A Survey of Architectural Features
of Contemporary Object Storage Systems™

Jung-Ho Ahn, Sang-Won Lee, Ha-Joo Song and Hyoung-Joo Kim

Department of Computer Engineering, Seoul National University,
Shilim-Dong Gwanak-Gu, Seoul 151-742, KOREA
Tel: +82 2 880 5379, Fax: +82 2 871 6945,
EMail: {jhahn,swlee,hjsong,hjk} @oopsla.snu.ac.kr,
URL: hitp://wwwoopsla.snu.ac.kr

Abstract

In recent years, many object-oriented database systems have been developed and
have become widely accepted in the DBMS commercial market. An efficient ob-
ject manager, which is a middle layer on top of a storage system, is essential to
ensure reasonable performance of object-oriented database systems, since a tradi-
tional record-based storage system is too simple to provide object abstraction.

In this paper, we first explore the current state-of-the-art of object storage systems
— object managers in combination with storage systems — by focusing on three
main architectural issues: client-server architecture, object identifier representation,
and the object access method. Then, we identify the dependencies between these
factors and propose a general guideline for the design and implementation of an ideal
object storage system that provides transparency, high performance, and flexibility.
In addition, we briefly discuss transaction processing, object clustering, and object
versioning that are closely related to improving the performance and the modeling
power of object storage systems.

Key words: Object manager, Storage system, Object-oriented database system,
Survey

* This work was partially supported by Ministry of Education through Inter-
University Semiconductor Research Center (ISRC 96-E-2026) in Seoul National
University and by the Ministry of Trade, Industry, and Energy of KOREA under
project Electro-21.

Preprint submitted to Elsevier Preprint 30 October 1997

1 Introduction

The advantages of object-oriented databases in terms of a rich data model
for next-generation database applications, such as CAD/CAM/CASE, Al ex-
pert shells, and multimedia office information systems, have become widely
recognized [6, 14]. Due to the complexity of data management in such ap-
plications, key issues are performance and the requirement for a flexible and
transparent object management environment. To meet these stringent require-
ments, there have been numerous works concerning high-performance object
management [4, 6, 10, 14, 16, 17, 18, 24, 30, 41, 63].

Contemporary relational database systems consist of two main modules: a
query processor and a storage system. A query processor returns the result
of a given query by translating it into a series of internal storage system
calls. The low-level storage system provides data persistency and transaction
management with full control of physical devices. In object-oriented database
management systems (OODBMSs), however, it is no longer adequate for up-
per layers, such as a query processor, to call a low-level storage system directly.
This is because the upper layers of an OODBMS should be adapted to the
rich and extensible nature of the object-oriented data model directly, while
a traditional relational storage system supports only record-oriented data ab-
straction. That is, upper layers (if built directly on top of the relational storage
system) would have to implement object abstraction, resulting in poorer per-
formance due to increased complexity [6].

To overcome this problem, most OODBMSs employ a middle layer, which is
called an object manager, on top of the storage system. The objective of an ob-
ject manager is to reduce the impedance mismatch between upper layers (e.g.,
object query processor) and lower layers (e.g., storage system) by implement-
ing object abstraction using the facilities of the underlying storage system.
Along this line, an efficient object manager is essential to ensure reasonable
performance of OODBMSs.

We summarize the basic functionalities of an object manager as follows [6]:

(1) to generate object identifiers

(2) to create and delete persistent objects
(3) to support object access method

(4) to support object naming service

Besides the above features, an object manager is also involved in method
binding, object versioning and object clustering.

The object manager, together with the storage system, is referred to as an
object storage system. In this survey, we explore the current state-of-the-

Table 1
Products, Vendor, and References

Product Producer/Vendor (References)
EXODUS ! Univ. of Wisconsin-Madison [19, 20, 50, 62]
Itasca (V 2.3) IBEX Object Systems, Inc. [26, 27]

02 (V 5.0) O2 Technology [6, 54, 55]
Objectivity /DB (V 5.0) | Objectivity, Inc. [44, 45]

ObjectStore (V 5.0) Object Design, Inc. [37, 42, 43]
Ode<EOS> (V 4.2) AT&T Bell Laboratories [1, 2, 5, 9]
Ontos DB Ontos, Inc. [31, 46]

Versant (V 5.0) Versant Object Technology Corp. [58, 59]

art of object storage systems by focusing on three main architectural issues:
client-server architecture, object identifier representation, and object access
method. In particular, we are interested in understanding the dependencies
between these factors and drawing a general guideline directing the design and
implementation of high-performance object storage systems. In this paper,
we only consider qualitative aspects of these architectural issues, since the
quantitative analysis is beyond the scope of the paper.

Table 1 lists several commercial products and research systems that we ex-
amine throughout the survey. On some issues, we also examine a few other
systems including GemStone [39] and QuickStore [63].

The remainder of the paper is organized as follows. Sections 2 through 4 de-
scribe the main architectural issues that must be addressed in the implementa-
tion of object storage systems. First, in section 2, we discuss common system
architectures for building object storage systems. In section 3, we compare
alternatives for implementing object identifiers. In section 4, we review the
mechanisms for accessing objects and discuss four topics in detail including
object fault handling and pointer swizzling. In section 5, we briefly describe
additional techniques of transaction management, object clustering, and ver-
sion control, all of which are aimed at improving the performance and the
modeling power of the system. After this review, in section 6, we analyze the
dependencies and interrelationships among architectural factors and their ef-
fects on performance, flexibility, and transparency. Finally, the summary of
our survey and some areas for future research are given in section 7.

1 We target EPVM (V 2.0) built on top of the EXODUS storage system (V 3.0)

Applications
- OODBMS Upper Layers
S
o Object Access Management o
SIIIIIIIIIIIIIIIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil g
Data Buffer management 8
__ 0
o
Data & Control N
Over Network S
w
o ' Data Buffer Management || | &
2 |! Transaction : j D S e g
o |:Management: ;""" oC TTToonteseenoooees :
n | 3 0 Disk Management

Fig. 1. An architectural abstraction of object storage systems

2 Client-Server Architecture

Early database systems usually ran on mainframes together with application
programs. However, the rapidly increasing demands of managing distributed
artifacts and the growth of computer hardware and software have brought
us to the development of client-server computing [10]. Clients have replaced
many functionalities that were previously performed by a centralized server.
Therefore, the overall system performance has been enhanced by reducing the
load on the server. Moreover, this architecture can fully utilize the advan-
tage of high-performance workstations or PCs. Contemporary RDBMSs (re-
lational database management systems) support a client-server environment
that is typically based on query-shipping architecture where a server processes
queries that are shipped from clients. In contrast to traditional database sys-
tems, OODBMSs usually ship data (namely data-shipping) from a server to
clients so that clients can navigate the shipped data and perform query pro-
cessing locally by themselves [13]. The reason is that OODBMS applications
usually require a great deal of navigational data access and are computation-
ally intensive, while those of RDBMS tend to depend heavily on sequential
scans with little computing. As such, in OODBMS applications, caching the
frequently used data in clients can provide faster data access [14].

Data-shipping architecture also provides good scalability. With query-shipping
architecture, a server becomes the performance bottleneck as the number
of clients increases. However, in data-shipping architecture many parts of
database functions such as data caching, traversing, and even query process-
ing, are moved to clients to exploit their additional computing power. This
approach can provide good load balancing between clients and servers, and
make the most of the ever-increasing power of workstation or PC clients.

