance concept. Also, we identify several possible run-time anomalies in

implementing the relationship and provide solutions for their problems.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The relational data model (Codd, 1970) is very good

for modeling data with simple structure. Basic data

items are represented with rather short and fixed-length
records and these records constitute a table. The rela-

tionship among entities can be represented with the

concept of primary and foreign key. However, this

relationship mechanism in the relational model has the

limitations in the application areas where various and

complex relationships are needed.
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On the other hand, the object-oriented data model is

powerful enough to represent a complex object as a

recursively nested object (Kim, 1987). The object-ori-

ented data model represents a real world entity as a

single unit object, which has both structural and
behavior properties. An object models a real world en-

tity and the state of the object is only altered by methods

of the object itself. A class is a collection of objects that

model the same kind of objects and there is a hierar-

chical relationship between classes.

Although the modeling power of the object-oriented

model is powerful, it has still limitation in representing a

collection of objects as a single logical unit. Namely, it
lacks the ‘part–whole’ relationship support (Bertino,

1998; Halper et al., 1994, 1998). Many application areas

such as CAD (computer-aided design), CASE (com-

puter-aided system engineering), and information

repositories need to define and manipulate several re-

lated objects as a single logical unit (Lochovsky, 1985;
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Kim, 1987). Bernstein (1998) identified some relation-

ship management functionalities in information reposi-

tories and addressed the shortcomings in relationship

management of object-oriented database management

systems (OODBMS). Also, the relationship manage-

ment is one of important issues in open hypermedia
systems to resolve dangling problem in broken hypertext

links (Davis, 1998). Semantic relationship management

is one of methods to address this problem. In particular,

XLink managements in XML (W3C, 2001a,b) reposi-

tories require this property.

In recent years, the importance of relationship man-

agement has been underscored and many other groups

have studied in this issue (Albano et al., 1991; Jagadish,
1992; Kim, 1987). From these works, we can summarize

the necessities of the built-in support for relationship in

DBMS as follows. First, it is possible to explicitly rep-

resent the various relationships in a schema. Therefore,

users can easily understand the logical structure of ob-

jects and the interdependency among objects such as the

effects of propagations of an operation on an object to

others. Second, because of simple representation of
complex operation of objects through the schema, errors

in developing the application programs also can be

dramatically reduced. Finally, after deployment of

applications, it is much easier to maintain codes when

the change of semantic of an inter-object relationship is

required. Without the built-in relationship support, all

related application logics should be located and chan-

ged. In contrast, with the built-in support, only the
schema need to be changed and the applications are just

recompiled. As a minor side benefit, the program code

size can be considerably reduced because the application

logic, without explicit relationship support from DBMS,

should hard-code the relationship management modules

wherever necessary.

The object model in ODMG-3.0 (Cattell et al., 2000),

the standard of object-oriented databases, has two kinds
of properties to represent the object state. One is the

attribute that defines the state of a type. The other is the

relationship that relates objects of two types and each

type must have instances that can be referenced by ob-

ject identifiers. A relationship specification names and

defines a traversal path for the relationship. In C++

binding of ODMG-3.0, this traversal path is represented

by template class d_Rel_Ref <class T, const char* M>.
A class, which has this template class as a variable, re-

fers to the template class T and the template class T also

refers to the class. The variable name in the template

class T, which refers to the class, is M. The representa-

tion of relationship in ODMG-3.0 C++ binding guar-

antees the referential integrity, that is, when a referenced

object is deleted, the pointer in referencing side is

automatically reset to null. The problem of the rela-
tionship in ODMG-3.0 is to define the relationship as

the static part of each object. It provides only the static
referential integrity but does not support the behavioral

semantics among relationships which are essential in

‘part–whole’ relationship.

In this paper, we propose a systematic behavioral

semantics for a ‘part–whole’ relationship that seamlessly

extends the static relationship of ODMG-3.0 and add
methods to represent these relationships. Our contri-

butions are twofolds: (1) we propose a model of rela-

tionship semantics based on the ‘part–whole’ semantics

and represent this model by extending C++ binding of

ODMG-3.0, (2) we implement the model in a repository

system Soprano (Ahn et al., 1996) of SOP (SNU OO-

DBMS Platform), ODMG-3.0 compliant OODBMS.

