
Int. J. Big Data Intelligence, Vol. 1, No. 3, 2014 141

Copyright © 2014 Inderscience Enterprises Ltd.

A parallel tag affinity computation for social tagging
systems using MapReduce

Hyunwoo Kim*, Taewhi Lee and Hyoung-Joo Kim
School of Computer Science and Engineering,
Seoul National University,
1 Gwanak-ro, Gwanak-gu,
Seoul, 151-742, Korea
Email: hwkim@idb.snu.ac.kr
Email: twlee@idb.snu.ac.kr
Email: hjk@snu.ac.kr
*Corresponding author

Abstract: Tag affinity is the relationship between tags. It is a useful information for search and
recommendation in social tagging systems. Tag affinity is measured by several types of tag
cooccurrence frequency. The computation of tag affinity is a time-consuming task as the tagging
information is accumulated. To alleviate this problem, we propose a parallel tag affinity
computation method using MapReduce. We present MapReduce algorithms for computing three
types of tag affinity measures: macro, micro, and bigram tag cooccurrence frequency. Our
experimental results show that the proposed MapReduce-based approach not only significantly
outperforms existing methods based on a relational database but also provides high scalability.
To the best of our knowledge, this approach is the first tag affinity computation on MapReduce.

Keywords: parallelisation; social tagging; MapReduce; Hadoop; tag affinity; tag cooccurrence
frequency; bigram; big data.

Reference to this paper should be made as follows: Kim, H., Lee, T. and Kim, H-J. (2014)
‘A parallel tag affinity computation for social tagging systems using MapReduce’, Int. J. Big
Data Intelligence, Vol. 1, No. 3, pp.141–150.

Biographical notes: Hyunwoo Kim is a PhD candidate in School of Computer Science and
Engineering, Seoul National University. His research interests include social tagging,
recommendation, information retrieval, and database.

Taewhi Lee is a PhD candidate in School of Computer Science and Engineering, Seoul National
University. His research interests include database, semantic web, text/graph data retrieval, and
large-scale data processing.

Hyoung-Joo Kim is a Professor in School of Computer Science and Engineering, Seoul National
University. He received his PhD in Computer Science from University of Texas at Austin in
1988. His research interests include database, semantic web, big data, and large-scale data
processing.

1 Introduction

Social tagging has been essential to the success of social
media services such as Flickr, Delicious, and YouTube
(Das et al., 2012). Other services also have incorporated
the social tagging into their systems to utilise collective
intelligence, including CiteULike, BibSonomy, Last.fm, and
GroupLens. One of the main purposes of social tagging is
retrieval (Ames and Naaman, 2007). A tag is a keyword,
which is annotated by a user to an item such as a bookmark,
movie, photo, or user. Tags play an increasing role in the
information retrieval process because they describe items or
express user impressions for the items. Through social
tagging, folksonomy is generated and non-hierarchical
categories or indexes are created for retrieval. A user is able
to annotate an item with any number of tags and many users

can annotate the same item on collaborative tagging systems
(Smith, 2007).

Tag affinity is an important measure and is utilised by
information retrieval systems. The tag affinity indicates the
relationships between tags. Semantic relationship between
tag generates emergent semantics and enhances user
experience (García-Plaza et al., 2012; Specia and Motta,
2007). Generally, the tag affinity of two tags is measured by
the tag cooccurrence frequency (Xu et al., 2006). It is also
utilised in tag recommendation approach in Flickr
(Sigurbjörnsson and Van Zwol, 2008). When two tags are
frequently annotated to the same item, it implies that the
two tags share a common concept and they are semantically
related. When two tags are rarely annotated to the same
item, it implies that the two tags have no relationship.

