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Abstract The SPY-TEC (Spherical Pyramid-Technique) [8] was pro-
posed as a new indexing method for high-dimensional data spaces using
a special partitioning strategy that divides a d-dimensional data space
into 2d spherical pyramids. Although the authors of [8] proposed an ef-
ficient algorithm for processing hyperspherical range queries, they did
not propose an algorithm for processing k-nearest neighbor queries that
are frequently used in similarity search. In this paper, we propose an
efficient algorithm for processing exact nearest neighbor queries on the
SPY-TEC by extending the incremental nearest neighbor algorithm pro-
posed in [10]. We also introduce a metric that can be used to guide an
ordered best-first traversal when finding nearest neighbors on the SPY-
TEC. Finally, we show that our technique significantly outperforms the
related techniques in processing k-nearest neighbor queries by comparing
it to the R*-tree, the X-tree, and the sequential scan through extensive
experiments.

Keywords : Similarity Search, High-Dimensional Index Technique, Near-
est Neighbor Query, Incremental Nearest Neighbor Algorithm, Approwi-
mate Nearest Neighbor Algorithm, SPY-TEC

1 Introduction

Feature-based similarity search has become an important search paradigm for
various database applications such as multimedia retrieval, data mining, decision
support, and statistical and medical applications. The technique used is to map
the data items as points into a high-dimensional feature space. The feature space
is usually indexed using a multidimensional index structure. Similarity search
then corresponds to a hyperspherical range search, which returns all objects
within a threshold level of similarity to the query objects, and a k-nearest neigh-
bor search that returns the k£ most similar objects to the query object. One of the
most popular applications using this technique is a content-based image indexing

* This research was partially funded by the 1999 BK21 IT area grant of the Ministry
of Education in Korea.



2 Dong-Ho Lee et al.

and retrieval system [3-5,12] which extracts several features (such as color, tex-
ture, shape, etc) from images, indexes the images based on those features, and
supports similarity queries based on them. To support efficient similarity search
in such a system, robust techniques to index high-dimensional feature spaces
need to be developed because the feature vectors used are high-dimensional.

Initially, traditional multidimensional data structures (e.g., R-tree [1], kd-tree
[11]), which were designed for indexing low-dimensional spatial data, were used
for indexing high-dimensional feature vectors. However, recent research activities
[19-21] reported the result that basically none of the querying and indexing
techniques which provide good results on low-dimensional data also performs
sufficiently well on high-dimensional data. Many researchers have called this
problem the “curse of dimensionality” [9], and many database-related projects
have tried to tackle it. As a result of these research efforts, a variety of new
index structures [20,22], cost models [21] and query processing techniques [18]
have been proposed. However, most of the high-dimensional index structures
are extensions of the R-tree or the kd-tree adapted to the requirements of high-
dimensional indexing. Thus, all of these index structures are limited with respect
to data space partitioning and suffer from specific drawbacks of the R-tree or
the kd-tree.

For example, most of the R-tree-based index structures, such as the TV-
tree [14], X-tree [22], SS-tree [6], and SR-tree [17], tend to have low fanouts
and a high degree of overlap between bounding regions in higher dimensions.
These degrade the performance of query processing in high-dimensional data
spaces. Although the X-tree uses a modified R-tree node splitting algorithm
to reduce overlap among the index nodes, it has the overhead of performing
disk management operations to create and maintain variable sized nodes (so-
called supernodes) produced by this modified splitting algorithm. Also, most of
the kd-tree-based index structures, such as the KDB-tree [13], hB-tree [7], and
LSDh-tree [2], suffer from such problems as no guaranteed utilization (e.g., KDB-
tree) or require storage of redundant information (e.g., hB-tree). In addition to
the above drawbacks, these index structures have the well-known drawbacks
of multidimensional index structures, such as high costs for insert and delete
operations and a poor support of concurrency control and recovery [8].

To overcome these drawbacks, in our earlier work, we proposed a new special
space partitioning strategy, the SPY-TEC [8], which is optimized for similar-
ity search in high-dimensional spaces, and proposed the algorithms for process-
ing hyperspherical range queries on the data space partitioned by this strategy.
The SPY-TEC first partitions the d-dimensional space into 2d spherical pyra-
mids having the center point of the space as their top, and the curved (d — 1)-
dimensional surface as their bases, and then cuts each spherical pyramid into
several spherical slices. By this partitioning strategy of the SPY-TEC, we were
able to transform the given d-dimensional data space into a 1-dimensional value.
Thus, we could use a BT -tree to store and access data items, and take advan-
tage of all of the benefits of a Bt-tree, such as fast insert, update and delete
operations, and good concurrency control and recovery. However, we could not
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propose an algorithm for processing nearest neighbor queries efficiently on the
SPY-TEC.

