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Abstract: Tag affinity is the relationship between tags. It is a useful information for search and 
recommendation in social tagging systems. Tag affinity is measured by several types of tag 
cooccurrence frequency. The computation of tag affinity is a time-consuming task as the tagging 
information is accumulated. To alleviate this problem, we propose a parallel tag affinity 
computation method using MapReduce. We present MapReduce algorithms for computing three 
types of tag affinity measures: macro, micro, and bigram tag cooccurrence frequency. Our 
experimental results show that the proposed MapReduce-based approach not only significantly 
outperforms existing methods based on a relational database but also provides high scalability. 
To the best of our knowledge, this approach is the first tag affinity computation on MapReduce. 
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1 Introduction 

Social tagging has been essential to the success of social 
media services such as Flickr, Delicious, and YouTube  
(Das et al., 2012). Other services also have incorporated  
the social tagging into their systems to utilise collective 
intelligence, including CiteULike, BibSonomy, Last.fm, and 
GroupLens. One of the main purposes of social tagging is 
retrieval (Ames and Naaman, 2007). A tag is a keyword, 
which is annotated by a user to an item such as a bookmark, 
movie, photo, or user. Tags play an increasing role in the 
information retrieval process because they describe items or 
express user impressions for the items. Through social 
tagging, folksonomy is generated and non-hierarchical 
categories or indexes are created for retrieval. A user is able 
to annotate an item with any number of tags and many users 

can annotate the same item on collaborative tagging systems 
(Smith, 2007). 

Tag affinity is an important measure and is utilised by 
information retrieval systems. The tag affinity indicates the 
relationships between tags. Semantic relationship between 
tag generates emergent semantics and enhances user 
experience (García-Plaza et al., 2012; Specia and Motta, 
2007). Generally, the tag affinity of two tags is measured by 
the tag cooccurrence frequency (Xu et al., 2006). It is also 
utilised in tag recommendation approach in Flickr 
(Sigurbjörnsson and Van Zwol, 2008). When two tags are 
frequently annotated to the same item, it implies that the 
two tags share a common concept and they are semantically 
related. When two tags are rarely annotated to the same 
item, it implies that the two tags have no relationship. 
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With the rise of large-scale social services, computation 
of the tag cooccurrence frequency has become a challenging 
task because it is computed over either the whole dataset or 
a personomy that is a user’s folksonomy. The basic data 
structure of tagging information is a triple (Hotho et al., 
2006), denoted by <u1, r1, t1>, that represents a user u1 
annotated resource r1 with tag t1. When triples are stored in 
a relational database table, it needs to execute a SQL query 
that contains a self-join for computing the tag cooccurrence 
frequency of two tags. Therefore, as the tagging data is 
accumulated, computing the tag cooccurrence frequencies 
of all possible tag pairs is more time-consuming, and the 
process will be infeasible. 

To resolve this scalability problem, we propose  
parallel computation methods for tag affinity using 
MapReduce (Dean and Ghemawat, 2004) that is a  
well-known distributed processing framework. To the best 
of our knowledge, this approach is the first tag affinity 
computation using the MapReduce framework. In this 
paper, we consider three types of tag cooccurrence 
frequency: macro, micro, and bigram tag cooccurrence 
frequency. We present MapReduce algorithms for each tag 
cooccurrence frequency. A series of experiments was 
conducted on a cluster with 11 nodes. The result of 
evaluation shows that our proposed parallel tag affinity 
computation is more efficient compared to an existing 
method using a relational database. Moreover, the proposed 
approach is scalable in terms of speedup and efficiency. 

The remainder of this paper is as follows. Section 2 
reviews background information related to this study. Our 
parallel tag affinity computation methods are described in 
Section 3. Section 4 presents the experimental evaluation. 
Section 5 introduces the previous research work. Finally, we 
summarise our proposed approach and present directions for 
future work in Section 6. 

2 Preliminaries 

In this section, we present the basic concepts related to this 
study. We first describe tag affinity measures including 
macro, micro, and bigram tag cooccurrence frequencies. 
Next, we briefly introduce the MapReduce framework. 