142 H. Kim et al.

With the rise of large-scale social services, computation
of the tag cooccurrence frequency has become a challenging
task because it is computed over either the whole dataset or
a personomy that is a user’s folksonomy. The basic data
structure of tagging information is a triple (Hotho et al.,
2006), denoted by <u1, r1, t1>, that represents a user u1
annotated resource r1 with tag t1. When triples are stored in
a relational database table, it needs to execute a SQL query
that contains a self-join for computing the tag cooccurrence
frequency of two tags. Therefore, as the tagging data is
accumulated, computing the tag cooccurrence frequencies
of all possible tag pairs is more time-consuming, and the
process will be infeasible.

To resolve this scalability problem, we propose
parallel computation methods for tag affinity using
MapReduce (Dean and Ghemawat, 2004) that is a
well-known distributed processing framework. To the best
of our knowledge, this approach is the first tag affinity
computation using the MapReduce framework. In this
paper, we consider three types of tag cooccurrence
frequency: macro, micro, and bigram tag cooccurrence
frequency. We present MapReduce algorithms for each tag
cooccurrence frequency. A series of experiments was
conducted on a cluster with 11 nodes. The result of
evaluation shows that our proposed parallel tag affinity
computation is more efficient compared to an existing
method using a relational database. Moreover, the proposed
approach is scalable in terms of speedup and efficiency.

The remainder of this paper is as follows. Section 2
reviews background information related to this study. Our
parallel tag affinity computation methods are described in
Section 3. Section 4 presents the experimental evaluation.
Section 5 introduces the previous research work. Finally, we
summarise our proposed approach and present directions for
future work in Section 6.

2 Preliminaries

In this section, we present the basic concepts related to this
study. We first describe tag affinity measures including
macro, micro, and bigram tag cooccurrence frequencies.
Next, we briefly introduce the MapReduce framework.

2.1 Tag affinity measures

Tag affinity is measured in several ways (Markines et al.,
2009). Most common measures are macro and micro tag
cooccurrence frequencies (Lee et al., 2012). In the macro
tag cooccurrence, two tags are counted as cooccurring when
the two tags are annotated to the same resource. It reflects
the general meaning of two tags. Meanwhile, the micro tag
cooccurrence is counted when two tags are annotated to the
same resource by the same user. It reflects the user’s
personal usage of two tags. When tagging information is
stored in the order of user input, another measure for tag
affinity is bigram tag cooccurrence frequency, which
assumes that adjacent tags are more semantically related
than other tags (Kim et al., 2009). This is because the

process of tagging is analogous to the chain of thought. In
the bigram approach, there is no macro and micro
classification because the bigram tag cooccurrence for
different users is meaningless. The bigram approach is a
special case of micro tag cooccurrence.

Figure 1 A tagging example for tag cooccurrence frequency

Figure 1 is a tagging example for resource r1. It indicates
that user u1 annotates tags t1, t2, and t3 to resource r1 and
user t2 annotates tags t1 and t4 to resource r1. Given this
situation, the macro tag cooccurrences are all combinations
of tags in the example: (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4),
and (t3, t4).The micro tag cooccurrences are (t1, t2), (t1, t3),
(t2, t3), and (t1, t4). Note that the pairs (t2, t4), and (t3, t4) are
excluded in the micro tag cooccurrence because they are not
annotated by the same user. The bigram tag cooccurrences
in this example are (t1, t2), (t2, t3), and (t1, t4). In contrast to
the micro tag cooccurrences, (t1, t3) is excluded because the
two tags are not adjacent.

2.2 MapReduce

To alleviate the scalability problem in social tagging
systems, we introduced MapReduce to our approach. The
MapReduce framework is a programming model for parallel
and distributed processing of large datasets (Dean and
Ghemawat, 2004). A MapReduce job consists of a map and
a reduce phases. In the map phase, the framework splits
input files and the files are read by map workers that is
called mappers. The mappers execute a map function and
then generate intermediate files on local disks. The
intermediate files are remotely read by reduce workers that
is called reducers. In the reduce phase, the reducers execute
a reduce function and write output files as results. In our
proposed approach, mappers split data into (key, value)
pairs, then reducers merge the tag cooccurrence frequency
and store the resulting output files. In the following section,
we describe our approach in detail.