Figure 1 illustrates the common architecture of object storage systems. The

Object Buffer _
-- ---- (A) Object server

———————————————— - (B) Page server

Disk Device

Fig. 2. The alternatives of buffer configuration

server provides low-level database functions such as disk management, buffer
management, and transaction management. The object access management
layer in the client provides applications with transparent access to the persis-
tent data.

Both clients and servers maintain data buffers to keep recently accessed data
so as to minimize network traffic and provide fast data access. Some object
storage systems have object buffers for caching objects used by upper lay-
ers [33, 45]. This kind of buffer configuration, where an object buffer works on
top of a page buffer, is called dual-buffer architecture (see section 4.4). Figure 2
shows possible client-server architectures from the viewpoint of buffer place-
ment. The object server architecture results when a server ships individual
objects to clients, and the page server architecture represents the approach
where clients buffer pages that are brought from a server. Object server and
page server architecture divide clients and server by the lines (A) and (B),
respectively. In page server architecture both the server and the client have a
page buffer, but a client may or may not have an object buffer ?. With the
object server approach, a client has only an object buffer and a server has
both a page buffer and an object buffer. However, a server may not have an
object buffer when it ships objects extracted directly from a page buffer (e.g.,
Versant).

EXODUS, O,, Objectivity/DB, ObjectStore, and Ode take page server archi-
tecture, while Itasca, Ontos, and Versant employ object server architecture 2.

Bancilhon et al. [6] evaluated these two representative data-shipping tech-
niques with respect to performance issues. In that paper, they drew con-
clusions concerning shipping granularity as follows. The main advantages of
object server architecture are the high space utilization of a client buffer,
less sensitive to clustering, and fine-grain concurrency control and recovery.

2 Many current page server systems do not have an object buffer, since they access
objects directly in the page buffer to improve performance (see section 4.4).

3 Ontos and Versant also have APIs (application programming interfaces) to ship
a group of objects at a time.

However, too many interactions between clients and servers (network traffics)
would induce a significant performance degradation. While the page server
architecture avoids network overhead by shipping a set of objects rather than
one object, the actual performance is highly dependent on the effectiveness of
object clustering.

Carey et al. [11] also studied the granularity issues in data shipping architec-
tures and presented an ‘adaptive locking’ policy which allows the system to
lock objects if there is a page-level conflict. Os uses this protocol.

3 Object Identifier

Object identity (OID) is one of the most important features in the object-
oriented data model. In object-oriented databases, each object has its own
unique identifier which remains invariant, independent of the object’s value
and structure, throughout the lifetime of the database [8, 13, 18, 33]. More
importantly, OID allows an object to directly reference another object (possi-
bly itself) in the database. To guarantee referential integrity between objects,
most systems do not re-cycle the OIDs of deleted objects.

In object-oriented databases, OID provides efficient navigational access by di-
rect representation of the relationship between objects, while relational databases
represent relationship by values and perform costly joins to traverse along the
relationship between records. This is the reason why OODBMS can provide
better performance in applications such as CAD/CAM and CASE that involve

a large number of complex objects.

Due to heavy use of OID in object-oriented databases, its representation has
considerable impact on the system performance. The number of disk accesses
required to retrieve an object through its OID depends mainly on the OID
representation. In this section, we deal with this issue after introducing the
taxonomy of persistent OID representations. Dependency with other architec-
tural issues will be discussed in section 6.

Khoshafian and Copeland [32] introduced nine different OID representations
that come from programming languages and databases, and compared them
using a taxonomy based on data and location independencies. However, as
pointed out in Khoshafian and Copeland [32], some of them are not ap-
propriate for a persistent environment since persistent applications require
a strong representation of OID that needs to survive after a program termi-
nates. For this reason, two kinds of OID representations are mainly used by
object-oriented database systems: physical OID and logical OID. These corre-
spond to the terms, structured id and surrogate in Khoshafian and Copeland

[32], respectively.

A physical OID encodes the permanent address of the object referred to by
itself. This characteristic makes it generally possible for object storage systems
to obtain an object from a disk in a single disk access. EXODUS, Oy *,
Objectivity /DB, ObjectStore °, and Ode use the physical OID scheme. On the
negative side, this technique lacks location independency [32]. That is, objects
cannot simply be moved to another location in a database. Although objects
can be moved around by indirections, such as forward marks [6], database
reorganization is very difficult since it introduces numerous indirections which
may degrade access performance.

In contrast to physical OID, a logical OID is generated by the object storage
system independently of the physical address of an object. Thus, this represen-
tation allows flexible object movements and replications. Ontos and Versant
follow a logical OID scheme. In addition to uniqueness, the logical OID can

include a type identifier to access type information quickly. Itasca uses this
kind of OID — typed logical OID.

However, logical OID schemes may degrade the overall performance of the
system, since information on mapping between logical OIDs and their physical
addresses must be maintained to locate objects. Many systems employ hash
or B-tree structures to speed up object access [18]. Itasca and Versant use
hash-based mapping techniques. In particular, Itasca maintains a hash index
for each class separately. On the other hand, GemStone [39] uses B-tree index
for mapping OID to a physical address. To our knowledge, there are only a few
works on the performance of OID mapping techniques. One of these works is
that of Eickler et al. [18] who evaluated the performance of three logical OID
mapping techniques, including hash, B-tree, and a hybrid technique.

4 Object Access

All persistent objects need to be brought into main memory, since we cannot
access the objects directly on disks. That is, object residency should be checked
on every access, and then the object must be fetched into main memory if
necessary. Such a residency check and handling mechanism is called object
fault handling [24].

Object storage systems usually maintain mapping tables to locate objects

4 04 can also export objects with a universal identifier that can be used to retrieve
the object at any time.

5 ObjectStore always keeps OID fields in a swizzled form to speed up object access
(see section 4.2).

1) lookup address

reference A//V

OID 2) virtual address

in-memory in-memory

mapping table reference mapping table

Virtual address

3) object a&* in-memory " ObjeCtaccg\ in-memory
object object

(a) without swizzling (b) with swizzling

Fig. 3. The scenario of accessing in-memory objects

cached in main memory, as shown in Figure 3(a), and object residency is
checked during the OID translation into the corresponding virtual address.
However, it is a performance penalty to check the residency and compute the
in-memory address on every access. To solve this problem, many object storage
systems replace in-memory OID references with virtual addresses. Figure 3(b)
shows this concept that is known as pointer swizzling [41]. Pointer swizzling can
improve the performance of object access by skipping the lookup-table search,
particularly in CPU-intensive applications. It can also give transparent access
to persistent objects just as for transient objects.

Efficient management of in-memory objects is also required, since object-
oriented database applications have a strong tendency to cache a large number
of objects and perform extensive computations on them.

As such, major issues of accessing persistent objects are as follows:

Fault handling: How can nonresident object access be detected and handled?
Pointer swizzling: How many pointers should be swizzled at a time? And
how can swizzling techniques be combined with residency checking?
Access interface: What kind of interface is provided to access objects?
Object management: How and where are resident objects managed?

The mechanism and performance of accessing persistent objects depend pri-
marily on the above four topics, and these issues are closely interrelated. In
this section, we discuss each of the four issues in detail and their architectural
dependencies.