2.1 Tag affinity measures 

Tag affinity is measured in several ways (Markines et al., 
2009). Most common measures are macro and micro tag 
cooccurrence frequencies (Lee et al., 2012). In the macro 
tag cooccurrence, two tags are counted as cooccurring when 
the two tags are annotated to the same resource. It reflects 
the general meaning of two tags. Meanwhile, the micro tag 
cooccurrence is counted when two tags are annotated to the 
same resource by the same user. It reflects the user’s 
personal usage of two tags. When tagging information is 
stored in the order of user input, another measure for tag 
affinity is bigram tag cooccurrence frequency, which 
assumes that adjacent tags are more semantically related 
than other tags (Kim et al., 2009). This is because the 

process of tagging is analogous to the chain of thought. In 
the bigram approach, there is no macro and micro 
classification because the bigram tag cooccurrence for 
different users is meaningless. The bigram approach is a 
special case of micro tag cooccurrence. 

Figure 1 A tagging example for tag cooccurrence frequency 

 
Figure 1 is a tagging example for resource r1. It indicates 
that user u1 annotates tags t1, t2, and t3 to resource r1 and 
user t2 annotates tags t1 and t4 to resource r1. Given this 
situation, the macro tag cooccurrences are all combinations 
of tags in the example: (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4), 
and (t3, t4).The micro tag cooccurrences are (t1, t2), (t1, t3), 
(t2, t3), and (t1, t4). Note that the pairs (t2, t4), and (t3, t4) are 
excluded in the micro tag cooccurrence because they are not 
annotated by the same user. The bigram tag cooccurrences 
in this example are (t1, t2), (t2, t3), and (t1, t4). In contrast to 
the micro tag cooccurrences, (t1, t3) is excluded because the 
two tags are not adjacent. 

2.2 MapReduce 

To alleviate the scalability problem in social tagging 
systems, we introduced MapReduce to our approach. The 
MapReduce framework is a programming model for parallel 
and distributed processing of large datasets (Dean and 
Ghemawat, 2004). A MapReduce job consists of a map and 
a reduce phases. In the map phase, the framework splits 
input files and the files are read by map workers that is 
called mappers. The mappers execute a map function and 
then generate intermediate files on local disks. The 
intermediate files are remotely read by reduce workers that 
is called reducers. In the reduce phase, the reducers execute 
a reduce function and write output files as results. In our 
proposed approach, mappers split data into (key, value) 
pairs, then reducers merge the tag cooccurrence frequency 
and store the resulting output files. In the following section, 
we describe our approach in detail. 

3 Parallel tag affinity computation 

In this section, we describe MapReduce algorithms for 
counting micro, macro and bigram tag cooccurrence 
frequencies. We assume that each line of input data files 
consists of a triple (user, resource, tag) as shown in Table 1. 
The input data is stored in an underlying distributed file 
system. We utilise Hadoop that is an open source 
implementation of the MapReduce framework with Hadoop 
distributed file system (HDFS). 
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Table 1 Triples in input data files 

User Resource Tag 

u1 r1 t1 
u2 r2 t2 
… … … 

3.1 Micro tag cooccurrence frequency 

Micro tag cooccurrence frequency is computed in two 
MapReduce jobs. Job 1 splits the input data and generates 
the tag pairs for the same (user, resource) key. Job 2 sorts 
the tag order and merges the partial tag cooccurrence 
frequency. 

Figure 2 shows MapReduce job 1 for counting micro tag 
cooccurrence frequency. In the map phase, each mapper 
reads an input data split and generates the intermediate 
results after converting each line to a key-value pair of 
<(user, resource), tag>. For instance, the first row of input 
record (u1, r1, t1) is converted to the key (u1, r1), value (t1) 
pair. The intermediate results are read by reducers. In the 
reduce phase, each reducer obtains all tag values for the 
same key (user, resource). Then the reducer generates 
combinations of tag pairs for the same key (user, resource) 

with a single count. In Figure 2, when the first reducer 
obtains tags t1, t3, and t2 for the key (u1, r1), the reducer 
generates (t1, t3, 1), (t3, t2, 1), and (t1, t2, 1) as results. The 
output files of the MapReduce job 1 are then utilised as 
input files of MapReduce job 2. 

Figure 3 shows MapReduce job 2 for counting micro tag 
cooccurrence frequency. In the map phase, each mapper 
reads an input split that is generated by the MapReduce  
job 1. The mappers sort two tags by ascending order of tag 
id. For example, when the input data is (t3, t2, 1), the mapper 
stores the intermediate result as <(t2, t3), 1> . If the system 
omits this sorting process, the tag cooccurrences <(t3, t2), 1> 
and <(t2, t3), 1> are not merged into the same tag 
cooccurrence frequency and the wrong result will be 
obtained. Both <(t3, t2), 1> and <(t2, t3), 1> indicate that tag 
t2 and tag t3 cooccur once. The sorted intermediate results 
are read by the reducers. In the reduce phase, each reducer 
merges the tag cooccurrence frequency for the same  
key (tag1, tag2). Then, reducers store the micro tag 
cooccurrence frequencies for every tag pair in the dataset. 
Given example, the result file consists of four tag pairs for 
micro tag cooccurrence. We will compare this result to 
macro and bigram tag cooccurrence for the same input file 
in the following sections. 
 