3 Parallel tag affinity computation

In this section, we describe MapReduce algorithms for
counting micro, macro and bigram tag cooccurrence
frequencies. We assume that each line of input data files
consists of a triple (user, resource, tag) as shown in Table 1.
The input data is stored in an underlying distributed file
system. We utilise Hadoop that is an open source
implementation of the MapReduce framework with Hadoop
distributed file system (HDFS).

 A parallel tag affinity computation for social tagging systems using MapReduce 143

Table 1 Triples in input data files

User Resource Tag

u1 r1 t1
u2 r2 t2
… … …

3.1 Micro tag cooccurrence frequency

Micro tag cooccurrence frequency is computed in two
MapReduce jobs. Job 1 splits the input data and generates
the tag pairs for the same (user, resource) key. Job 2 sorts
the tag order and merges the partial tag cooccurrence
frequency.

Figure 2 shows MapReduce job 1 for counting micro tag
cooccurrence frequency. In the map phase, each mapper
reads an input data split and generates the intermediate
results after converting each line to a key-value pair of
<(user, resource), tag>. For instance, the first row of input
record (u1, r1, t1) is converted to the key (u1, r1), value (t1)
pair. The intermediate results are read by reducers. In the
reduce phase, each reducer obtains all tag values for the
same key (user, resource). Then the reducer generates
combinations of tag pairs for the same key (user, resource)

with a single count. In Figure 2, when the first reducer
obtains tags t1, t3, and t2 for the key (u1, r1), the reducer
generates (t1, t3, 1), (t3, t2, 1), and (t1, t2, 1) as results. The
output files of the MapReduce job 1 are then utilised as
input files of MapReduce job 2.

Figure 3 shows MapReduce job 2 for counting micro tag
cooccurrence frequency. In the map phase, each mapper
reads an input split that is generated by the MapReduce
job 1. The mappers sort two tags by ascending order of tag
id. For example, when the input data is (t3, t2, 1), the mapper
stores the intermediate result as <(t2, t3), 1> . If the system
omits this sorting process, the tag cooccurrences <(t3, t2), 1>
and <(t2, t3), 1> are not merged into the same tag
cooccurrence frequency and the wrong result will be
obtained. Both <(t3, t2), 1> and <(t2, t3), 1> indicate that tag
t2 and tag t3 cooccur once. The sorted intermediate results
are read by the reducers. In the reduce phase, each reducer
merges the tag cooccurrence frequency for the same
key (tag1, tag2). Then, reducers store the micro tag
cooccurrence frequencies for every tag pair in the dataset.
Given example, the result file consists of four tag pairs for
micro tag cooccurrence. We will compare this result to
macro and bigram tag cooccurrence for the same input file
in the following sections.

Figure 2 Computation for micro tag cooccurrence frequency: MapReduce job 1

Figure 3 Computation for micro tag cooccurrence frequency: MapReduce job 2

144 H. Kim et al.

3.2 Macro tag cooccurrence frequency

Analogous to micro tag cooccurrence frequency, macro tag
cooccurrence frequency is computed in two MapReduce
jobs as well. However, the MapReduce job 1 for macro tag
cooccurrence differs from micro tag cooccurrence in the key
of the map phase. For counting micro tag cooccurrence
frequency, the map output records are generated with the
key of (user, resource) because it is counted when two tags
are annotated to the same resource by the same user. On the
other hand, the map output records are generated with the
key of (resource) because macro tag cooccurrence
frequency is counted when two tags are annotated to the
same resource, including the tags annotated by different
users. In addition, the duplication of the tag id should be
eliminated for counting macro tag cooccurrence frequency.