The remainder of this paper is organized as follows.
In Section 2, several relationship semantics in object-

oriented modeling fields or OODBMS are discussed. In

Section 3, we conceptually explain our extended rela-

tionship model. In Section 4, we describe how to bind

this extended relationship model into ODMG-3.0 C++

binding environment and provide a usage example. In

Section 5, a few subtle implementation issues are dis-

cussed and our solutions are given. Section 6 concludes
the paper.
2. Related works

There are two kinds of related works. First, several

works systematically defines specific semantic relation-

ship such as a parent–child relationship and a collection.
Second, other works focus on the referential integrity

between two objects.

Examples of the first case are relationships in UML

(Rumbaugh, 1987; Rumbaugh et al., 1999) and rela-

tionships (Peckham et al., 1995) in data modeling system

SORAC. In UML, relationships among objects can be

categorized as generalization, association, and aggrega-

tion. The generalization means IS-A relationship. If an
object O1 has IS-A relationship with an object O2, all

members of the object O2 also become the members of

the objects O1. Usually the concept of generalization is

directly supported by most object-oriented language and

database systems. Association is also directly supported

by UML and most systems. However, the concept of

aggregation in UML is not sufficiently supported. An

aggregation represents that an object is composed of
several part objects, which is the part–whole relation-

ship. For example, a car is composed of tires, an engine,

and doors. The aggregation can degrade the complexity

of schema design by treating several objects as a single

unit. In UML, the aggregation only defines the abstract

semantic, not behaviors. On the other hand, our rela-

tionship model can provide simple and flexible ways for

modeling associations.
Jagadish treats the relationship as a vehicle to main-

tain integrity, and suggests the functionalities to support
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the integrity in OODMBS (Kim, 1987). These func-

tionalities include relational integrity, referential integ-

rity, and uniqueness, which represent other objects’

behaviors depending on an object in its class definition.

These behaviors are the result of adapting integrity

constraints of RDBMS to OODBMS––that is, the ref-
erential integrity in RDBMS can be mapped to the

relational integrity and the referential integrity. How-

ever, the limitation of Jagadish’s work is only to suggest

the maintenance of integrity, not to provide the behav-

ioral semantics of objects in maintaining the relationship

integrity.

Complex objects in ORION OODBMS (Kim, 1987)

are the well-known concept in the semantics of static
and behavioral relationship of objects. In that work, a

complex object represents a ‘part–whole’ relationship,

which uses two kinds of semantics: exclusiveness and

dependency. However, these are limited semantics in the

‘part–whole’ relationship and insufficient to represent all

relationship requirements of various real world appli-

cations.

A recent work by Bertino (1998) is similar to our
work in the sense that it supports composite object in

ODMG standard. However, we not only suggest a

relationship model but also implement it over OO-

DBMS SOP, discuss several implementation issues, and

provide the corresponding solution to these issues.

In compared to other works, our contributions can be

summarized as follows. First, our work deals with a

comprehensive part–whole relationship semantics,
which includes the various modeling concepts and

integrity constraints ever developed in UML, RDBMS

and OODBMS areas. Second, in addition to the static

part–whole relationship semantics, we provide the

complete behavior semantics which are used to maintain

the static relationship semantics. Finally, we show that

the relationship semantics can be naturally incorporated

into the ODMG C++ binding model, and can be
implemented.
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Fig. 1. Example of exclusiveness.
3. Our relationship model: conceptual design

In this section, we suggest a ‘part–whole’ relationship

model. Please note that we describe its conceptual de-

sign. For its ODMG specific binding and examples, see
the following section. In the part–whole relationship, an

object corresponding to part is called a part-object and

an object corresponding to whole is called a whole-

object. Traditional approaches to the ‘part–whole’

relationship provide limited semantics or a system-

specific semantic. In contrast, we suggest several kids

of relationship so that an application can choose

the appropriate relationship types. In addition, this
model is applicable on top of ODMG-3.0 compliant

OODMBS.
There is a trade-off between the complexity of a

model and the efficiency and simplicity of its usage.