Figure 2 Computation for micro tag cooccurrence frequency: MapReduce job 1 

 

Figure 3 Computation for micro tag cooccurrence frequency: MapReduce job 2 
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3.2 Macro tag cooccurrence frequency 

Analogous to micro tag cooccurrence frequency, macro tag 
cooccurrence frequency is computed in two MapReduce 
jobs as well. However, the MapReduce job 1 for macro tag 
cooccurrence differs from micro tag cooccurrence in the key 
of the map phase. For counting micro tag cooccurrence 
frequency, the map output records are generated with the 
key of (user, resource) because it is counted when two tags 
are annotated to the same resource by the same user. On the 
other hand, the map output records are generated with the 
key of (resource) because macro tag cooccurrence 
frequency is counted when two tags are annotated to the 
same resource, including the tags annotated by different 
users. In addition, the duplication of the tag id should be 
eliminated for counting macro tag cooccurrence frequency. 

Figure 4 shows MapReduce job 1 for counting macro 
tag cooccurrence frequency. In the map phase, each mapper 
reads an input split and generates intermediate results after 
converting each line to a key-value pair of <(resource), 
tag>. In Figure 4, the first row of input record (u1, r1, t1) is 
converted to the key (r1), value (t1) pair. The intermediate 
results are read by reducers. In the reduce phase, each 

reducer obtains all tag values for the same key (resource). 
Then the reducer generates all combination of tag pairs for 
the same resource with a single count, similarly to counting 
micro tag cooccurrence frequency. However, the 
duplication of the tag id should be eliminated because more 
than two users may annotate the same resource with the 
same tag. For example, when initial triples are (u1, r1, t1), 
(u2, r1, t1), and (u3, r1, t2), the corresponding intermediate 
results are <(r1), t1>, <(r1), t1>, and <(r1), t2>. Then the 
reducer generates (t1, t2, 1) as a result. If this process is 
identical to counting micro tag cooccurrence frequencies, 
i.e., without duplication elimination, a reducer for key (r1) 
will generate all combinations of tags t1, t1, t2: (t1, t1, 1), (t1, 
t2, 1), and (t1, t2, 1). These results lead to incorrect macro 
cooccurrence frequencies of the value 2 for the pair t1 and t2, 
and the value 1 for the pair t1and t1. Given this situation, the 
correct answer is that the macro tag cooccurrence frequency 
between tags t1 and t2 is one. The frequency of the other tag 
pair is zero because, from the viewpoint of resource r1, tag 
t1 and t2 are annotated to r1. To calculate the correct result, 
the reducers should eliminate duplicated tag ids for the same 
resource. 

Figure 4 Computation for macro tag cooccurrence frequency: MapReduce job 1 

 

Figure 5 Computation for macro tag cooccurrence frequency: MapReduce job 2 
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Figure 5 shows MapReduce job 2 for counting macro tag 
cooccurrence frequency. This process is identical to that of 
counting micro tag cooccurrence. Each mapper reads input 
data that was generated by the MapReduce job 1. The 
mappers sort the tags by ascending tag id and store the 
intermediate results. The results are read by the reducers 
and each reducer merges the tag cooccurrence frequency for 
the same key (tag1, tag2). Then, the reducers store the macro 
tag cooccurrence frequencies for every tag pair in the 
dataset. The result file consists of six tag pairs for macro tag 
cooccurrence. Given the identical input file with micro tag 
cooccurrence, the number of resultant tag pairs of the macro 
tag cooccurrence is larger than that of micro tag 
cooccurrence. Macro tag cooccurrence considers more 
combinations of tag pairs and stores a larger number of 
resultant tag pairs. This is why the computational cost of 
macro tag cooccurrence is higher than that of micro tag 
cooccurrence in the experiments. 

3.3 Bigram tag cooccurrence frequency 

In bigram tag cooccurrence, the sequence of tagging 
information is important because it only counts adjacent 
tags. We assume that the dataset preserves the tag order and 
its tagging information have been stored in the order that is 
annotated by users. 