Figure 4 shows MapReduce job 1 for counting macro
tag cooccurrence frequency. In the map phase, each mapper
reads an input split and generates intermediate results after
converting each line to a key-value pair of <(resource),
tag>. In Figure 4, the first row of input record (u1, r1, t1) is
converted to the key (r1), value (t1) pair. The intermediate
results are read by reducers. In the reduce phase, each

reducer obtains all tag values for the same key (resource).
Then the reducer generates all combination of tag pairs for
the same resource with a single count, similarly to counting
micro tag cooccurrence frequency. However, the
duplication of the tag id should be eliminated because more
than two users may annotate the same resource with the
same tag. For example, when initial triples are (u1, r1, t1),
(u2, r1, t1), and (u3, r1, t2), the corresponding intermediate
results are <(r1), t1>, <(r1), t1>, and <(r1), t2>. Then the
reducer generates (t1, t2, 1) as a result. If this process is
identical to counting micro tag cooccurrence frequencies,
i.e., without duplication elimination, a reducer for key (r1)
will generate all combinations of tags t1, t1, t2: (t1, t1, 1), (t1,
t2, 1), and (t1, t2, 1). These results lead to incorrect macro
cooccurrence frequencies of the value 2 for the pair t1 and t2,
and the value 1 for the pair t1and t1. Given this situation, the
correct answer is that the macro tag cooccurrence frequency
between tags t1 and t2 is one. The frequency of the other tag
pair is zero because, from the viewpoint of resource r1, tag
t1 and t2 are annotated to r1. To calculate the correct result,
the reducers should eliminate duplicated tag ids for the same
resource.

Figure 4 Computation for macro tag cooccurrence frequency: MapReduce job 1

Figure 5 Computation for macro tag cooccurrence frequency: MapReduce job 2

 A parallel tag affinity computation for social tagging systems using MapReduce 145

Figure 5 shows MapReduce job 2 for counting macro tag
cooccurrence frequency. This process is identical to that of
counting micro tag cooccurrence. Each mapper reads input
data that was generated by the MapReduce job 1. The
mappers sort the tags by ascending tag id and store the
intermediate results. The results are read by the reducers
and each reducer merges the tag cooccurrence frequency for
the same key (tag1, tag2). Then, the reducers store the macro
tag cooccurrence frequencies for every tag pair in the
dataset. The result file consists of six tag pairs for macro tag
cooccurrence. Given the identical input file with micro tag
cooccurrence, the number of resultant tag pairs of the macro
tag cooccurrence is larger than that of micro tag
cooccurrence. Macro tag cooccurrence considers more
combinations of tag pairs and stores a larger number of
resultant tag pairs. This is why the computational cost of
macro tag cooccurrence is higher than that of micro tag
cooccurrence in the experiments.

3.3 Bigram tag cooccurrence frequency

In bigram tag cooccurrence, the sequence of tagging
information is important because it only counts adjacent
tags. We assume that the dataset preserves the tag order and
its tagging information have been stored in the order that is
annotated by users.

Unlike macro and micro tag cooccurrence frequencies,
bigram tag cooccurrence frequency is computed in a single
MapReduce job. Counting micro or macro tag cooccurrence
frequency requires a merging phase for the same resource or
both the same resource and user, respectively. However,
bigram tag cooccurrence counting does not require the
process. It sequentially reads input files and generates sorted
tag pairs with a single count.

Figure 6 shows the single MapReduce job for bigram
tag cooccurrence counting. In the map phase, each mapper
sequentially reads lines of input data, verifies the identical

(user, resource) pair, and stores tags with the same
(user, resource) pair in adjacent rows. The intermediate
results consist of (tag1, tag2, 1) triples. In the reduce phase,
each reducer merges the partial frequencies for the same key
(tag1, tag2) and then produces bigram tag cooccurrence
frequencies for every tag pair in the dataset. The result file
for bigram tag cooccurrence consists of three tag pairs.
Given the identical input file with micro and macro tag
cooccurrence, the number of resultant tag pairs of the
bigram tag cooccurrence is smaller than that of micro and
macro tag cooccurrence. This is because bigram tag
cooccurrence considers only adjacent tag pairs and stores a
smaller number of resultant tag pairs.