4.1 Object Fault Handling

There are two issues related to the object fault handling problem [24]: one is
how to detect access of a nonresident object and the other is how many objects

need to be fetched per object fault. In-memory hash tables are commonly used
to detect nonresident object access: for example, Oy, Objectivity/DB, Ode,
and Versant. That is, the residency of an object can be checked during the
in-memory address calculation via hash table lookup.

If the object referenced is not memory-resident, the system has to bring it into
the buffer. The problem here is how many persistent objects should be brought
into main memory per object fault. In respect to this design choice, we can
classify object fetch policies into three [24, 41, 61]: 1) object-at-a-time scheme,
which makes only the missed object resident, 2) page-at-a-time scheme, where
all objects from a page or a segment ® are extracted together upon the first
fetching of an object from the page or the segment, and 3) closure-at-a-time
scheme, where all objects linked with the faulted one are fetched recursively
on every object miss.

The object-at-a-time fetch scheme ensures the high space utilization of a client
buffer and it is less sensitive to clustering. However, too many object faults
would degrade the performance of object access significantly.

The page-at-a-time fetch scheme allows good performance of object access
by improving the buffer hit ratio, and it can be highly profitable in multi-
client environments, since object hits save work load on the server [16, 25, 29].
Many systems including O», Objectivity/DB, and Ode fetch all objects from
a page eagerly upon the first miss of an object in the page ”. However, when
databases are clustered poorly or object access patterns are not incorporated
with clustering, this policy may lead to many page faults as well as unnecessary
copy overhead [16, 25, 47]. Thus, this approach may induce significant perfor-
mance degradation although it can be of benefit in small and well clustered
databases.

The closure-at-a-time fetch scheme makes residency detection unnecessary by
fetching, in advance, all accessible persistent objects linked with an entry
point (see section 4.2). This scheme guarantees extremely good performance
for retrieving complex objects, if they are clustered well, and the data sets
are small. However, this policy may cause the fetching of more unnecessary
objects than the page-at-a-time policy if few of the linked objects are actually
followed. It may also induce significant overhead to pre-fetch the transitive
closure of a data set when the underlying object storage system has no idea
about object semantics like class or relationship [57]. Moreover, this scheme

cannot predict general object access patterns that might result from invoking
methods [17].

6 A segment can be a physical set of pages or a logical collection of objects.
" These systems usually keep objects in page buffers without copying them.

4.2 Pointer Swizzling

Pointer swizzling is based on the idea that improved performance of object
access can pay off the swizzling (and unswizzling) cost [41, 62]. Although
many approaches for swizzling have been proposed, their techniques can be
categorized along two dimensions: how many pointers are swizzled at a time?
and how does a swizzled pointer maintain object residency?

The first dimension classifies swizzling techniques into the following four ap-
proaches according to how aggressively they swizzle pointers [30, 41, 61]:
closure-at-a-time, page-at-a-time, object-at-a-time, and pointer-at-a-time. In
the closure-at-a-time swizzling scheme, the system recursively swizzles all of
the pointers in the transitive closure of the referenced objects. Page-at-a-
time and object-at-a-time swizzling schemes perform swizzling on all pointers
within a page and an object at a time, respectively. Generally, the above three
approaches, which swizzle pointers in advance, are considered to be eager swiz-
2ling schemes 8. As pointer swizzling is performed more eagerly, it can cause
more unnecessary swizzlings, and therefore possibly more unnecessary object
fetches.

In contrast to these eager approaches, the pointer-at-a-time swizzling scheme,
which is called a lazy swizzling scheme, waits until a pointer is actually used,
and then swizzles only one pointer at a time. However, this policy increases
run time overhead since every pointer access should determine whether the
pointer is swizzled or not.

The pointer-at-a-time swizzling scheme can be further divided into two swiz-
zling schemes: upon-dereference and upon-discovery [62]. The pointer-at-a-time
upon-dereference scheme defers pointer swizzling until the pointer is actu-
ally dereferenced, thus avoiding any unnecessary swizzling. This policy may,
however, leave pointers between persistent objects non-swizzled, since pointer
fields of objects are often copied into temporary variables. Thus, the same
pointer may have to be swizzled several times. On the other hand, the upon-
discovery scheme swizzles a pointer as soon as its location is discovered by
pointer operations such as comparison, assignment, and dereference. Conse-
quently, this policy can solve the repetitive swizzling problem associated with
the upon-dereference scheme although it may swizzle some pointers that will
never be dereferenced. Figure 4 summarizes the classification of pointer swiz-
zling techniques dependent on the first dimension.

A pointer swizzling technique should also provide a mechanism for detecting
access to nonresident objects, since access through swizzled pointers does not
involve in-memory hash table lookup. Along the second dimension — how to

8 Moss [41] considers only the closure-at-a-time scheme to be an eager technique.

10

EAGER

closure-at-a-time A

eager swizzling page-at-a-time

swizzling object-at-a-time
upon-discovery
lazy swizzling pointer-at-a-time <

upon-dereference y

LAZY

Fig. 4. Pointer swizzling techniques (depending on how many pointers to swizzle at
a time)

mark object residency — we can classify pointer swizzling policies into three [24,
41]:

e No marking
e Fdge marking
e Node marking

First, a no-marking policy guarantees that applications meet only swizzled
pointers that always reference resident objects, avoiding swizzling and resi-
dency checks entirely. However, this scheme requires closure-at-a-time fetch
and swizzling policies that fetch all objects that may possibly be accessed and
swizzle all pointers in them in advance.

Second, the edge-marking scheme ensures that swizzled pointers always point
to resident objects, while nonresident objects are referenced through non-
swizzled pointers [24, 41]. With an edge-marking scheme, pointers should be
checked to see if they are swizzled on every pointer access, since the program
can see both swizzled and non-swizzled pointers. This swizzling check is done
by tagging references, as shown in Figure 5(a).

While an edge-marking scheme caches object residency in edges, that is, point-
ers, a node-marking scheme marks residency in nodes referenced by point-
ers [24]. Thus, this policy detects access to a nonresident object by checking
the state of the node, and this scheme avoids any swizzling check by ensuring
that all in-memory pointers are always swizzled. According to how the status
of nodes is marked, node marking scheme can be further classified into fault
block method and memory protection method [24]. In the fault block method,
swizzled pointers contain the addresses of intermediate blocks, which are called
fault blocks, instead of the addresses of objects. Fault blocks keep the resi-
dency status of objects and cache their virtual addresses if resident. As shown
in Figure 5(b), objects are always accessed indirectly via fault blocks, and thus
the replacement of unused objects is easier than it is with the edge-marking
method. Kemper and Kossmann [30] refer to edge marking and the fault block

11

fault block

) Resident
Swizzled Q Swizzled Q
reference reference I

TAG — | (Virtual Address) !

N

. I .
In-memory | In-memory

N

N [

U) “\j\ Non-resident 1|
nswizzie AN
o ﬁ

(a) Edge marking (Direct swiz- (b) Fault block (Indirect swizzling)
zling)

Fig. 5. Pointer swizzling techniques (depending on how object residency is marked)

method as direct and indirect swizzling, respectively.