Unlike macro and micro tag cooccurrence frequencies, 
bigram tag cooccurrence frequency is computed in a single 
MapReduce job. Counting micro or macro tag cooccurrence 
frequency requires a merging phase for the same resource or 
both the same resource and user, respectively. However, 
bigram tag cooccurrence counting does not require the 
process. It sequentially reads input files and generates sorted 
tag pairs with a single count. 

Figure 6 shows the single MapReduce job for bigram 
tag cooccurrence counting. In the map phase, each mapper 
sequentially reads lines of input data, verifies the identical 

(user, resource) pair, and stores tags with the same  
(user, resource) pair in adjacent rows. The intermediate 
results consist of (tag1, tag2, 1) triples. In the reduce phase, 
each reducer merges the partial frequencies for the same key 
(tag1, tag2) and then produces bigram tag cooccurrence 
frequencies for every tag pair in the dataset. The result file 
for bigram tag cooccurrence consists of three tag pairs. 
Given the identical input file with micro and macro tag 
cooccurrence, the number of resultant tag pairs of the 
bigram tag cooccurrence is smaller than that of micro and 
macro tag cooccurrence. This is because bigram tag 
cooccurrence considers only adjacent tag pairs and stores a 
smaller number of resultant tag pairs. 

4 Evaluation 

In this section, our experimental results are presented. A 
series of experiments was conducted on three types of 
datasets from Delicious that is one of the popular social 
tagging systems. It provides the social tagging to save, 
organise, and discover interesting links on the web. We 
compared the performance of our proposed method to that 
of existing methods in RDBMS. To confirm the scalability 
of our methods, we also conducted experiments varying the 
number of cluster nodes. 

4.1 Datasets 

Experiments were conducted to evaluate the proposed 
approaches on Delicious datasets. Delicious does not 
provide the whole dataset of tagging information for 
research purpose. We used three datasets crawled from the 
Delicious website, which are denoted as DEL, PINTS, and 
SocialBM, respectively. Table 2 shows the statistics of the 
datasets. 

 

Figure 6 Computation for bigram tag cooccurrence frequency: MapReduce job 
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Table 2 Datasets for parallel tag cooccurrence counting 

Dataset User Resource Tag Triples 

DEL 638,013 10,826 311,590 13,510,165 
PINTS 532,924 2,481,698 17,262,480 140,126,586 
SocialBM 1,951,207 118,520,382 14,723,731 1,026,146,334 

 
DEL is a dataset crawled by us. Our crawler starts from a 
webpage of popular tags on the website. When the crawler 
selects a popular tag, it obtains a list of resources that are 
annotated by this tag. Then, the crawler collects the social 
tagging information of the resources in the list. The popular 
tags includes blog, design, programming, software,  
music, and art. As we mentioned, tagging information is 
stored as a triple (user, resource, tag). The DEL dataset 
includes 638,013 users, 10,826 resources, 311,590 tags, and 
13,510,165 tag assignments. In the DEL dataset, the number 
of users is relatively large and the number of resources is 
relatively small compared to other datasets. This situation 
arose due to the crawling process. Because our crawler 
collected tagging information based on the list of resources, 
the number of resources is not large. Furthermore, a large 
number of users were crawled because the crawler stored 
the whole user tagging information of the resource. If the 
crawler collects information not based on resources but on 
users, the number of users will be relatively small and a 
large number of resources will be crawled. PINTS 
represents the dataset crawled by Görlitz et al. (2008) and 
SocialBM represents the dataset crawled by Zubiaga et al. 
(2012). The SocialBM dataset includes 339,897,227 
bookmarks and more than one billion triples. 

4.2 Comparison with existing methods 

To verify the difficulties of the computation on a relational 
database, we performed experiments which compare the 
performance of our proposed methods to that of the existing 
methods using SQL queries on RDBMS (Lee et al., 2012). 
In their comparison, macro and micro tag cooccurrence 
frequencies were computed with millions of queries, which 
incur excessive overhead. In our comparison, the macro and 
micro tag cooccurrence frequencies were computed with a 
single SQL query. We stored triples in a table on an Oracle 
DBMS on a standalone server (Intel® Xeon® 3.00 GHz 
CPU with 16 GB memory). All possible indices were 
generated for optimal performance. Our proposed methods 
were implemented on Hadoop (Version 1.1.2). The 
specifications of the node in a cluster were Intel® Core™ i5 
3.10 GHz CPU with 4 GB memory. 