4 Evaluation

In this section, our experimental results are presented. A
series of experiments was conducted on three types of
datasets from Delicious that is one of the popular social
tagging systems. It provides the social tagging to save,
organise, and discover interesting links on the web. We
compared the performance of our proposed method to that
of existing methods in RDBMS. To confirm the scalability
of our methods, we also conducted experiments varying the
number of cluster nodes.

4.1 Datasets

Experiments were conducted to evaluate the proposed
approaches on Delicious datasets. Delicious does not
provide the whole dataset of tagging information for
research purpose. We used three datasets crawled from the
Delicious website, which are denoted as DEL, PINTS, and
SocialBM, respectively. Table 2 shows the statistics of the
datasets.

Figure 6 Computation for bigram tag cooccurrence frequency: MapReduce job

146 H. Kim et al.

Table 2 Datasets for parallel tag cooccurrence counting

Dataset User Resource Tag Triples

DEL 638,013 10,826 311,590 13,510,165
PINTS 532,924 2,481,698 17,262,480 140,126,586
SocialBM 1,951,207 118,520,382 14,723,731 1,026,146,334

DEL is a dataset crawled by us. Our crawler starts from a
webpage of popular tags on the website. When the crawler
selects a popular tag, it obtains a list of resources that are
annotated by this tag. Then, the crawler collects the social
tagging information of the resources in the list. The popular
tags includes blog, design, programming, software,
music, and art. As we mentioned, tagging information is
stored as a triple (user, resource, tag). The DEL dataset
includes 638,013 users, 10,826 resources, 311,590 tags, and
13,510,165 tag assignments. In the DEL dataset, the number
of users is relatively large and the number of resources is
relatively small compared to other datasets. This situation
arose due to the crawling process. Because our crawler
collected tagging information based on the list of resources,
the number of resources is not large. Furthermore, a large
number of users were crawled because the crawler stored
the whole user tagging information of the resource. If the
crawler collects information not based on resources but on
users, the number of users will be relatively small and a
large number of resources will be crawled. PINTS
represents the dataset crawled by Görlitz et al. (2008) and
SocialBM represents the dataset crawled by Zubiaga et al.
(2012). The SocialBM dataset includes 339,897,227
bookmarks and more than one billion triples.

4.2 Comparison with existing methods

To verify the difficulties of the computation on a relational
database, we performed experiments which compare the
performance of our proposed methods to that of the existing
methods using SQL queries on RDBMS (Lee et al., 2012).
In their comparison, macro and micro tag cooccurrence
frequencies were computed with millions of queries, which
incur excessive overhead. In our comparison, the macro and
micro tag cooccurrence frequencies were computed with a
single SQL query. We stored triples in a table on an Oracle
DBMS on a standalone server (Intel® Xeon® 3.00 GHz
CPU with 16 GB memory). All possible indices were
generated for optimal performance. Our proposed methods
were implemented on Hadoop (Version 1.1.2). The
specifications of the node in a cluster were Intel® Core™ i5
3.10 GHz CPU with 4 GB memory.

First experiments were conducted in a single node
environment. We measured the execution times for
computing macro, micro, bigram tag cooccurrence
frequencies for the DEL dataset, which is the smallest
dataset among the test datasets. Other datasets are much
larger than the DEL dataset, so macro tag cooccurrence
cannot be computed within feasible execution times.

Table 3 shows the execution times for tag affinity
computation. The first column specifies the tag affinity

measures. The second and third columns show the execution
times on RDBMS and Hadoop, respectively, formatted as
hours:minutes:seconds. The last column shows the number
of tag pairs in the results. It is observed that computation of
macro tag cooccurrence frequency took more execution
time than micro one. As we mentioned, this is because the
number of tag pairs for macro tag cooccurrence is much
larger than the number of tag pairs for micro tag
cooccurrence. This is a result of the crawling method, where
we collected information based on resources so that the
number of tags annotated to a single resource is
significantly large. Compared to the execution times on
RDBMS, the execution time on Hadoop is significantly
reduced. For macro tag cooccurrence frequency, the
computation took about four hours on RDBMS and the
execution time on Hadoop is 17 minutes 18 seconds.