The memory protection method marks the residency of objects by protecting
the virtual memory spaces where the objects are located. The basic idea of this
scheme is as follows. If the referenced object is not yet resident, the pointer is
swizzled to point to a reserved address space where the object will be loaded
later, and the reserved space is protected to detect access to this area [64]. An
underlying operating system and hardware are responsible for trapping illegal
access to the protected area and forwarding control to the object storage
system. Object fault handling is achieved by fetching the missed object into
the reserved space and then unprotecting the area.

Because protecting operations can normally be performed over multiples of the
operating system’s virtual memory page size, the memory protection method
requires page-at-a-time object fetch and pointer swizzling schemes. This ap-
proach provides transparent and efficient access to persistent objects in the
same manner as to transient objects, since access to a nonresident object is
detected by an underlying hardware without any intervention by residency
or swizzling check. However, the main advantage of this scheme may be lost
due to the high fault cost, including that of reserving and protecting virtual
address spaces and trapping page faults [63]. Also, the memory protection
method imposes a stringent limit on the number of objects accessed in one
transaction to the size of virtual address space, and address space reserva-
tion further reduces the memory space that is actually used. Moreover, illegal
pointer operations can cause serious object corruption (see section 4.3).

There are several prototypes and commercial OODBMSs that employ mem-
ory protection methods: for example, Cricket [52], Texas [53], QuickStore [63],
and ObjectStore. While object identifiers in Cricket become virtual memory
addresses, Texas scans and swizzles all of the pointers in a page whenever

12

the page is fetched by a fault handling to support large address spaces. As
described above, virtual memory spaces are reserved and protected to swizzle
the pointers that reference nonresident objects. On the other hand, Object-
Store and QuickStore try to avoid heavy swizzling work by storing pointers
on disk in swizzled form, that is, as virtual memory addresses [63]. In order
to make stored virtual addresses valid throughout the lifetime of a database,
the system always has to map disk pages at the same locations where the
pages were the last time. However, several disk pages may be associated with
the same virtual address due to the limitation of virtual address space. When
the virtual address space (where the fault page was last mapped) is already
allocated to another page, the faulted one has to be assigned a new virtual
address space, not yet allocated. This re-mapping process requires additional
swizzling work: all of the pointers that reference objects on the re-mapped
page have to be updated to point the new locations. This is done incremen-
tally by examining whether the current memory mapping does not violate
the last mapping associated with the page on every page fault. As the size of
the database increases, the probability of virtual address conflicts among disk
pages increases since the same virtual address should be assigned to several
disk pages.

Along another dimension, swizzling schemes may be classified into in-place
swizzling and copy swizzling depending on whether or not objects are copied
at the time of swizzling [41]. An in-place swizzling policy swizzles the pointer
fields of objects in the page buffer directly, while a copy-swizzling scheme
makes swizzled copies of objects in the object buffer (or application heap).
Exploiting the dual-buffer architecture, copy swizzling can save the cost of
unswizzling — that is, restoring a virtual addresses into an OID — since only new
and modified objects have to be unswizzled. In contrast to the copy-swizzling
scheme, in-place swizzling can save copying cost and memory resources.

There is a strong interdependence among the swizzling scheme, the architec-
ture of an object storage system and the interface language. As mentioned ear-
lier, fault handling policy — detection of nonresident object access and fetching
missed objects — is also closely related to the swizzling scheme. Figure 6 shows
the dependency among these schemes, and the approaches taken by several
OODBMSs.

The first bar is the object fetch scheme. The second and the third bars show
the previous two dimensions of our classification of the swizzling scheme, swiz-
zling time and the swizzling (and residency) check method, respectively. As
shown in Figure 6, there are three major approaches to accessing objects:
no-swizzling, software-based swizzling, and hardware-based schemes. While

9 EXODUS takes an edge-marking policy but a swizzled pointer points to the object
indirectly, via a user descriptor.

13

Object Fetch Swizzling Time Siwzzling(Residency)

o L Check
no swizzling
NO SWIZZLING HASH TABLE e
w

—— e —— — — - = |— _E.%. B e

=~ Objectivity/DB ¢

<o EDGE-MARKING frasca 3

ws e POINTER-AT-A-TIME - ontos 5

= e SWIZZLING O e 3

<L Qo &

i = > O a

=9 o @

W3 © 2 by

= »

g ﬂo] OBJECT-AT-A-TIME é FAULT BLOCK Versant §

x SWIZZLING z N

= 5

w Q
- b - — - =t - — — =
PAGE-AT-A-TIME S MEMORY hardware-based swizzling

SWIZZLING PROTECTION Objectstore
CLOSURE-AT-A-TIME CLOSURE-AT-A-TIME pure eager swizzling
OBJECT FETCH SWIZZLING NO-MARKING

Fig. 6. Dependency of object fault handling and swizzling scheme °

hardware-based architecture, which uses the memory protection method, has
to follow the page-at-a-time object fetch and swizzling schemes, software-based
architectures — all swizzling techniques except the memory protection based
method — have several combinations of object fetch and swizzling schemes.
However, object-at-a-time or page-at-a-time swizzling schemes cannot be in-
corporated with edge marking, since they would then become identical to a
closure-at-a-time policy. The figure also shows that no-swizzling and pointer-
at-a-time swizzling schemes have no dependency with object fetch policy.

There have been numerous early studies on pointer swizzling, which is a major
issue for high-performance object management [24, 30, 41, 62, 64]. Hosking and
Moss [24], Moss [41] and White and DeWitt [62] made observations mainly
about the various software-based implementations of pointer swizzling, and
examined the performance of these alternatives. Kemper and Kossmann [30]
argued that there is no clear winner in swizzling schemes and presented an
adaptable pointer swizzling policy that employs several swizzling schemes adap-
tively, according to an application profile. Wilson and Kakkad [64] investigated
techniques of hardware-based swizzling approaches, and Vaughan and Dearle
[57] suggested a hybrid memory protection method that uses an object-at-a-
time swizzling scheme instead of the page-at-a-time scheme. However, these
earlier works have hardly considered the method and cost of unswizzling.

4.8 Object Access Interface

The object access interface is highly dependent on the object fault handling
policy and swizzling technique. Access interfaces to an object storage sys-

14

10

tem '° are classified into the following three [41, 61]:

e Direct pointer interface
e Indirect pointer interface
e (Call interface

Direct pointer interface, which is usually provided by memory protection based
systems such as QuickStore and ObjectStore, allows users to access persistent
objects by normal virtual memory pointers. The advantage of direct pointer
interface is that it is transparent and gives efficient access to persistent ob-
jects, just as for transient objects [63]. A disadvantage of this interface is that
it can make the system unsafe by exposing actual in-memory addresses of ob-
jects. That is, illegal pointer operations may cause database corruption. The
situation would be worse when clients share objects in the page buffer.

Indirect pointer interface gives object handlers instead of virtual addresses,
and persistent objects are accessed by methods defined on the object handler.
The dereference operation on the indirect pointer transparently performs ob-
ject fault handling and pointer swizzling, and returns the object addressed
by the pointer. C++ binding usually provides a smart pointer (which works,
at least superficially, in the same way as a normal C++ pointer) as an ob-
ject handler. However, the indirect pointer interface does not allow libraries,
developed for transient objects, to be applied on persistent objects without
change or re-compilation. Object access via indirect pointers also has a perfor-
mance disadvantage, since every dereference operation incurs overheads such
as a swizzling check or residency check. However the overhead of indirection
becomes relatively smaller with increasing work on objects per access.