First experiments were conducted in a single node 
environment. We measured the execution times for 
computing macro, micro, bigram tag cooccurrence 
frequencies for the DEL dataset, which is the smallest 
dataset among the test datasets. Other datasets are much 
larger than the DEL dataset, so macro tag cooccurrence 
cannot be computed within feasible execution times. 

Table 3 shows the execution times for tag affinity 
computation. The first column specifies the tag affinity 

measures. The second and third columns show the execution 
times on RDBMS and Hadoop, respectively, formatted as 
hours:minutes:seconds. The last column shows the number 
of tag pairs in the results. It is observed that computation of 
macro tag cooccurrence frequency took more execution 
time than micro one. As we mentioned, this is because the 
number of tag pairs for macro tag cooccurrence is much 
larger than the number of tag pairs for micro tag 
cooccurrence. This is a result of the crawling method, where 
we collected information based on resources so that the 
number of tags annotated to a single resource is 
significantly large. Compared to the execution times on 
RDBMS, the execution time on Hadoop is significantly 
reduced. For macro tag cooccurrence frequency, the 
computation took about four hours on RDBMS and the 
execution time on Hadoop is 17 minutes 18 seconds. 

Table 3 Execution times for tag affinity computation on the 
DEL dataset 

Tag 
affinity 

Existing 
methods 

on RDBMS 

Our proposed 
methods on 

Hadoop 

No. of tag 
pairs 

in results 

Macro 03:54:43 00:17:18 180,540,339 
Micro 00:03:41 00:02:14 3,123,009 
Bigram 04:12:09 00:00:37 1,548,240 

From the above experimental evaluations, we conclude that 
the parallel macro, micro, and bigram tag cooccurrence 
computations are much faster than corresponding methods 
on a relational database. They are scalable approaches and 
the processes are terminated within feasible execution 
times. 

4.3 Performance on large-scale datasets 

To verify speedup and efficiency of the proposed parallel 
tag affinity computation on large-scale social tagging 
datasets, experiments were conducted on the PINTS and 
SocialBM datasets on a cluster of 11 machines that consists 
of one jobtracker and ten task trackers. 

Table 4 shows the results for tag affinity computation on 
the PINTS and SocialBM datasets. On the PINTS dataset, 
tag affinity computations for 140 million triples terminate 
within 12 minutes. On the SocialBM dataset, one billion 
triples are processed for bigram tag cooccurrence within 
eight minutes and for macro tag cooccurrence within three 
hours. On both datasets, macro, micro, and bigram tag 
cooccurrence counting is efficiently conducted in feasible 
execution times. 
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Table 4 Execution times for tag affinity computation on the 
PINTS and SocialBM datasets 

Dataset Tag 
affinity 

Execution 
time 

No. of resultant 
tag pairs 

PINTS Macro 00:11:22 391,364,682 
Micro 00:05:17 87,501,457 

Bigram 00:01:13 12,893,504 
SocialBM Macro 02:53:27 4,526,977,222 

Micro 00:30:04 246,717,638 
Bigram 00:07:29 86,809,890 

4.4 Performance with various number of nodes 

We performed a series of experiments, varying the number 
of task trackers from one to ten. Similarly to the first 
experiments, the specification of each node in the cluster is 
an Intel® Core™ i5 3.10 GHz CPU with 4 GB memory. We 
evaluated the execution time of macro tag cooccurrence 

counting on the Delicious dataset. For evaluation, we 
selected the macro tag cooccurrence counting, which is the 
most time-consuming task in Table 3 on the DEL dataset on 
Hadoop. Table 5 shows the results of the evaluation. 

First column of the table is the number of nodes in the 
cluster. Other columns in the table indicate the execution 
times for each task in an hours:minutes:seconds format. The 
second to fourth columns give times for MapReduce job 1 
of Figure 4. The fifth to seventh columns show times for 
MapReduce job 2 of Figure 5. Mapper and reducer columns 
show the maximum execution time among all the mappers 
and reducers that participated in the process, respectively. 
The total column gives the execution time to terminate the 
job. The results in the table indicate that the total execution 
time of the process, in the last column, decreases as the 
number of nodes increases. 

Figures 7 and 8 show the execution times of the map and 
reduce phases separately. 
 