Because of the differences in the meaning or behavior of

relationships required in various application fields, it is

difficult to define a model that can support all kinds of

semantics. From reviewing of previous papers (Jagadish,
1992; Kim, 1987; Peckham et al., 1995), we decided that

the part–whole relationship could be systematically de-

fined using following three dimensions: exclusiveness,

multiplicity, and dependency.

The exclusiveness means whether a part-object can

simultaneously be the part object of several different

whole-objects. The multiplicity indicates how many ob-

jects can participate in the relationship. There are two
types of multiplicity in the ‘part–whole’ relationship: the

number of part objects that a whole object can have and

the number of whole objects that a part object can have.

The dependency represents whether the existence of an

object is dependent on another object. The dependency

also can be divided into two types: whether the existence

of a part-object depends on the existence of a whole-

object and whether the existence of a whole-object de-
pends on the existence of a part-object. In the following,

we give the detailed explanation on each dimension.

The exclusiveness has the following three options––

Global-Exclusive, Local-Exclusive, and Fully-Shared.

Global-Exclusive (GE) is exclusive among different

relationships. A part-object with a GE relationship can

belong to a whole-object using only that relationship.

That is, an object cannot be a part-object through dif-
ferent relationships at the same time. Like (a) in Fig. 1, a

student cannot be both the Master Degree student and

the PhD Degree student. Local-Exclusive (LE) is exclu-

sive among same relationships. A part-object with LE

relationship can belong to only a single whole-object

through that relationship. Like (b) in Fig. 1, a monitor

cannot belong to two computers through the relationship

r5 with LE semantics. However, a printer can simulta-
neously belong to two computers through r6 because it

does not have LE semantics. Fully-Shared (FS) repre-

sents a relationship that has neither GE nor LE seman-

tics and means that a part-object with FS relationship
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can be belong to several whole-objects through other

relationships. GE and LE are orthogonal semantics. In

Fig. 1, a monitor has a non-GE relationship with a lab-
oratory and also a LE relationship with a computer.

The multiplicity represents how many whole-objects

and part-objects can have a relationship and there are

two elements––NumPart and NumWhole. NumPart

represents the maximum number of part objects a whole

objects can have and NumWhole represents the maxi-

mum number of whole objects a part objects can have.

NumWhole is related with the LE of exclusiveness. When
NumWhole is 1, it also means the LE in exclusiveness.

The dependency represents whether the existence of a

whole-object or a part-object depends on the corre-

sponding part-object or whole-object. The dependency

has three elements––Deletion, Nullify, and Blocking––

and each element is applicable to both a whole-object and

a part-object. The semantics of each dependency element

is as follows. With Deletion, when a whole-object is de-
leted or the relationship itself is deleted, its corresponding

part-object is also deleted. With Nullify, when a whole-

object is deleted or the relationship is deleted, its corre-

sponding part-object survives. With Blocking, when a

user tries to delete a whole-object, if its corresponding

part-object exists, the deletion is not allowed. For each

element, when a part-object is deleted, the same semantic

is applied. Fig. 2 compares the expressive powers among
the relationship semantics of SQL3 (Horowitz, 1992;

Markowitz, 1991; Turker and Gertz, 2001), ORION

(Kim, 1987) and our extended model.
Fig. 3. Class d_Part_Ref.
4. Our relationship model: its application to ODMG

C++ binding and usage examples

In the previous section, we conceptually described

our extended model for ‘part–whole’ relationship. In

this section, we will explain how to represent the ex-
tended relationship model in the ODMG-3.0 C++

binding. For this, we propose a new relationship class,

which inherits the template class d_Rel_Ref from

ODMG-3.0 C++ binding. After describing this class, we

explain the semantics of our relationship model in detail,

from the perspective of a ‘part-object’ and a ‘whole-
object’. And we provide a usage example of our new

relationship model.

4.1. Extended relationship classes

In C++ binding of ODMG-3.0, a relationship speci-

fication names and defines a traversal path for the

relationship. This traversal path is represented by tem-
plate class d_Rel_Ref <class T, const char* M>. A class,

which has this template class as a variable, refers to the

template class T and the template class T also refers to

the class. The variable name in the template class T,

which refers to the class, is M.