However, indirect pointers locate objects more safely than the direct point-
ers, and can be incorporated with various schemes of fetching, swizzling, and
in-memory object management. Most OODBMSs that follow ODMG C++
binding guideline [12] support the indirect pointer interface: for example, Oq,
Objectivity /DB, Ode, Ontos, and Versant.

With the call approach, objects are accessed by calling an object storage sys-
tem. The call interface can be broken into several alternatives depending on
what kind of access path is given. The first type is a naive call interface, which
requires users to call the object storage system for every object manipulation.
That is, persistent objects or even fields of objects are accessed by explicit
function calls. The underlying system is allowed to detect all object accesses,

10 Language bindings of OODBMSs are not always the same as the interfaces to
object storage systems. For example, C++ and Smalltalk bindings of Versant are
implemented on top of the object storage system that provides C API. Some of the
examples we give here are the language bindings of OODBMSs, since we do not
know the interface to the object storage systems exactly.

15

and thus guarantees the safety of object references. Although this interface
makes persistent object management easy, it cannot avoid degradation of the
performance of object access. This approach is used by EXODUS, where every
object access in an E source code is converted to a call to EPVM [50]. Instead
of calling the object storage system for each object access, it may be more
efficient for function calls to return direct pointers. With this second type of
call interface, users are allowed to use the direct pointers of in-memory ob-
jects freely until the pointers are explicitly released by function calls. However,
users must take special care when dealing with the direct addresses of objects.
Ontos and Versant support this limited form of direct pointer interface, which
is not based on the memory protection method.

One of the issues for access interface is how the system should be informed
of updates in order to request the right locks and to generate logs. Memory
protection based systems can keep the track of object modifications transpar-
ently, taking advantage of the virtual memory hardware. This can be achieved
by making attempts to write to a clean page incur a page fault.

As mentioned above, a naive call interface also allows a system to detect
the modifications of objects transparently, since all the effects of updates are
known to the underlying system. In all other cases, the user should mark dirty
objects as modified explicitly, since the system cannot detect their updates
automatically. For example, the Ref class in ODMG C++ binding provides a
mark modified() method to inform the underlying object storage system as
to which objects are modified.

4.4 In-memory Object Management

The last issue for accessing persistent objects is where and how in-memory ob-
jects are to be managed. Depending on where persistent objects are brought
into, we can classify two approaches of in-memory object management [13].
The first approach is to manage persistent objects directly in the page buffer
pool of the underlying object storage system. To exploit the memory-protection
scheme, QuickStore and ObjectStore map page buffer pools into virtual mem-
ory spaces and allow users to access objects there directly [63]. Also, most page
server based systems such as Os, Objectivity/DB and Ode keep in-memory
objects in their page buffers. This policy can reduce copy overhead and keep
the memory utilization high for well-clustered databases. However, these sys-
tems need to make object conversion such as pointer swizzling in place [13].
This policy also has the possibility of corrupting the system data, exposing
the page buffer pool directly, and makes object resizing difficult.

When object instances are clustered poorly, it may not be desirable to keep

16

objects in page frames, since pure page-based buffering leads to inefficient
space utilization [16, 29, 35]. To solve this problem, some OODBMSs (e.g.,
Itasca, Ontos, and Versant) are based on the dual-buffer architecture in which
an object buffer functions on top of a page buffer, as mentioned above [16, 35].
This partitioned buffering provides good space utilization by filtering out use-
less objects from the page buffer and allows efficient object replacement and
garbage collection. Also, the translation of objects between the disk represen-
tation and the in-memory format, including pointer swizzling/unswizzling, are
easy and efficient [41]. However, the object buffer management has a number
of complex and difficult problems that can prevent efficient object buffering.
The object buffer should handle fragmentations as well as heavy memory allo-
cations and deallocations, since it needs to manipulate a number of objects of
various size. Moreover, the buffer consistency problem may make the object
buffer management harder [16].

Whichever policy is used, unused objects should be displaced deliberately,
with a notion of object access history for effective object buffering. However,
it is not easy for a system to delimit a span of using an object, especially
when the address (or pointer) of the object is accessed directly by a language
like C++. So, adopting a replacement algorithm such as LRU for an object
buffer might be problematic, if not impossible. Due to these difficulties, many
systems including Oq, Ode, Objectivity/DB, and Versant keep objects in page
or object buffers without object replacement until the transaction ends or the
reference is definitely finished ! .

Previous works, attempting to increase the object buffer hit ratio, have in-
vestigated efficient object prefetch policies rather than efficient object buffer
replacement algorithms, due to the difficulties involved with object buffering.
Chang and Katz [14] proposed a policy that exploits high-level object seman-
tics in terms of inheritance and structural relationship. Alternative approaches
based on profiling or learning of object access patterns have been studied in
Cheng and Hurson [16] and Palmer and Zdonik [47], and an object prefetch
policy, which prefetches objects only from selected candidate pages without
using any high-level object semantics, is proposed by Ahn and Kim [4].

1 These systems also provide APIs to displace objects before the end of a transaction

17

5 Other Performance Sensitive Features
5.1 Transaction Processing

Transactions in new object-oriented applications may span long durations and
involve human interactions, while traditional on-line transactions are short
and flat [36]. Thus, object storage systems should employ new techniques of
concurrency control and recovery. In this section, we only briefly describe new
transaction facilities for object-oriented database systems, since this topic is
beyond the scope of the paper.

Many OODBMSs support a nested transaction model and check-out/check-in
policy. The nested transaction concept is the generalization of save-points used
in traditional transaction models [23]. While save-points organize a transaction
into a sequence of actions that can be rolled back individually, nested trans-
actions form a hierarchy of transactions. That is, transactions can be nested
recursively to an arbitrary depth [23, 40]. The top-level transaction controls
the whole activity, while lower-level transactions, called sub-transactions, con-
trol each of the partial activities. An exception raised within a sub-transaction
can be solved either by its parent transaction or by any surrounding transac-
tion without aborting the whole activity. This mechanism is very useful for
aborting a subset of works.

Cooperative work can be supported by the check-out/check-in mechanism,
which is usually implemented by object versioning ? [36]. The check-out/check-
in model allows a user to extract one version of an object (or group of ob-
jects) from a group database into a private database. Objects in the private
database can be manipulated by the owner without any intervention from
other co-workers. When the user finishes the job on the objects, the user must
check-in the updated objects into the group database so that other co-workers
can share the results. Every check-out derives a new version of an object and
thus, more than one user can work with the same object simultaneously —
they all have different versions of the object. When a version is checked-in, it
may be merged with another version to reconcile the differences between the
two versions [43]. Itasca, Objectivity /DB, ObjectStore, and Versant provide
check-out/check-in mechanisms with some variations.

In addition to the traditional concurrency control, new lock mechanisms such
as class locking, class hierarchy locking, and composite object locking can be
applied to OODBMSs [13, 33, 38]. Class lock can be further divided into class
definition lock and class instance lock. The former means a lock on a class

12 Check-out /check-in scheme can also be implemented by persistent locks: for ex-
ample, Objectivity /DB and Versant.

18

definition itself, and the latter, a lock on all instances of a class. Class hierarchy
lock, locks on all instances of a class and its sub-classes through the class
hierarchy. Similarly, with composite object lock, all component objects are
locked by locking only the root object; this mechanism requires that the object
storage system understands the structural relationships between objects.