Table 3 Execution times for tag affinity computation on the
DEL dataset

Tag
affinity

Existing
methods

on RDBMS

Our proposed
methods on

Hadoop

No. of tag
pairs

in results

Macro 03:54:43 00:17:18 180,540,339
Micro 00:03:41 00:02:14 3,123,009
Bigram 04:12:09 00:00:37 1,548,240

From the above experimental evaluations, we conclude that
the parallel macro, micro, and bigram tag cooccurrence
computations are much faster than corresponding methods
on a relational database. They are scalable approaches and
the processes are terminated within feasible execution
times.

4.3 Performance on large-scale datasets

To verify speedup and efficiency of the proposed parallel
tag affinity computation on large-scale social tagging
datasets, experiments were conducted on the PINTS and
SocialBM datasets on a cluster of 11 machines that consists
of one jobtracker and ten task trackers.

Table 4 shows the results for tag affinity computation on
the PINTS and SocialBM datasets. On the PINTS dataset,
tag affinity computations for 140 million triples terminate
within 12 minutes. On the SocialBM dataset, one billion
triples are processed for bigram tag cooccurrence within
eight minutes and for macro tag cooccurrence within three
hours. On both datasets, macro, micro, and bigram tag
cooccurrence counting is efficiently conducted in feasible
execution times.

 A parallel tag affinity computation for social tagging systems using MapReduce 147

Table 4 Execution times for tag affinity computation on the
PINTS and SocialBM datasets

Dataset Tag
affinity

Execution
time

No. of resultant
tag pairs

PINTS Macro 00:11:22 391,364,682
Micro 00:05:17 87,501,457

Bigram 00:01:13 12,893,504
SocialBM Macro 02:53:27 4,526,977,222

Micro 00:30:04 246,717,638
Bigram 00:07:29 86,809,890

4.4 Performance with various number of nodes

We performed a series of experiments, varying the number
of task trackers from one to ten. Similarly to the first
experiments, the specification of each node in the cluster is
an Intel® Core™ i5 3.10 GHz CPU with 4 GB memory. We
evaluated the execution time of macro tag cooccurrence

counting on the Delicious dataset. For evaluation, we
selected the macro tag cooccurrence counting, which is the
most time-consuming task in Table 3 on the DEL dataset on
Hadoop. Table 5 shows the results of the evaluation.

First column of the table is the number of nodes in the
cluster. Other columns in the table indicate the execution
times for each task in an hours:minutes:seconds format. The
second to fourth columns give times for MapReduce job 1
of Figure 4. The fifth to seventh columns show times for
MapReduce job 2 of Figure 5. Mapper and reducer columns
show the maximum execution time among all the mappers
and reducers that participated in the process, respectively.
The total column gives the execution time to terminate the
job. The results in the table indicate that the total execution
time of the process, in the last column, decreases as the
number of nodes increases.

Figures 7 and 8 show the execution times of the map and
reduce phases separately.

Table 5 Execution times of macro tag cooccurrence counting on the Delicious dataset

No. of
nodes

Job 1

Job 2 Total
execution time Mapper Reducer Total Mapper Reducer Total

1 00:00:11 00:03:14 00:03:28 00:00:29 00:13:13 00:13:50 00:17:18

2 00:00:16 00:02:18 00:02:26 00:00:55 00:09:59 00:00:23 00:12:49

3 00:00:10 00:02:06 00:02:13 00:00:42 00:06:51 00:07:15 00:09:28

4 00:00:11 00:01:34 00:01:41 00:00:38 00:04:48 00:05:08 00:06:49

5 00:00:10 00:01:27 00:01:33 00:00:31 00:03:59 00:04:19 00:05:52

6 00:00:10 00:01:05 00:01:12 00:00:20 00:02:14 00:02:34 00:03:46

7 00:00:10 00:01:10 00:01:16 00:00:21 00:01:58 00:02:18 00:03:34

8 00:00:11 00:00:59 00:01:05 00:00:22 00:01:30 00:01:50 00:02:55

9 00:00:10 00:00:50 00:00:57 00:00:22 00:01:23 00:01:43 00:02:40

10 00:00:10 00:00:41 00:00:47 00:00:22 00:01:11 00:01:32 00:02:19

Figure 7 Execution times for MapReduce job 1

148 H. Kim et al.

Figure 8 Execution times for MapReduce job 2

Figure 9 Total execution times for macro tag cooccurrence on the Delicious dataset