To effectively represent our extended relationship

model in the ODMG-3.0 C++ binding, we propose a

new relationship class, which inherits the template class
d_Rel_Ref of ODMG C++ binding. Users can use this

relationship class as a primitive type in the user defined

classes. In addition, we also define other classes, inher-

iting the template class d_Rel_Set, d_Rel_List, and

d_Rel_Bag so as to represent the relationship about

collection. The advantages of this implementation

technique are that (1) referential integrity is automati-

cally supported and (2) advantages of d_Rel_Ref, which
inherits object handler d_Ref, are also preserved. Be-

cause a relationship is implemented as a class, a rela-

tionship can represent behavior semantics, which can

control the behavior of other objects involved in the

relationship, in addition to the effective representation

of structural relationship among objects.

In this paper, we propose two kinds of extended

relationship type: a relationship type to indicate a part-
object from a whole-object side and a relationship type

to indicate a whole-object from the part-object sides.

For these types, we define two new classes inheriting
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Fig. 4. Class hierarchy of relationship classes.
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from the class d_Rel_Ref in ODMG-3.0 C++ binding,

that is, class d_Part_Ref and d_Whole_Ref. Fig. 3

shows the declaration of class d_Part_Ref. Class

d_Whole_Ref also has the similar declaration.

Similarly, as shown below, class d_Part_Set and class

d_Part_List are inherited respectively from d_Rel_Set (a
set type collection class in ODMG) and d_Rel_List (a

list type collection class in ODMG). They are used to

represent several part-objects in a whole-object through

a relationship.

template <class T, const char* Member, const char*

Option, const char* Max> class d_Part_Set : public

d_Rel_Set <T, Member> {. . .}
template <class T, const char Member, const char*

Option, const char* Max> class d_Rel_List : public

d_Rel_List <T, Member> {. . .}

Class d_Whole_Ref is also inherited from class

d_Rel_Ref. This class is used to represent a whole-object

related with a part-object. Both class d_Whole_Set and

class a_Whole_List are used to represent several whole-
objects related with a part-object.

template <class T, const char* Member, const char*

Option> class d_Whole_Ref : public d_Rel_Ref <T,

Member> {. . .}
template <class T, const char Member, const char*

Option, const char* Max> class d_Whole_Set : pub-

lic d_Rel_Set <T, Member> {. . .}
template <class T, const char Member, const char*

Option, const char* Max> class d_Whole_List : pub-

lic d_Rel_List <T, Member> {. . .}

In the above, the argument const char* Member, as

in ODMG-3.0 d_Rel_Ref, is used to indicate the name

of a relationship variable in a corresponding object. The

argument const char* Option is used to specify the
semantic of the relationship. Finally, the argument const

char* Max is optional only for collection classes and is

used to represent the multiplicity.

Fig. 4 shows the inheritance hierarchy between the

relationship classes in ODMG-3.0 and our new rela-

tionship classes.

4.2. The semantic of the relationship type in whole-objects

In this section, we explain how three elements of our

relationship model––exclusiveness, multiplicity, and
Table 1

The semantic of the relationship type in whole-objects

Global-Exclusive

Deletion ED (exclusive deletion)

Nullify EN (exclusive nullify)

Blocking EB (exclusive blocking)
dependency––are represented in the relationship type in a

whole-object.

Because exclusiveness is applied to both a whole-

object and a part-object, GE is represented in the rela-

tionship of whole-objects and LE is represented in the

relationship of part-objects. The reason that these two

semantics are represented in other objects is that the

semantics of GE and LE are orthogonal to each other
and a part-object is more suitable to represent LE,

which is related with multiplicity. LE is represented ei-

ther in a class d_Whole_Ref that has a single a whole-

object or in a collection class that has the value one as

maximum number of whole objects. Multiplicity and

dependency must be represented both in a whole-object

and in a single object. In a relationship type of a whole-

object, multiplicity means the number of part-objects a
whole object can have, and dependency means the effect

of existence of a whole-object to a part-object. Multi-

plicity is represented with the template argument MAX

of d_Part_Set and d_Part_List. Exclusiveness and

dependency are represented with the template argument

Option of d_Part_Ref, d_Part_Set, and d_Part_List.