Notification is also an extension of traditional lock management [34]. This
mechanism allows conflicts of object access, and transactions are notified of
the conflict access immediately (immediate notification) or when one of them
attempts to commit (deferred notification). A notification is transferred via
e-mail or by triggering predefined actions on notified classes.

Caching in the data-shipping architecture gives performance enhancement,
but also leads to cache coherence problems. There are two basic caching poli-
cies, caching within a transaction and caching between transactions, called
intra-transaction caching and inter-transaction caching, respectively. With
intra-transaction caching, all cached data must be invalidated when a transac-
tion ends and a conventional two-phase locking protocol automatically keeps
clients’ caches consistent. That is, objects (or pages) which may have been
cached by a previous transaction must be fetched and locked again whenever
a new transaction begins, in order to keep consistency. Although the intra-
transaction caching mechanism is easy to implement, it cannot benefit from
inter-transaction reference locality [10, 21, 60]. On the contrary, the inter-
transaction caching policy allows successive transactions to re-use data that
have been cached by previous transactions. Two solutions for the cache con-
sistency problem are widely used to support valid inter-transaction caching:
lock-validation and lock-callback. With a lock-validation scheme, clients inter-
act with a server to check the validity of cached data when it is first accessed
in a transaction. This scheme reduces data transfers but still suffers from val-
idation overhead. In contrast, the lock-callback approach keeps locks as well
as data, even after a transaction terminates. When an object is accessed in
a shared mode, the client does not need to either check the data validity or
acquire a lock from the server. However, the client should get an exclusive
lock to update an object, and the server should send an invalidation request
to all clients for that object [43]. This type of reverse client-server commu-
nication makes the implementation of a lock-callback scheme difficult. Many
commercial OODBMSs support inter-transaction caching. EXODUS, Itasca,
Objectivity /DB, and Versant implement lock-validation schemes and, O, and
ObjectStore follow the lock-callback approach.

Concerning recovery, conventional techniques such as group logging can also
be applied to OODBMSs, since there is no significant difference from those
of RDBMSs. However, data-shipping architecture enables improvement of the
logging performance. For example, clients themselves can generate log records
to reduce the burden on a server [48].

19

Table 2
Clustering Taxonomy

Policies Immediate Clustering Deferred Clustering
Class Object Set of Classes | Class | Object | Set of Classes
Products | Itasca EXODUS Ttasca - - Oy
Ode | Objectivity/DB Versant
ObjectStore

5.2 Object Clustering

OODBMSs support object clustering, which places a semantically related set
of objects on the same disk page or on adjacent pages to minimize disk I/0 [14,
15, 31, 56]. On page server based systems, in particular, good clustering can
dramatically enhance performance by minimizing interactions between clients
and servers, and also by reducing the cost of locking and logging. Moreover,
a well-clustered database provides good memory utilization, since most of the
objects in a client buffer pool may be used.

We may classify clustering policies along two dimensions: when to cluster
objects and how to specify clustering hints. According to the first dimension,
the clustering strategy can be broken into tmmediate clustering and deferred
clustering. In the immediate approach, the physical locations of objects are
immediately determined at their creation time. Most existing OODBMSs take
this approach. In contrast, the deferred approach delays the calculation of
the physical locations of objects until a transaction commits. This strategy
benefits from a global view of connections between objects, and consequently
may achieve better clustering. O, follows the latter scheme [7].

Next, we can categorize object clustering policies into three according to the
granularity of clustering hints. The first is the approach where all objects of a
class are simply clustered together, as in RDBMS where all tuples of a relation
are stored in a file [8]. That is, a class is the unit of clustering. Itasca and Ode
follow this approach. The second policy allows a user to control the placement
of an individual object at the time of its creation [14, 25]. In this policy, a
new object is stored close to a ‘near object’ which is given as a clustering
hint. The third is a more general scheme, which is supported by Itasca, Os,
and Versant. With this approach, all the instances of the set of classes can be
clustered together according to clustering hints, such as a placement tree [7].
Table 2 summarizes the classification of object clustering policies and lists
some examples.

Most available OODBMSs do not support dynamic re-clustering, which moves
objects from their origins to other locations. In particular, it is hard to sup-

20

port dynamic re-clustering with a physical OID scheme because physical OID
makes object movements difficult or useless, at least in terms of clustering [7].
In Oy and Versant, though existing objects cannot be moved, a database ad-
ministrator can change clustering hints at any time, something that would be
effective only for newly created objects.

Many previous works have examined object clustering problems [14, 16, 22,
56]. Chang and Katz [14] described a clustering policy that exploits high-level
object semantics in terms of inheritance and structural relationship. Cheng
and Hurson [16] provided a dynamic re-clustering mechanism that takes into
account object updates and multiple relationship. However, re-clustering is a
difficult problem, as mentioned before. Gerlhof et al. [22] reported on an object
database reorganization tool which monitors access statistics of applications,
computes new object placement from the statistics, and finally restructures
the database accordingly. Tsangaris and Naughton [56] investigated the perfor-
mance of various clustering techniques for object-oriented databases, including
depth-first search, breadth-first search, placement tree, and a stochastic algo-
rithm.

5.8 Object Versioning

Design systems like CAD require data changes to be versioned so as to rep-
resent different design alternatives or evolutions [3, 28, 49, 51]. In addition,
object versioning is used to implement a check-out/check-in model for long-
duration transactions in cooperative work environments [27, 37, 54, 59].

Every versioned object — an object of which versions are created — has one root
version, and all new versions are derived directly or indirectly from the root
version. These ‘derived-from’ relationships between pairs of versions construct
a version derivation hierarchy (VDH) [33]. Itasca and Ode allow only a tree-
type of version graph, where more than one child version can be derived from a
single parent. In Oy, Objectivity/DB, ObjectStore, and Versant, it is possible
to derive a new version by merging two or more parent versions. However, a
user must resolve the differences among the parents.

A versioned object may be referenced in two ways, by static binding and
dynamic binding. In static binding, a specific version of the object is referenced
statically. In contrast, dynamic binding determines the version referenced at
run time. With a dynamic binding policy it is possible to maintain consistent
reference to versioned objects automatically, without user intervention. All the
systems that support object versioning, provide dynamic binding.

One of the most important concepts related to object versioning is version
configuration [13]. A configuration is a specific set of versions that are con-

21

l Access method

Client ' I R

% Shipping granularity

Server Lo ____

Fig. 7. Architectural issues

sistently associated with each other. O, and ObjectStore provide a simple
and basic configuration management policy, but some other OODBMSs, such
as Orion [33] and Ode, impose the burden of configuration management on
the user just by providing object versioning and dynamic binding mechanism.

Sciore [51] extended the EXTRA/EXCESS data model to allow users to spec-
ify configurations in a conceptual and declarative manner.

6 Dependencies among Architectural Aspects

In this section, we give a comparative review of architectural issues studied
in the previous sections, and draw a general guideline for high-performance
object storage systems.