In this paper, we introduce a new metric that can be used to guide an ordered
best-first traversal when finding nearest neighbors on the SPY-TEC. Based on
this new metric, we propose the incremental nearest neighbor algorithm on the
SPY-TEC.

The rest of this paper is organized as follows. Section 2 discusses major
algorithms related to nearest neighbor queries. Section 3 briefly reviews the
structure of the SPY-TEC. Section 4 describes the incremental nearest neighbor
algorithm on the SPY-TEC. Section 5 presents the results of an empirical study
comparing our technique with the R*-tree, the X-tree and the sequential scan.
Finally, we conclude our work and describe our future plans in Section 6.

2 Related Work

There are numerous algorithms for answering nearest neighbor or k-nearest
neighbor queries that are motivated by the importance of these queries in fields
including geographical information systems (GIS), document retrieval, pattern
recognition, and learning theory [10]. Many of the above algorithms require spe-
cialized search structures, but some employ commonly used spatial structures.
For example, algorithms exist for the k-d tree, quadtree-related structures, the
R-tree, and others. Of these algorithms, there are two major approaches that
provide a basis for our work. One was published by Roussopoulos, et al. [18]
and we call it the KNN algorithm because it was intended for general nearest
neighbor or k-nearest neighbor queries. The other algorithm was published by
Hjaltason and Samet [10]. We call it the INN algorithm because it used the
incremental nearest neighbor approach. Due to their importance for our work,
these algorithms are presented in detail.

In the KNN algorithm, the authors proposed an approach for a nearest neigh-
bor search in the R-tree. The key idea of their work is to maintain a global list
(ActiveBranchList) of the candidate k nearest neighbors as the R-tree is tra-
versed in a depth-first manner. The authors introduced two important distance
functions, MINDI1ST and MINMAXDIST for ordering nodes that will be visited.
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MiNDisT is the distance from the query point g to the closest point on the bound-
ary of a bounding rectangle r of node n, while MINMAXDIST is the distance
from ¢ to the closest corner of r that is “adjacent” to the corner farthest from gq.
Figure 1 shows two examples of the calculation of MINDIST and MINMAXDIST
which are shown with a solid and a broken line, respectively. With these distance
functions, the authors proposed three strategies for upward and downward prun-
ing. In some sense, the two orderings represent the optimistic (MINDIST) and
the pessimistic (MINMAXDIST) ordering choices because experiments reported
in [18] showed that ordering the ActiveBranchList using MINDIST consistently
performed better than using MINMAXDIST. Since MINDIST represents the min-
imum distance from a query object ¢ to a bounding rectangle r, it is the most
optimistic ordering choice possible. Thus, it provides a means of pruning nodes
from the search, given that a bound on the maximum distance is available. On
the other hand, MINMAXDIST is an upper bound on the distance of the object
o nearest to ¢. Therefore, it should be clear that MINMAXDIST by itself does
not help in pruning the search, as objects closer to ¢ could be found in elements
of n at positions with higher MINMAXDIST values [10].

In the INN algorithm, the authors proposed the incremental nearest neighbor
algorithm that employs what may be termed best-first traversal. When finding &
nearest neighbors to the query object using the KNN algorithm, k is known prior
to the invocation of the algorithm. Thus, if the (k+1) —th neighbor is needed, the
k-nearest neighbor algorithm needs to be reinvoked for (k + 1) neighbors from
scratch. To resolve this problem, the authors of the INN algorithm proposed
the concept of distance browsing which is to obtain the neighbors incrementally
(i-e., one by one) as they are needed. This operation means browsing through
the database on the basis of distance. They showed through various experiments
that the INN algorithm significantly outperforms the KNN algorithm for distance
browsing queries and also usually outperforms the KNN algorithm when applied
to the k-nearest neighbor problem for the R-tree. They also showed that the two
pruning strategies proposed in [18] are only useful when finding the first nearest
neighbor, and the one strategy that does not use MINMAXDIST is sufficient
when used in a combination of upward and downward pruning in their algorithm.
This implies that MINMAXDIST is not necessary for pruning in the incremental
nearest neighbor approach.