Option can have the six values, as shown in Table 1.

Table 1 is the combination of dependency and
exclusiveness, where exclusiveness can have one of two

meanings, GE and Non-GE. This is because the rela-

tionship from a whole-object has only semantic GE

among three semantics of exclusiveness. The semantic

Non-GE is symbolized as Shared. Each Option repre-

senting the semantic of a relationship type is as follows.

(Because this semantic is commonly applied to d_Par-

t_Ref, d_Part_Set, and d_Part_List, we will explain only
the d_Part_Ref case.)
Non-Global-Exclusive

SD (shared deletion)

SN (shared nullify)

SB (shared blocking)



Table 2

The semantics of the relationship type in part-objects

Deletion Nullify Blocking

DT NF BK
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• ED (exclusive deletion) has two meanings. First, a

part-object belonging to a whole-object through ED

semantic can participate in only one part–whole rela-

tionship. This is related to the case when a whole-ob-

ject tries to refer a part-object. When a whole-object

tries to refer a part-object through a relationship
R1, which already belongs to another whole-object

through other relationship R2, it cannot refer that

part-object. Second, the existence of a part-object

with ED semantic is dependent upon the existence

of a whole-object. If a whole-object or the whole-ob-

ject’s d_Part_Ref relationship is deleted, part-objects

related with the whole-object or the relationship is

also deleted.
• SD (shared deletion): When a whole-object tries to

have a part-object through SD semantic, which al-

ready belongs to another whole-object through other

relationship, the whole-object can take the part-ob-

ject as its part. If a part-object already belongs to

other whole-objects through d_Part_Ref either with

ED, EN, or EB semantics, it cannot be referenced.

In the case when the part-object already belongs to
other whole-object through a d_Part_Ref either with

SD, SN, or SB relationship semantics, it can be refer-

enced. If a whole-object or the whole-object’s d_Par-

t_Ref relationship is deleted, it needs to be checked

whether each of its part-objects also belongs to other

whole-objects. If each part-object does not belong to

any other whole-objects, it is also deleted.

• EN (exclusive nullify): First, a part-object belonging
to a whole-object with EN semantic can participate

in only one part–whole relationship. When a whole-

object tries to have a part-object through relationship

R1 with EN semantic and the part-object already be-

longs to another whole-object through other relation-

ship R2, it cannot be referenced. Second, when a

whole-object or a d_Part_Ref relationship with EN

semantic is deleted, its part-objects are not deleted.
• SN (shared nullify): First, a part object which already

belongs to a part–whole relationship can belong to a

whole-object through another relationship with SN

semantic. However, it is limited to the case when a

part object has belonged to the other d_Part_Ref

with either SD, SN, or SB semantic. Second, when

a whole-object or a d_Part_Ref relationship with

SN semantic is deleted, its part-objects are not de-
leted.

• EB (exclusive blocking): If a whole-object has a rela-

tionship with EB semantic, its part-objects can have

only one part–whole relationship at a run-time and

it cannot be deleted when it has a part-object with

EB semantic. Therefore, when a whole-object tries

to have a part-object through a relationship R1 with

EB semantic and the part-object has already belonged
to (another) whole-object through other relationship

R2, it cannot be referenced. When a whole-object is
deleted, it can be deleted only after all its part-objects

with EB semantic are deleted.

• SB (shared blocking): If a whole-object has a rela-

tionship with SB semantic, it can take, as its part,

an object already belonging to other part–whole rela-

tionships and the whole-object cannot be deleted if it
has any part-object with SB semantic. Therefore, a

part object that belongs to a d_Part_Ref relationship

with either SD, SN, or SB semantic, can also belong

to another whole-object through a relationship with

SB semantic. When a whole-object is deleted, it can

be deleted only after all its part-objects with SB

semantic are deleted.