The dependencies among the architectural factors can be illustrated by the
scenario of passing a persistent object from disk to an application. Figure 7
shows how a persistent object is accessed through an OID. The object on the
disk is first addressed, then brought into main memory. It is the representation
of OID that affects the performance of this process, since the cost of locating
and fetching objects is mainly dependent on the techniques for implementa-
tion of OID, as mentioned above. The next most important parameter is the
shipping granularity, that is, how many objects should be transferred together.
The granularity of data shipping actually implies the overall system architec-
ture of an object storage system. Finally, the performance and transparency
of access to objects cached in a client are determined by the access method,
including the object fault handling mechanism and pointer swizzling policy.

As implied by Figure 7, each factor has close inter-relationships with adjacent
factors — dependencies between access method and shipping granularity, and
between shipping granularity and OID representation. It is worth emphasizing

22

Shipping granularity Physical OID

Objectivity/DB

Ode Exodus g
[J

ObjectStore
[

Page Server

02

Versant

Object-Group
Server

Logical OID

Pure Object
Server

swizzling time

no swizzling pointer-at-a-time object-at-a-time page-at-a-time closure-at-a-time
Fig. 8. Dependency of architectural issues

that these dependencies are not just interesting facts but are an important key
to high-performance object storage systems. Our arguments can be confirmed
by a review of existing products, as shown in Figure 8.

In Figure 8, we can easily see that there exists a strong dependency between
OID representation and shipping granularity. That is, OODBMSs that em-
ploy physical OID take a page server approach, whereas logical OID drives to
an object server approach. This tendency is explained as follows. Page server
architecture is not appropriate for systems that use logical OID. With this en-
vironment, mapping information from logical OID to physical address should
be shipped to clients and kept consistent. This makes object management,
including creation, deletion, and movement, difficult and slow. On the con-
trary, object server architecture allows translation of OID to be performed at
a server. Thus, the mapping information is maintained at the server only so
that there is no problem of replication. Moreover, the average cost of OID
translation can be comparable to that of physical OID, since most of the
mapping information would be cached due to its hotness.

Considering the dependency between shipping granularity and the access method,
closure-at-a-time and page-at-a-time swizzling schemes require an object server
and a page server, respectively, due to their own architectural character-
istics. However, no-swizzling, pointer-at-a-time, and object-at-a-time swiz-
zling schemes are independent of shipping granularity, because these swizzling
schemes require only one object at a time.

The access method, shipping granularity, and OID representation are mainly
concerned with transparency, performance, and flexibility, respectively. How-
ever, not one of these factors overwhelms the other two. That is, design policy
is a matter of preference among these factors in terms of which one is chosen
first. For example, one who considers transparency to be the most important
may design and implement a memory protection based system. In the same
way, one who attaches great importance to performance may choose a page

23

Ideal system

Page-server
on well clustered db

Object-server
with good object grouping
A (and with efficient OID translation)

1/Interactions

Page-server

on poorly clustered db
Object-server

without object grouping

Memory utilization

Fig. 9. A way to an ideal system: in performance

server architecture, and one who chooses flexibility will follow a logical OID
scheme.

Although we cannot say that one of the three factors is the most important
and it is not easy to evaluate these issues quantitatively, we can suggest criteria
for an ideal system that is satisfactory from each of the above three angles.

First, concerning the performance factor, Figure 9 depicts the tradeoff between
memory utilization and network interactions. The approximate locations of
a page server and an object server are also indicated. An object server is
good with respect to memory utilization at the expense of many client-server
interactions. On the other hand, the location of a page server depends on
clustering. In Figure 9, an ideal system is located where the memory utilization
and 1/interaction are maximized. As already known, it is possible for page
server based systems to approximate an ideal system through a good clustering
technique. On the other hand, object server based systems try to achieve an
ideal system through good logical grouping polices. An efficient mechanism
of logical OID translation can also be an important means of improving the
system.

Turning our attention to flexibility, physical OID makes object movements and
replications very difficult [18]. Thus, systems that adopt a physical OID scheme
can approach an ideal system through the effective mechanism of dynamic
object movements and distributions.

Finally, from the point of transparency, more efficient and transparent access
methods should be developed to drive non-memory-protection-based systems
toward an ideal system. Also, operating system improvements can make a
memory protection architecture more safe and attractive by providing efficient
page trapping facilities.

24

7 Summary

In this paper, we have surveyed the current state-of-the-art of object storage
systems by focusing on three main architectural issues: client-server architec-
ture, object identifier representation, and object access method. In addition,
we have briefly discussed transaction processing, object clustering, and object
versioning that are related to the performance and the modeling power of
object storage systems. The following summarizes the survey results.

In object-oriented databases, each object has its own unique identifier, which
remains invariant, independent of the object’s value and structure, throughout
the lifetime of a database. To access a persistent object through OID, an object
on the disk should be addressed and then brought into main memory first.
It is the representation of OID that affects the performance of this process,
since the cost of locating and fetching objects is mainly dependent on the
implementation techniques of OID. Two kinds of OID representations are
popular with object-oriented database systems: physical OID and logical OID.

In contrast to traditional database systems, OODBMSs usually ship data from
a server to clients so that clients can navigate the shipped data and perform
query processing locally by themselves. The important parameter here is the
shipping granularity, that is, the number of objects that should be transferred
together. The granularity of data shipping actually implies the overall system
architecture of an object storage system. The two most commonly used data-
shipping techniques are object server and page server.

Finally, the performance and transparency of access to objects, cached in
a client, are determined by access method, such as the object fault handling
mechanism and the pointer swizzling policy. Pointer swizzling can improve the
performance of object access by skipping any lookup-table search, particularly
in CPU-intensive applications. In particular, memory protection systems pro-
vide transparent and efficient access to persistent objects in the same manner
as to transient objects.

The three main factors above — shipping granularity, OID representation,
and access method — are mainly concerned with performance, flexibility, and
transparency, respectively. Concerning the performance factor, object group-
ing is the most challenging area to improve the performance of object storage
systems. A reasonably intelligent logical grouping will be attractive for sys-
tems based on object server architecture, while better techniques of physical
grouping, that is, clustering, should be devised to enhance the performance of
page server based systems. Also, more research into the implementation tech-
niques of an object identifier and an efficient and transparent access method
are needed to approximate more closely an ideal system that provides trans-

25

parency, high performance, and flexibility.
Table 3 shows overall survey results of this paper.

In the future, we would like to develop prototypes for alternative ways of
implementing object storage systems by focusing on three main architectural
issues, and to evaluate the corresponding performance of each alternative.
We believe that such a study could make our current work more concrete
and realistic. We are also interested in finding an analytic model that can
predict the performance of object storage systems, according to the major
architectural issues discussed in this paper.

Acknowledgments The authors would like to thank all those at OOPSLA
Laboratory in the Department of Computer Engineering, Seoul National Uni-
versity who have been involved in the SOP project. We also wish to thank the
anonymous referees for their valuable comments.

References

[1] R. Agrawal, S. J. Buroff, N. Gehani, and D. Shasha. Object Versioning in
Ode. In Proceedings of the International Conference on Data Engineering,
1991.

[2] R. Agrawal, S. Dar, and N. Gehani. The O++ Database Programming
Language: Implementation and Experience. In Proceedings of the Inter-
national Conference on Data Engineering, 1993.

[3] R. Ahmed. Version Management of Composite Objects in CAD
Databases. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 1991.