To the best of our knowledge, the INN algorithm is one of the most efficient
algorithms for finding the nearest neighbor or k nearest neighbors. However,
this algorithm does not provide good results on high-dimensional data either, as
we will show in our experimental evaluation. This is not a problem of the INN
algorithm itself, but a problem of the spatial index structure (R-tree), which
does not support efficient indexing or query processing structurally on a high-
dimensional data space.

In this paper, we propose a new metric that can be used to guide an ordered
best-first traversal when finding nearest neighbors on the SPY-TEC. We also
propose an efficient incremental nearest neighbor algorithm based on this new
metric on the SPY-TEC.
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3 The SPY-TEC

In [20], Berchtold et al. proposed a special partitioning strategy (Pyramid-
Technique) that divides the data space first into 2d pyramids, and then cuts
each pyramid into several slices. They also proposed the algorithms for process-
ing hypercubic range queries on the space partitioned by this strategy. However,
the shape of queries used in similarity search is not a hypercube, but a hyper-
sphere [3,5,9,23]. Thus, when processing hyperspherical range queries with the
Pyramid-Technique, there is a drawback that exists in all index structures based
on the bounding rectangle [8,9].

The main idea of the SPY-TEC is based on the observation that spherical
splits will be better than right-angled splits of the Pyramid-Technique for sim-
ilarity search. This observation is due to the fact that the shape of the queries
used in similarity search is not a hypercube, but a hypersphere. Although we

(d-1)-dimensional spherical surface

spherical slice

(one data page
of B+-tree)

Data Space

Fig. 2. Partitioning strategy of the SPY-TEC

have presented the basic idea and space partitioning strategy of the SPY-TEC
in [8], we should explain it again briefly for better understanding of our incre-
mental nearest neighbor algorithm on the SPY-TEC.

The SPY-TEC is to transform d-dimensional data points into one-dimensional
values and then store and access the values using the BT-tree. Also, we store a
d-dimensional point plus the corresponding one-dimensional key as a record in
the leaf nodes of the Bt-tree. Therefore, we do not need an inverse mechanism of
this transformation. The transformation itself is based on a specific partitioning
of the SPY-TEC. To define the transformation, we first explain the data space
partitioning strategy of the SPY-TEC.

3.1 Data Space Partitioning

The SPY-TEC partitions the data space in two steps: In the first step, we split
the d-dimensional data space into 2d spherical pyramids having the center point
of the data space (0.5, 0.5, ..., 0.5) as their top and a (d-1)-dimensional curved
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Fig. 3. The SPY-TEC

surface of the data space as their bases. The second step is to divide each of the
2d spherical pyramids into several spherical slices, with each slice corresponding
to one data page of the BT-tree. Figure 2 shows the data space partitioning of
the SPY-TEC in a two-dimensional example. First, the two-dimensional data
space has been divided into four spherical pyramids resembling fans. Each of
these spherical pyramids has the center point of the data space as its top and
one curved line of the data space as its base. In the second step, each of these
four spherical pyramids is split again into several data pages which are shaped
like the annual rings of a tree. Given a d-dimensional space instead of the two-
dimensional space, the base of the spherical pyramid is not a 1-dimensional
curved line as in the example, but a (d — 1)-dimensional spherical surface. As a
sphere of dimension d has 2d (d — 1)-dimensional spherical surface as a surface,
we obviously obtain 2d spherical pyramids [8].

Numbering the spherical pyramids is the same as in the Pyramid-Technique.
Given a point v, we have to find the dimension i having the maximum deviation
|0.5—v;| from the center to determine the spherical pyramid containing the point
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v. If v; is greater than or equal to 0.5, then the spherical pyramid containing
the point v is sp;44. If it is smaller than 0.5, the spherical pyramid containing
the point v is sp;. As depicted in Figure 3(a), the value of |0.5 — v1| of a point
v in two-dimensional space is greater than the value of |0.5 — vg|. Thus, the di-
mension having the maximum deviation |0.5 — v;| from the center is d; and the
value of v; is smaller than 0.5. Therefore, the point v belongs to the spherical
pyramid sp;. For example, consider another point v = (0.8,0.4). The dimen-
sion having the maximum deviation from the center for each dimension of v’ is
dp(0.3 =[0.5—v'o| >[0.5—v'1| = 0.1). Also, the value of v'g is greater than 0.5.
Therefore, the point v belongs to the spherical pyramid sp(oy2). Although the
formal expression of this procedure was presented in [8], we redefine it formally
for better understanding of the partitioning strategy of the SPY-TEC.