In the map phase, because the size of input data is constant
and the number of mappers does not change, the map
execution time does not change as the number of nodes
increases. However, in the reduce phase, the execution time
decreases as the number of nodes increases. Incrementing
the number of reducers improves the performance.

Figure 9 shows the performance gain of a cluster
environment. The more nodes are added to the cluster, the
faster the execution is conducted. It is reasonable to expect
that the execution time of ten-node cluster is smaller than
that of 1-node cluster. We evaluate the speedup of the
proposed parallel approach, which can be defined as follows
(Eager et al., 1989).

1()
n

T
S n

T
=

where S(n) is the speedup of an n-node cluster, T1 is the
execution time of a 1-node cluster and Tn is the execution
time of an n-node cluster.

Figure 10 shows the experimental results for speedup of
the proposed parallel approach. The proposed approach

does not achieve linear or ideal speedup. Data transfer and
communication costs among the tasks hinder the linear
speedup. However, the ratio of speedup is relatively close to
the ideal speedup as the number of nodes increases. The
ratio of speedup is the efficiency of the process, where the
efficiency of an n-node cluster E(n) is the average utilisation
of the cluster and is defined as follows (Eager et al., 1989).

()() S nE n
n

=

where n is the number of nodes in the cluster and S(n) is the
speedup of the n-node cluster. Figure 11 gives the
experimental results for the efficiency of clusters from one
to ten nodes, showing that the efficiency is not reduced as
the number of nodes increases; even the efficiency
increases.

From the series of experimental evaluations above, we
conclude that the proposed parallel tag affinity computation
is an efficient and scalable approach.

 A parallel tag affinity computation for social tagging systems using MapReduce 149

Figure 10 Speedup of parallel tag affinity

Figure 11 Efficiency of the parallel tag affinity calculation

5 Related work

To the best of our knowledge, there is no previous research
study on the computation of tag affinity computation using
the MapReduce framework. However, there exist previous
research studies on parallel approaches in social tagging
systems. Liang et al. (2010) proposed a parallel user
profiling approach based on folksonomy information. The
scalable recommender systems were implemented based on
cascading. Zhao and Shang (2010) proposed a user-based
collaborative filtering algorithm for the MapReduce
framework. Jiang et al. (2011) described the limitations of
Zhao and Shang’s method and proposed a better scalable
item-based collaborative filtering algorithm on the
MapReduce framework. De Pessemier et al. (2011)
provided details about how to calculate collaborative
filtering and pairwise similarities on a MapReduce
framework.

6 Conclusions

In this paper, we proposed MapReduce algorithms for
computing three types of tag affinity measures: macro,

micro, and bigram tag cooccurrence frequency. Macro and
micro tag cooccurrence frequencies are computed in two
MapReduce jobs similarly but de-duplications of
intermediate results is required for the macro tag
cooccurrence. Bigram tag cooccurrence is computed in one
MapReduce job assuming that the tag order is preserved in
input files. The experimental results present that the
proposed approach shows better performance than existing
methods on a relational database. Furthermore, the proposed
approach is scalable from the perspective of speedup and
efficiency. In future work, we will investigate tag frequency
and normalised tag cooccurrence frequency computation
using the MapReduce framework simultaneously.

Acknowledgements

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 20120005695).

150 H. Kim et al.

References
Ames, M. and Naaman, M. (2007) ‘Why we tag: motivations for

annotation in mobile and online media’, Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pp.971–980, ACM.