4.3. The semantic of the relationship type in part-object

In a part-object, all semantics of multiplicity and

dependency to a whole-object can be used. However, for

exclusiveness, only LE semantic can be used.Multiplicity

represents the number of whole-objects to which a part-

object can belong. Dependency represents the effect of a

part-object’s existence to a whole-object. We explained
in Section 4.2 how the semantic LE of exclusiveness is

represented in a part-object. Multiplicity is represented

as template argument MAX of collection type

d_Whole_Set and d_Whole_List. Similarly, dependency

is represented as template argument Option of

d_Whole_Ref, d_Whole_Set and d_Whole_List. The

Option of dependency can be one of three elements in

Table 2.
The semantics of each Option element is as follows.

Again, we will explain the semantics in the case of

d_Whole_Ref. In the case of d_Whole_Set and

d_Whole_List, the semantics are same to d_Whole_Ref

case.

• DT (DeleTion): When a part-object is deleted, its

whole-object(s) through the DT semantic must be
also deleted. That is, a whole-object cannot exist

alone without the part-object.

• BK (Blocking): When a part-object is deleted, it can-

not be deleted if it has any BK relationships to whole-

objects. That is, the part-object can be deleted only

when the BK semantic relationship or a whole object

related with this relationship is deleted.

• NK (Nullify): A part-object can be deleted regardless
of its relationships with whole-objects. That is, when

a part-object is deleted, the whole object is not

deleted.
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4.4. An example using the extended relationships

Fig. 5 shows a schema declaration using the extended

relationship type proposed in this paper. This schema is

for a Computer with a part-object Monitor. A whole-

object, Computer, has a part-object, Monitor, through
relationship type d_Part_Ref with semantic ED. The

relationship type d_Part_Ref means that a Computer

can have only one part-object through this relationship.

Semantic ED means that the Monitor cannot be the

part-object of other whole-objects through other rela-

tionship and when the Computer is deleted, the Monitor

is also deleted. The part-object, Monitor, belongs to a

whole-object, Computer, through relationship type
d_Whole_Ref with semantic NF. The relationship type

d_Whole_Ref means that the Monitor cannot belong to

more than one whole-object. Semantic NF means that

deletion of the Monitor does not affect the existence of

the Computer.

Fig. 6 shows the behavior of objects with part–whole

relationships of the example schema in Fig. 5. An object

myPC and an object yourPC have the type of class
Computer. An object monitorObj has the type of class

Monitor. Fig. 6(a) has no part–whole relationship be-

tween the object myPC and the object monitorObj.

Figure (b) shows a state that the object monitorObj

becomes a part object of object myPC using the

assignment operator¼ as follows:

myPC:monitor ¼ monitorObj; ðcode 1Þ
When the code 1 runs in application program, the

database automatically assigns myPC into the variable
computer of the object monitorObj.

Fig. 6(c) shows a state when an object yourPC tries to

make the object monitorObj its part-object using the

following code:
Fig. 5. A schema using the extended relationship.
yourPC:monitor ¼ monitorObj; ðcode 2Þ
When the code 2 runs, it does not make any change.

The object yourPC cannot have the object monitorObj

as its part-object because the relationship semantic be-

tween two classes is ED and the object monitorObj is

already part-object of other object.
If the object myPC deletes its part–whole relationship

with the object monitorObj using function clear() as

shown in the following code 3, the part-object monito-

rObj is also deleted. The result is shown in Fig. 6(d):

MyPC:monitor:clearðÞ; ðcode 3Þ
When the code 4 runs, the database automatically

runs the code 5 without user intervention. Therefore, the

object monitorObj is automatically deleted.

myPC:destroyObjðÞ; ðcode 4Þ

monitorObj:destroyObjðÞ; ðcode 5Þ
If a user want to represent, without using our ex-

tended relationship type, the semantic such as ED, (s)he

should hard-code it within application programs. The

disadvantages of hard coding are that it cannot explicitly

represent the relationship within objects and that it re-

quires the modification of all the related codes when the

semantic need to be changed. On the other hand, using

our extended relationship type, users need to just change

the Option field of the extended relationship declaration.
5. Implementation of extended relationship types

In this section, we explain two technical issues encoun-

tered when implementing our extended relationship
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types in ODMG-3.0 C++ binding, and propose our

solutions. The first one is how to exploit the destructor

and assignment operator to implement the relation-

ship model in ODMG standard. The second one is

about the anomalies which may arise due to the propa-

gation of relationship operations.