Definition 1. (Spherical pyramid of a point v) A d-dimensional point v is
defined to be located in a spherical pyramid sp;.

: Jmaz if Vjrme < 0.5
i=2< " .
(]ma:l: + d) if Vjrmae = 0.5

Jmaz = (j|(VE,0 < (4, k) < d,j # k :10.5 — v;] >10.5 — vg]))

In Definition 1, jmq, is the dimension having the maximum deviation 0.5 — v;]
from the center for each dimension of a d-dimensional point v and 7 is the number
of the spherical pyramid containing v.

In order to transform d-dimensional data into a one-dimensional value, we
have to determine the location of a point v within its spherical pyramid. The
Pyramid-Technique uses the height of the point within the pyramid as the lo-
cation of the point. However, we use the distance from the point to the center
point of the data space as the location of the point. Figure 3(b) shows the process
of determining the distance of the point v as the location within its spherical
pyramid. We assume that the distance function is the Euclidean distance which
is frequently used for similarity measurement in content-based image retrieval.
More formally :

Definition 2. (Distance of a point v) Given a d-dimensional point v, the
distance d, of the point v is defined as

According to Definition 1 and Definition 2, we are able to transform a d-dimensional
point v into a one-dimensional value (i - ceil(v/d) + d,). In this one-dimensional
value, i is the number of the spherical pyramid containing the point v, d is the
dimension of the point v, and d, is the distance from the point v to the top of
its spherical pyramid. More formally :

Definition 3. (Spherical pyramid value of a point v) Given a d-dimensional
point v, let 7 be the number of the spherical pyramid containing v according to
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Definition 1, and d, be the distance of v according to Definition 2. Then, the
spherical pyramid value spv, of v is defined as

spu, = (i - ceil (Vd) + d,,)

Note that 7 is an integer in the range [0, 2d], d, is a real number in the range
[0, 0.5v/d] and ceil(v/d) is the smallest integer not less than or equal to v/d.
Therefore, every point within a spherical pyramid sp; has a value in the interval
[i-ceil(v/d), (i-ceil(v/d)+0.5v/d)]. In order to make the sets of spherical pyramid
values covered by any two spherical pyramids sp; and sp; be disjunct, we multiply
i by ceil(v/d). Without this multiplication of i by ceil(v/d), the interval of every
point within a spherical pyramid sp; would be [i, (i + 0.5v/d)]. Thus, there
might be intersections in the sets of spherical pyramid values covered by any
two spherical pyramids sp; and sp; when the dimension is higher than four.

For example, in a 16-dimensional data space, the interval of every point
within a spherical pyramid sp; is [1, 3], and the interval of every point within
sps is [2, 4]. Therefore, these two intervals have an intersection. This intersection
may cause the key values of the BT-tree to be redundant. The redundancy of the
key values degrades the performance of the BT -tree. In order to avoid this effect,
we multiply the spherical pyramid number i by ceil(v/d). Note further that this
transformation is not injective. That is, two points v and v may have the same
spherical pyramid value, but, as mentioned above, we do not need an inverse
transformation because we store a d-dimensional point plus the corresponding
one-dimensional key as a record in the leaf nodes of the BT-tree. Therefore, the
SPY-TEC does not require a bijective transformation [8].

3.2 Index Creation

It is a very simple task to build an index using the SPY-TEC. Given a d-
dimensional point v, we first determine the spherical pyramid value spv, of the
point and then insert the point into a Bt -tree using spv, as a key. Finally, we
store the point v and spv, in the corresponding data page of the Bt -tree. Update
and delete operations can be done similarly.

The spherical pyramid values of points that all belong to the same spherical
pyramid lies in the interval given by the minimum and maximum key values
of the data pages. Thus, a single B*-tree data page corresponds to a spherical
slice of a spherical pyramid as shown in Figure 2(right). The page regions of
the R-tree are (minimum) bounding rectangles, whereas the page regions of the
SPY-TEC are spherical slices. Thus, in the rest of the paper, we call the spherical
slice the bounding slice (BS).