Das, M., Thirumuruganathan, S., Amer-Yahia, S., Das, G. and
Yu, C. (2012) ‘Who tags what? An analysis framework’,
Proceedings of the VLDB Endowment, Vol. 5, pp.1567–1578.

De Pessemier, T., Vanhecke, K., Dooms, S. and Martens, L.
(2011) ‘Content-based recommendation algorithms on the
Hadoop MapReduce framework’, Proceedings of the 7th
International Conference on Web Information Systems and
Technologies, pp.237–240.

Dean, J. and Ghemawat, S. (2004) ‘MapReduce: simplified data
processing on large clusters’, Proceedings of the 6th
Symposium on Operating System Design and Implementation,
pp.137–149.

Eager, D.L., Zahorjan, J. and Lazowska, E.D. (1989) ‘Speedup
versus efficiency in parallel systems’, IEEE Transactions on
Computers, Vol. 38, No. 3, pp.408–423.

García-Plaza, A., Zubiaga, A., Fresno, V. and Martínez, R. (2012)
‘Reorganizing clouds: a study on tag clustering and
evaluation’, Expert Systems with Applications, Vol. 39, No. 4,
pp.9483–9493.

Görlitz, O., Sizov, S. and Staab, S. (2008) ‘PINTS: peer-to-peer
infrastructure for tagging systems’, Proceedings of the
7th International Conference on Peer-to-peer Systems, p.19.

Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G. (2006)
‘Information retrieval in folksonomies: search and ranking’,
Proceedings of the 3rd European Semantic Web Conference,
pp.411–426, Springer.

Jiang, J., Lu, J., Zhang, G. and Long, G. (2011) ‘Scaling-up
item-based collaborative filtering recommendation algorithm
based on Hadoop’, IEEE World Congress on Services,
pp.490–497, IEEE.

Kim, H., Lee, K., Shin, H. and Kim, H-J. (2009) ‘Tag suggestion
method based on association pattern and bigram approach’,
Proceedings of the 10th ACIS International Conference on
Software Engineering, Artificial Intelligences, Networking
and Parallel/Distributed Computing, pp.63–68, IEEE.

Lee, K-P., Kim, H-G. and Kim, H-J. (2012) ‘A social inverted
index for social-tagging-based information retrieval’, Journal
of Information Science, Vol. 38, No. 4, pp.313-332.

Liang, H., Hogan, J. and Xu, Y. (2010) ‘Parallel user profiling
based on folksonomy for large scaled recommender
systems: an implementation of cascading MapReduce’, IEEE
International Conference on Data Mining Workshops,
pp.154–161, IEEE.

Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A. and
Stumme, G. (2009) ‘Evaluating similarity measures for
emergent semantics of social tagging’, Proceedings of the
18th International Conference on World Wide Web,
pp.641–650, ACM.

Sigurbjörnsson, B. and Van Zwol, R. (2008) ‘Flickr tag
recommendation based on collective knowledge’,
Proceedings of the 17th International Conference on World
Wide Web, pp.327–336, ACM.

Smith, G. (2007) Tagging: People-powered Metadata for the
Social Web, New Riders.

Specia, L. and Motta, E. (2007) Integrating Folksonomies
with the Semantic Web. The Semantic Web: Research and
Applications, Springer, Austria.

Xu, Z., Fu, Y., Mao, J. and Su, D. (2006) ‘Towards the semantic
web: collaborative tag suggestions’, Collaborative Web
Tagging Workshop, Scotland.

Zhao, Z-D. and Shang, M-S. (2010) ‘User-based
collaborative-filtering recommendation algorithms on
Hadoop’, Proceeding of the 3rd International Conference on
Knowledge Discovery and Data Mining, pp.478–481, IEEE.

Zubiaga, A., Fresno, V., Martínez, R. and García-Plaza, A. (2012)
‘Harnessing folksonomies to produce a social classification of
resources’, IEEE Transactions on Knowledge and Data
Engineering, Vol. 25, No. 8, pp.1801–1813.