Table 5 Execution times of macro tag cooccurrence counting on the Delicious dataset 

No. of  
nodes 

Job 1 
 

Job 2 Total 
execution time Mapper Reducer Total Mapper Reducer Total 

1 00:00:11 00:03:14 00:03:28  00:00:29 00:13:13 00:13:50 00:17:18 

2 00:00:16 00:02:18 00:02:26  00:00:55 00:09:59 00:00:23 00:12:49 

3 00:00:10 00:02:06 00:02:13  00:00:42 00:06:51 00:07:15 00:09:28 

4 00:00:11 00:01:34 00:01:41  00:00:38 00:04:48 00:05:08 00:06:49 

5 00:00:10 00:01:27 00:01:33  00:00:31 00:03:59 00:04:19 00:05:52 

6 00:00:10 00:01:05 00:01:12  00:00:20 00:02:14 00:02:34 00:03:46 

7 00:00:10 00:01:10 00:01:16  00:00:21 00:01:58 00:02:18 00:03:34 

8 00:00:11 00:00:59 00:01:05  00:00:22 00:01:30 00:01:50 00:02:55 

9 00:00:10 00:00:50 00:00:57  00:00:22 00:01:23 00:01:43 00:02:40 

10 00:00:10 00:00:41 00:00:47  00:00:22 00:01:11 00:01:32 00:02:19 

Figure 7 Execution times for MapReduce job 1 
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Figure 8 Execution times for MapReduce job 2 

 

Figure 9 Total execution times for macro tag cooccurrence on the Delicious dataset 

 

 
In the map phase, because the size of input data is constant 
and the number of mappers does not change, the map 
execution time does not change as the number of nodes 
increases. However, in the reduce phase, the execution time 
decreases as the number of nodes increases. Incrementing 
the number of reducers improves the performance. 

Figure 9 shows the performance gain of a cluster 
environment. The more nodes are added to the cluster, the 
faster the execution is conducted. It is reasonable to expect 
that the execution time of ten-node cluster is smaller than 
that of 1-node cluster. We evaluate the speedup of the 
proposed parallel approach, which can be defined as follows 
(Eager et al., 1989). 

1( )
n

T
S n

T
=  

where S(n) is the speedup of an n-node cluster, T1 is the 
execution time of a 1-node cluster and Tn is the execution 
time of an n-node cluster. 

Figure 10 shows the experimental results for speedup of 
the proposed parallel approach. The proposed approach 

does not achieve linear or ideal speedup. Data transfer and 
communication costs among the tasks hinder the linear 
speedup. However, the ratio of speedup is relatively close to 
the ideal speedup as the number of nodes increases. The 
ratio of speedup is the efficiency of the process, where the 
efficiency of an n-node cluster E(n) is the average utilisation 
of the cluster and is defined as follows (Eager et al., 1989). 

( )( ) S nE n
n

=  

where n is the number of nodes in the cluster and S(n) is the 
speedup of the n-node cluster. Figure 11 gives the 
experimental results for the efficiency of clusters from one 
to ten nodes, showing that the efficiency is not reduced as 
the number of nodes increases; even the efficiency 
increases. 

From the series of experimental evaluations above, we 
conclude that the proposed parallel tag affinity computation 
is an efficient and scalable approach. 
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Figure 10 Speedup of parallel tag affinity 

 

Figure 11 Efficiency of the parallel tag affinity calculation 

 

 
5 Related work 

To the best of our knowledge, there is no previous research 
study on the computation of tag affinity computation using 
the MapReduce framework. However, there exist previous 
research studies on parallel approaches in social tagging 
systems. Liang et al. (2010) proposed a parallel user 
profiling approach based on folksonomy information. The 
scalable recommender systems were implemented based on 
cascading. Zhao and Shang (2010) proposed a user-based 
collaborative filtering algorithm for the MapReduce 
framework. Jiang et al. (2011) described the limitations of 
Zhao and Shang’s method and proposed a better scalable 
item-based collaborative filtering algorithm on the 
MapReduce framework. De Pessemier et al. (2011) 
provided details about how to calculate collaborative 
filtering and pairwise similarities on a MapReduce 
framework. 

6 Conclusions 

In this paper, we proposed MapReduce algorithms for 
computing three types of tag affinity measures: macro, 

micro, and bigram tag cooccurrence frequency. Macro and 
micro tag cooccurrence frequencies are computed in two 
MapReduce jobs similarly but de-duplications of 
intermediate results is required for the macro tag 
cooccurrence. Bigram tag cooccurrence is computed in one 
MapReduce job assuming that the tag order is preserved in 
input files. The experimental results present that the 
proposed approach shows better performance than existing 
methods on a relational database. Furthermore, the proposed 
approach is scalable from the perspective of speedup and 
efficiency. In future work, we will investigate tag frequency 
and normalised tag cooccurrence frequency computation 
using the MapReduce framework simultaneously. 
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