4 Incremental Nearest Neighbor Algorithm on the
SPY-TEC

The algorithm proposed in [10] picks the node with the least distance in the set
of all nodes that have yet to be visited when deciding what node to traverse
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Fig. 4. An example of the SPY-TEC for a set of 10 points

next on the R-tree. This means that instead of using a stack or a plain queue to
keep track of the nodes to be visited, it uses a priority queue where the distance
from the query point is used as a key. In our algorithm, we also use a priority
queue where the distance from the query point to the nodes or objects is used
as a key.

4.1 Metrics for Nearest Neighbor Search

For the incremental nearest neighbor search on the SPY-TEC, we need the
minimum possible distance from the query object to a node in the SPY-TEC.
Figure 4 shows an example of the SPY-TEC in a two-dimensional data space. For
the sake of simplicity, we assume that each bounding slice contains one object.
In Figure 4, the query point falls within a bounding slice BS; in the spherical
pyramid sp;. As with most nearest neighbor algorithms, we must first visit the
page (BS; in this example) containing the query point. Then, we visit the next
page with the second smallest minimum distance from the query point. To do
so, we must calculate the minimum possible distance from the query point to a
spherical pyramid or a bounding slice. We first describe the process of calculating
the minimum distance between the query point and a spherical pyramid, and
then discuss the process of calculating the minimum distance between the query
point and a bounding slice.

Lemma 1, which follows, measures the minimum distance MIND1sT(g, sp;)
from the query point ¢ to a spherical pyramid sp;. For the sake of simplicity,
we focus on the description of the case only for spherical pyramids sp; where
i < d. However, this lemma can be extended to all spherical pyramids in a
straight-forward manner [8].

Lemma 1. (Minimum Distance from a Query Point to a Spherical
Pyramid) Given a query point (¢ = [go,q1,..-,9d—1]), let sp; (j < d) be the
spherical pyramid containing a query point, and sp; be the spherical pyramid
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Fig. 5. The minimum distance from the query point to a spherical pyramid

that will be examined for the minimum possible distance from ¢. The minimum
distance from ¢ to sp;, MINDIST(g, sp;), is defined as

0 if i = j
d, if |i — j| = d
Vo)l —al
MINDIST(q, spi) = 7 ifi<d
lgj +ai —1] .. .
- ifi>d
V2

Proof : Given a point ([o,q1,--.,94—1]) and a hyperplane (kozo + k121 + ... +
ki—1x4—1 + C = 0), the distance from the point to the hyperplane in Euclidean
geometry is defined as

|kogo + k1q1 + ... + ka—1g4-1 + C|
\/koz + k24 o+ kg’

Distance =

(1)

We are able to prove the case (i > d) and the case (i < d) using this formula.
1. If i = j, sp; is the spherical pyramid containing the query point ¢q. Therefore,
MiINDIST(q, sp;) = 0, which is less than or equal to the distance of ¢ from any
point in sp;.

2.1f |i—j| = d, sp; is the spherical pyramid on the opposite side of sp;. Therefore,
the minimum distance of q from sp; is the distance from q to the top of sp;
(the center of the data space). Thus, according to the notation of Definition 2,
MINDIST(g, sp;) = dg-

3. In formula (1), the index k,, and the constant C have discrete values [-1,0,1]
because of unit space. If i < d, the equation for the closest side plane of a
spherical pyramid adjacent to the query point is k;xz; + k;z; = 0 as depicted
in the 2-dimensional example of Figure 5. This formula can be extended to a
d-dimensional data space in a straight-forward way. Given a d-dimensional space
instead of the two-dimensional space, the side plane of a spherical pyramid is not
a one-dimensional line as in the example of Figure 5, but a (d — 1)-dimensional
hyperplane, and the equation for this (d — 1)-dimensional hyperplane has the
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Fig. 6. The minimum distance from the query point to a bounding slice

common property that all indices except k; and k; are 0. In this case, k; =1
and k; = —1 because i < d. Thus, the minimum distance from the query point
to the closest side plane of an adjacent spherical pyramid sp; is |¢; — g¢i|/ V2.
Therefore, MINDIST(q, sp;) = |g; — al/ V2.