5.1. Destructor and assignment operator

Object deletion and assignment operators are very

important interfaces in the extended relationship type.

In ODMG C++ binding, each operator is implemented

as a destructor and an assign operator of a relationship

class.
Before we explain the implementation of the de-

structor and the assign operator, we explain how the

information about the relationship type is registered into

the schema manager of Soprano repository system. To

support the extended relationship type in the database,

the following information about a whole-object and a

part-object must be accessed at runtime: Has an object

O any part-object? If the object O has a part-object,
what is the semantic of the relationship? And does the

object O belongs to other whole-objects? Such infor-

mation is registered in the schema manager during

schema import. The schema manager manages all the

information about the registered classes and their

members/member functions. For example, if a schema in

Fig. 5 is registered, the schema manager has, for class

Computer, the following information about its member
d_Part_Ref <Monitor, _computer, ED> monitor.

• Member name: monitor

• Pointer to the data structure of member’s domain

class: Monitor

• Relationship type: d_Part_Ref

• Name of a relationship variable of corresponding

part object: computer
• Semantic of relationship: ED

This information in the schema manager is exploited

by the destructor and the assign operator. Algorithms 1

and 2 show the destructor and the assignment operator

of the class d_Part_Ref, respectively.

• Destructor: When an object myPC of the class Com-
puter is deleted, its part-object Monitor also must be

deleted. Deletion of its part-object is implemented in

the destructor of the class d_Part_Ref, because, when

an object myPC is deleted, the destructor of the class

Computer is called and the destructor also calls

the destructor of class d_Part_Ref. Algorithm 1

shows the destructor of the class d_Part_Ref. In

Algorithm 1, the case of EB and SB in Option is
not implemented. The reason will be explained in

Section 5.2.
Algorithm 1. The destructor of the class d_Part_Ref

template <class T, const char* Member, const char*

Option>

d_Part_Ref <T, Member, Option> :: �d_Part_Ref()

{ :

IF (Option is ‘ED’) {
Delete a part-object

} ELSE IF (Option is ‘SD’) {

IF (a part-object has the relationship

d_Whole_Ref and the relationship does not

have other objects) {

Delete a part-object

}

}
}

• Assignment operator: When an object is assigned to a

whole-object as its part-object, it must be made sure

that the object can be a part-object of more than

one whole-object. Algorithm 2 is the implementation

of the operator¼ in the class d_Part_Ref in Fig. 2.

Algorithm 2. operator¼ of the class d_Part_Ref

template <class T, const char* Member, const char*

Option>

d_Part_Ref <T, Member, Option> & d_Part_Ref

<T, Member, Option>

:: operator¼ (Ref <T> & from)

{ :

IF (Option is not ‘ED’, ‘EN’ and ‘EB’) {
IF (an object ‘from’ is not a part-object of other

whole-objects) {

take an object ‘from’ as a part-object

}

} ELSE {

IF (an object ‘from’ does not belong to a whole-

object through the semantic ‘ED’, ‘EN’, or ‘EB’

relationship) {
take an object ‘from’ as a part-object

}

}

}

5.2. The propagations of relationship operations,

anomalies, and solutions

Because the operation of a part–whole relationship is

propagated to other object, a ill-designed schema may

bring some unexpected results, that is, anomalies, at

runtime. The similar situation may arise also in primary

and foreign key relationship in RDBMS, that is, the

cascaded propagations of the foreign keys’ behavioral

actions (Markowitz, 1991). To attack this problem,
SQL3 (Markowitz, 1991) restricts the order of opera-

tions. For the similar anomalies in OODBMS environ-
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ment, Peckham et al. (1996) suggested a solution which

notifies the possible anomalies to users when a schema

may cause problems.

Among the relationship’s semantics defined in this

paper, dependency has the possibility to bring anoma-

lies. When Deletion and Blocking of Dependency and
Shared of Exclusiveness is used together, the following

problems arise.