4. If i > d, the equation for the closest side plane of a spherical pyramid adjacent
to the query point is kjz; + k;z; — 1 = 0 (refer to Figure 5). In this case, k; = 1
and k; = 1, because i > d. Thus, the minimum distance from the query point to
the closest side plane of an adjacent spherical pyramid sp; is |g; + ¢; — 1]/v/2.
Therefore, MINDIST(q, $p;) = |gj + ¢i — 1|//2. O

Calculating the minimum distance from the query point to a bounding slice
is more complex than the case of the minimum distance from the query point
to a spherical pyramid. However, as depicted in Figure 6 and Lemma 2, we can
present it easily by classifying into three cases.
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Lemma 2. (Minimum Distance from a Query Point to a Bounding
Slice) Given a query point (g), let sp; be the spherical pyramid containing a
query point, and BS; be the bounding slice that belongs to a spherical pyramid
sp;- The minimum distance from ¢ to a bounding slice BS;, MIND1sT(q, BS)),
is defined as

Case 1: (i = j : the case of BS] belonging to the spherical pyramid that contains
q.)

|dy — maz(BS))| if d; > maz(BS))
MiINDisT(¢, BS;) =< 0 if min(BS;) < d; < maz(BS))
|dy — min(BS))| if d; < min(BS;)

Case 2: (|i — j| = d : the case of BS; belonging to the spherical pyramid on the
opposite side of q.)

Let a be the distance from the closest side plane of a spherical pyramid adjacent
to ¢ and 6 (< w/4) be the angle of a right-angled triangle which consists of two
sides, o and dy (sinf = %),

MINDisT(q, BS)) = \/dq2 +min(BS;)* — 2d,min(BS;)cos(6 + z)

Case 3: (otherwise : the case of BS; belonging to a spherical pyramid adjacent
to q.)

Let § be the length of the base line in a right-angled triangle which consists of
two sides, a and d,

\/|5 — maz(BS))|* + a2 if § > max(BS))
MINDisT(q, BS;) = { « if min(BS;) < 0 < max(BS))

\/|(5 — min(BS))|* + o2 if § < min(BS;)

where;
min(BS;) = {d, | (W', v,v' € BS; :d, < d,)}
maz(BS;) = {d, | (W', v,v" € BS;:d, >d)}

Proof: min(BS;) is d, of the point v having the smallest value of the points
belonging to BS;, while maz(BS)) is d, of the point v having the largest value.
We can prove each case by using min(BS;) and maxz(BS;).

1. If min(BS;) < dq < maz(BS;), then g is inside BS;. Therefore, MIND1ST(gq, BS;)
= 0 because it is less than or equal to the distance of ¢ from any point inside
BS;. If d; > max(BS;), the distances of all of the points in BS; from the center
of the space are less than the distance of g from the center of the space. There-
fore, MINDI1sT(g, BS)) is the difference between d; and d,,, where the point v is
in BS; and is farthest from the center of the space. That is, MINDisT(gq, BS))
= |d; — maz(BS;)|. Finally, if d; < min(BS;), the distance of ¢ from the center
is less than the distances of all of the points in BS; from the center. Therefore,
MIND1sT(g, BS;) is the difference between d; and d,, where the point v is in BS;
and is closest to the center. That is, MINDIST(g, BS;) = |d; —min(BS;)|. In Fig-
ure 6(a), MINDIST(q, BS4) is 0 because q is inside BSys. Also, MINDIST(gq, BS3)
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is |dy — max(BSs3)| because the distances of all of the points in BS; are less
than the distance of ¢. Finally, MIND1ST(g, BS5) is |dg —min(BSs)| because the
distance of ¢ is less than the distances of all of the points in BSs.

2. If |i— j| = d, sp; is on the opposite side to the spherical pyramid containing g.
In this case, the minimum distance from ¢ to BS; inside sp; is the length of the
base of a triangle which consists of two sides, such as d; and min(BS;), and the
angle between them as depicted in Figure 6(b). By using the cosine rule [15], we
can get the length of the base of a triangle. First, the angle of the top of a spheri-
cal pyramid is 7/2. Thus, the angle between d, and min(BS;) is (6 +m/2) where
0 = arcsin(a/d,;). Given the lengths of two sides (b and ¢) and the angle (A) be-
tween them, the cosine rule states : a2 = b? 4+ c? —2bc-cosA. Therefore, by the co-
sine rule, MIND1sT(q, BS;) = \/dq2 + min(BS;)” — 2dymin(BSj) - cos(8 + T).
Figure 6(b) shows this case in a two-dimensional example. MIND1sT(gq, BSg) is
dy because min(BSs) = 0.

3. In this case, sp; is adjacent to sp; which contains g. All sub-cases of this case
are similar to those of Case 1 except that the parameter for classifying each
sub-case is not dg, but 6. If min(BS;) < ¢ < maz(BS;), MINDIST(q, BS;) is
the distance from ¢ to the closest side plane of sp;. That is, MINDisT(gq, BS;)
= «. This is similar to the sub-case (min(BS;) < d; < max(BS;)) of Case
1. If § > max(BS;), MINDIsT(q, BS;) is the length of the hypotenuse in a
right-angled triangle which consists of two sides, @ and |§ — maxz(BS;)|. There-

fore, MIND1sT(q, BS;) = \/|5—max(BSl)|2 + 2. Finally, if § < min(BS)),

MiINDisT(gq, BS;) is the length of the hypotenuse in a right-angled triangle which
consists of two sides, @ and |§ — min(BS;)|. Therefore, MINDIsT(q, BS}) =

\/ |6 — min(BS;)|”> + 2. Figure 6(c) shows this case in a two-dimensional ex-
ample. O

4.2 Algorithm Description

Algorithm 1 shows the algorithm for processing the nearest neighbor query.
In lines 1~4, the distances of each spherical pyramid from the query point are
calculated by using Lemma 1, and then information about each spherical pyra-
mid and its distance are inserted into the priority queue. Since the distance is
used as a key in the priority queue, the spherical pyramid closest to the query
point is at the head of the queue. The while-loop of lines 6 ~ 21 is the main loop
for the algorithm. In line 7, the first element in the head of the queue is dequeued
and, according to the type of the element, appropriate operations will be per-
formed. If the type of the element dequeued is a spherical pyramid, as depicted
in lines 8 ~ 12, the distances of each bounding slice in the spherical pyramid
from the query point are calculated, and then information of each bounding slice
and its distance are inserted into the queue by using Lemma 2. If the type is
a bounding slice, as depicted in lines 13 ~ 17, the distances of each object in
the bounding slice from the query point are calculated, and then inserted into
the queue. Finally, if the type is an object, it is reported as the next nearest
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Algorithm 1 Processing the incremental nearest neighbor query
1: for i =0to 2d — 1 do
2:  dist = MINDIST(q, sp;); {Using Lemma 1}

3:  ENQUEUE(queue, sp;, dist);

4: end for

5:

6: while not ISEMPTY(queue) do

7:  Element = DEQUEUE(queue);

8:  if Element is a spherical pyramid then

9: for each bounding slice in a spherical pyramid do
10: dist = MIND1sT(g, BS;); {Using Lemma 2}
11: ENQUEUE(queue, BS;, dist);

12: end for

13:  else if Element is a bounding slice then

14: for each object in a bounding slice do

15: dist = DisT_QUERY_TO_OBIJ(q, object);

16: ENQUEUE(queue, object, dist);

17: end for

18:  else {Element is a object}

19: report element as the next nearest object
20: end if

21: end while

neighbor object. The first reported object is naturally the nearest neighbor to
the query point. If we control the number of reported nearest neighbors in the
while-loop of Algorithm 1, we can easily process the k-nearest neighbor query.

4.3 Example

As an example, suppose that we want to find the first nearest neighbor to the
query point ¢in the SPY-TEC given in Figure 4. Below, we show the steps of the
algorithm and the contents of the priority queue. Table 1 shows these distances
(SP means spherical pyramid and BS means bounding slice). When depicting
the contents of the priority queue, the spherical pyramids and bounding slices
are listed with their distances from the query point g, in order of increasing
distance. The objects are denoted in bold letters (e.g., a). The algorithm starts
by enqueueing SPy ~ SP3, after which it executes the following steps:

1. Enqueue SPy ~ SP;. Queue : {[SPy,0], [SP» 4], [SFy,21], [SPs,33]}

2. Dequeue SP;, enqueue BS3, BSys, BSs. Queue : {[BS4,0], [BS5,2], [SP»,4],
[BS3,14], [SPy,21], [SP5,33]}

3. Dequeue BSy, enqueue e. Queue : {[BS5,2], [SP2,4], [BS3,14], [e,19], [SPs,21],
[SP;,33]}

4. Dequeue BSs, enqueue f. Queue : {[SP» 4], [f,12], [BS3,14], [e,19], [SFo,21],
[SP3,33]}

5. Dequeue SP,, enqueue BSg, BS7. Queue : {[BS7,4], [BSs,8], [f,12], [BS3,14],
[e,19], [SPy,21], [SP5,33]}
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OBI[Di

BSo| 21 a | 23
BSi| 25 b | 27
BS,| 29 ¢ | 45
Shyl 21 BSs| 14 d | 16
SPy| 0 BS4| 0 e 19
SP,| 4 BSs| 2 £ | 12
SPg 33 BSe 8 g 35
BS.| 4 h | 6
BSs| 33 i |39
BSo| 42 i | a7

Table 1. Distances of spherical pyramids and bounding slices from the query point ¢
in the SPY-TEC of Figure 4.