• Anomaly 1: in case of deletion of part-objects

Let us consider Fig. 7(1). When a user tries to delete

an object W1, the whole-object W1 and its part-objects

should not be deleted because the object W1 has the

relationship of the semantic SB. However, when the
object W1’s destructor is called, the relationship’s de-

structor with the semantic SD is first called and next the

relationship’s destructor with the semantic SB is called.

Therefore, even though the whole object W1 and a part-

object P2 is not deleted, a part-object P1 is deleted.

• Anomaly 2: in case of different orders of operation

executions

Let us consider Fig. 7(2). When a user deletes an
object A, the result of this operation may differ

according to the calling order of part-object’s destruc-

tor. If the destructor of the SD relationship is called

first, the calling sequence of cascaded destructors is

following: A’s destructor, B’s destructor, and C’s de-

structor. The destructor of the relationship with the SB

semantic of the object A is called after the object C is

deleted. Therefore, all three objects are deleted. How-
ever, if the relationship’s destructor with the SB

semantic is called first, the object A cannot be deleted

because of the object C. Therefore, the destructor of the

A’s SD relationship is not called and all three objects are

not deleted. This happens because, in C++ language

environment, the calling sequence of part-objects’ de-
part object
whole object

 W1

 P1

 P1

SD

SB
(1)

 B

 A  C

SD

SB

SD

(2)

Fig. 7. Anomalies in the propagation of relationship operations.
structors becomes different according to the order of the

relationship variable declaration in a class.

To solve these problems, we decide to call the de-

structor of relationship with the semantic SB before

other destructors. In Fig. 7(1), when an object W1 is
deleted, anomaly 1 will not happen if the destructor of

relationship with semantic SB is called first. In Fig. 7(2),

when an object A is deleted, all three objects will not be

deleted if the destructor of the SB is called first.

To implement this, the calling order of the destructors

of an object’s members should be changed appropri-

ately. In C++, the calling order of the destructor of an

object’s member is reverse to the declaration order of an
object’s members (Stroustrup, 1997). However, we

cannot control the calling order of the destructor in

C++. So, we implemented in the way that the destructor

of the SB relationship is called before the destructor of

the object itself. Therefore, the destructor explained in

Section 5.1 do nothing for the relationship with the

semantic SB. Instead, a function destroyobj(), in which

an object is deleted, finds the relationship with the
semantic SB before it calls delete, which actually deletes

the object. If the relationship with the semantic SB exists

and it points to a part-object, the function destroyobj()

does not delete the object by returning without calling

the delete function. Algorithm 3 shows the function

destroyobj().

Algorithm 3. Function destroy()
int RefAny :: destroyobj(void)

{ :

FOR (the relationship variable) {

IF (the semantic of the relationship is ‘SB’ or

‘EB’) {

IF (the relationship point to the object itself) {

Return ErrorMsg;

}
}

delete the object;

}

For the relationship with the semantic EB, its dele-

tion is implemented in the function destroyobj() instead

of in the its destructor because of convenience of

implementation. For the d_Whole_Ref relationship with
the semantic BK, its deletion is implemented in the

function destroyobj() similar with the d_Part_Ref rela-

tionship with the semantic SB.

The schema manager has the information of the

inherited members as well as its local members. When a

parent class has the relationship with the semantic SB

and its child class has the relationship with the semantic

SD, the calling of the child class’s function destroyobj()
returns without calling the delete because it finds the

relationship with the semantic SB.
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6. Conclusion

In this paper, we explained the design and imple-

mentation of a part–whole relationship, which extends

the relationship types in ODMG-3.0 C++ binding. Our

part–whole relationship model is implemented on top of
SOP OODBMS (Ahn et al., 1996). The fundamental

rule in designing our relationship model is to provide a

set of relationship types which is compliant to ODMG-

3.0 standard and which is simple and flexible for users to

choose the appropriate relationship features for their

applications. The part–whole relationship model is

represented with exclusiveness, deletion, and multiplicity

for both a whole-object and a part-object. Another
contribution of this paper is that we identified some

anomalous effects of uncontrolled sequence of relation-

ship operations, and provided solutions for them.
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