6. Dequeue BSy, enqueue h. Queue : {[h,6], [BSs,8], [f,12], [BSs5,14], [e,19],
[SP,21], [SPs5,33]}
7. Dequeue h, report h as the first nearest neighbor.

Since the elements in the priority queue are sorted in increasing order of
distance, sp; containing the query point ¢ is at the head of the queue. In line
7 of Algorithm 1, sp; is dequeued, and then BS3, BS,, and BSs in sp; are
enqueued in increasing order of their distances from the query point. Now, BS,
is at the head of the queue because it has the smallest distance. BS; is dequeued,
and then the objects in BSy are enqueued. In this example, since we assume that
only one object is contained in a bounding slice, the object e in BSy is enqueued.
These operations are repeated until the user finds as many nearest neighbors as
desired.

5 Experimental Evaluation

We performed various experiments to show the practical impact of the incremen-
tal nearest neighbor algorithm on the SPY-TEC and compared it to the R*-tree
and the X-tree, as well as the sequential scan.

For clear comparison, we implemented the incremental nearest neighbor al-
gorithm on the R*-tree and the X-tree using the algorithm proposed in [10]. All
experiments were performed on a SUN SPARC 20 workstation with 128 MByte
main memory and 10 GByte secondary storage. The block size used for our ex-
periments was 4 KBytes. Due to lack of space, we show only the experiment
using real data sets, although we performed various experiments using synthetic
data sets and real data sets. For a more detailed results of various experiments,
you can refer to [16].

The real data consists of Fourier points [22] in 12-dimensional space. We
performed 10-nearest neighbor queries with 100 query points that were selected
from the real data itself, and varied the database size from 20,000 to 100,000.
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Fig. 7. Performance Behavior on Real Data

Figure 7 shows the result of the experiment using real data sets. In this
experiment, the SPY-TEC, along with the R*-tree or the X-tree significantly
outperform the sequential scan regardless of the database size. From this result,
we found that the real data consists of well-formed clusters which are meaningful
workloads for high-dimensional nearest neighbor queries. The speed-up of the
SPY-TEC in the total search time ranges between 2.42 and 3.71 over the X-tree,
between 2.85 and 3.78 over the R*-tree, and between 3.90 and 5.04 over the
sequential scan. The performance behavior of the number of block accesses and
of CPU time are analogous to that of the total search time. The index structures
SPY-TEC, X-tree, and R*-tree significantly outperform the sequential scan in
all cases, and the SPY-TEC also clearly yields a better performance than do the
X-tree and the R*-tree.

6 Conclusions

The SPY-TEC is based on a special partitioning strategy which divides the
d-dimensional data space first into 2d spherical pyramids, and then cuts each
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spherical pyramid into several bounding slices. In this paper, we proposed the
incremental nearest neighbor algorithm on the SPY-TEC. We also introduced
a metric that can be used to guide an ordered best-first traversal when finding
nearest neighbors on the SPY-TEC. The metric (MINDIST), the minimum pos-
sible distance of the query point from a spherical pyramid or a bounding slice,
produces the most optimistic ordering possible when finding nearest neighbors
on the SPY-TEC. We implemented the incremental nearest neighbor algorithm
on the SPY-TEC and performed extensive experiments using synthetic data and
real data sets to show the practical impacts of these algorithms. Through the
experiments, we showed that the incremental algorithm on the SPY-TEC clearly
outperforms that of the X-tree, the R*-tree, and the sequential scan.

For highly skewed data distributions or queries, the incremental nearest
neighbor algorithm on the SPY-TEC may perform worse than those on other in-
dex structures. However, none of the index structure proposed so far can handle
highly skewed data or queries efficiently [20]. We plan to address the problem
of handling highly skewed data or queries in our future work. We also plan to
study the parallel version of the nearest neighbor algorithm on the SPY-TEC
using an efficient declustering technique that distributes the data onto the disks
so that the data which has to be read when executing a query are distributed as
equally as possible among the disks.
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