[4] J.-H. Ahn and H.-J. Kim. SEOF: An Adaptable Object Prefetch Policy
For Object-Oriented Database Systems. In Proceedings of the Interna-
tional Conference on Data Engineering, 1997.

[5] R. Arlein, J. Gava, N. Gehani, and D. Lieuwen. Ode 4.2(Ode<EQ0S>)
User Manual. AT&T Bell Laboratories, 1996.

13 < indicates an item unknown at the time of writing of this paper.

14 Ontos and Versant also support APIs to group-read objects or to obtain a closure
of objects.

15 All references to the newly activated objects from other objects already read are
swizzled.

16 A swizzled pointer points to an object descriptor (or fault block) instead of the
object.

17 Clustering objects of a single class is done automatically at class definition time,
but a user may instruct the database to cluster the instances of a group of classes.

26

LC

Table 3

Overall survey results '3

Features EXODUS Itasca 02 Objectivity/DB ObjectStore Ode Ontos Versant
Architecture Page Object Page Page Page Page Object 4 Object 4

(Shipping)

OID Physical Typed logical Physical Physical Physical Physical Pure logical Pure logical
representation (12 bytes) (12 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes)
Object fetch Object Object Page Page Page Page Object Object

(?-at-a-time)
Pointer swizzling Pointer Pointer Pointer Pointer Page No swizzling Pointer 15 Object
(?-at-a-time)

Swizzling Edge Edge Edge Edge Memory Edge Fault
check marking 16 marking 16 marking marking protection marking block
Access Call Call Call(02C), Indirect Direct Indirect Call, Call,

interface Indirect(C++) Indirect Indirect(C++)
Nested No Yes No No Yes No Yes Yes

transaction
Check-in/check-out No Yes No Yes Yes No - Yes
Cache coherence Validation Validation Callback Validation Callback 2PL - Validation
Clustering Object Class 7, Set of classes Object Object Class - Set of classes
(Granularity) Set of classes
Versioning Tree Tree DAG DAG DAG Tree - DAG

(VDH type)

[6] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-
Oriented Database System: The Story of O2. Morgan Kaufmann Pub-
lishers, Inc., 1992.

[7] V. Benzaken and C. Delobel. Enhancing Performance in a Persistent
Object Store: Clustering Strategies in O2. In Proceedings of the 4th In-
ternational Workshop on Persistent Object Systems, 1990.

[8] E. Bertino and L. Martino. Object-Oriented Database Systems: Concepts
and Architecture. Addison-Wesley Publishing Company Inc., 1993.

[9] A. Biliris and E. Panagos. FOS User’s Manual Release 2.0.1. AT&T Bell
Laboratories, 1993.

[10] M. J. Carey, M. J. Franklin, M. Lyvny, and E. J. Shekita. Data Caching
Tradeoffs in Client-Server DBMS Architectures. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 1991.

[11] M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-Grained Shar-
ing in a Page Server OODBMS. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1994.

[12] R. G. G. Cattel and D. K. Barry, editors. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann Publishers, Inc., 1997.

[13] R. G. G. Cattell. Object Data Management: Object-Oriented and Ex-
tended Relational Database Systems. Addison-Wesley Publishing Com-
pany Inc., 1991.

[14] E. E. Chang and R. H. Katz. Exploiting Inheritance and Structure
Semantics for Effective Clustering and Buffering in an Object-Oriented
DBMS. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 1989.

[15] J. R. Cheng and A. R. Hurson. Effective Clustering of Complex Ob-
jects In Object-Oriented Databases. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1991.

[16] J. R. Cheng and A. R. Hurson. On The Performance Issues of Object-
Based Buffering. In Proceedings of the International Conference on Par-
allel and Distributed Information Systems, 1991.

[17] D. J. Dewitt and D. Maier. A Study of Three Alternative Workstation-
Server Architectures for Object-Oriented Database Systems. In Proceed-
ings of the International Conference on Very Large Data Bases, 1990.

[18] A. Eickler, C. A. Gerlhof, and D. Kossmann. A Performance Evaluation of
OID Mapping Techniques. In Proceedings of the International Conference
on Very Large Data Bases, 1995.

[19] EXODUS Project Group. EXODUS Storage Manager V3.0 Architectural
Overview, 1993.

[20] EXODUS Project Group. Using the EXODUS Storage Manager V3.1,
1993.

[21] M. J. Franklin, M. J. Carey, and M. Livny. Transactional Client-Server
Cache Consistency: Alternatives and Performance. ACM Trans. Database
Syst., 22, 1997.

[22] C. A. Gerlhof, A. Kemper, and C. Moerkotte. On the Cost of Monitor-

28

ing and Reorganization of Object Bases for Clustering. ACM SIGMOD
Record, 25(3), 1996.

[23] J. Gray and A. Reuter. Transaction Processing. Morgan Kaufmann
Publishers, Inc., 1993.

[24] A. L. Hosking and J. E. B. Moss. Object Fault Handling for Persis-
tent Programming Languages: A Performance Evaluation. In Proceed-
ings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications(OOPSLA), 1993.

[25] A. R. Hurson, S. H. Pakzad, and J. Cheng. Object-Oriented Database
Management Systems: Evolution and Performance Issues. IEEE Com-
puter, 1993.

[26] IBEX Object Systems, Inc. ITASCA Distributed Object Database Man-
agement System Technical Summary Release 2.3, 1995.

[27] IBEX Object Systems, Inc. ITASCA Technical Summary Release 2.3,
1995.

[28] R. H. Katz. Toward a Unified Framework for Version Modeling in Engi-
neering Databases. ACM Computing Surveys, 1990.

[29] A. Kemper and D. Kossmann. Dual-Buffering Strategies in Object Bases.
In Proceedings of the International Conference on Very Large Data Bases,
1994.

[30] A. Kemper and D. Kossmann. Adaptable Pointer Swizzling Strategies
in Object Bases: Design, Realization, and Quantitative Analysis. VLDB
journal, 4(3), 1995.

[31] A. Kemper and G. Moerkotte. Object Oriented Database Management:
Applications In Engineering and Computer Science. Prentice Hall, 1994.

[32] S. N. Khoshafian and G. P. Copeland. Object Identity. In Proceedings
of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications(OOPSLA), 1986.

[33] W. Kim. Introduction to Object-Oriented Databases. The MIT Press,
1990.

[34] W. Kim. Modern Database Systems — The Object Model, Interoperability,
and Beyond. Addison-Wesley Publishing Company Inc., 1995.

[35] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the
ORION Next-Generation Database System. IEEFE Trans. on Knowledge
and Database Eng., 2(1), 1990.

[36] W. Kim, R. Lorie, D. McNabb, and W. Plouffe. A Transaction Mechanism
for Engineering Design Databases. In Proceedings of the International
Conference on Very Large Data Bases, 1984.

[37] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
Database System. Commun. ACM, 34(10), 1991.

[38] M. E. Loomis. OBJECT DATABASES - The Essentials. Addison-Wesley
Publishing Company Inc., 1994.

[39] D. Maier and J. Stein. Development and Implementation of an Object-
Oriented DBMS. In B. Shrive and P. Wegner, editors, Research Directions
in Object-Oriented Programming. The MIT Press, 1987.

29

[40] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed
Computing. The MIT Press, 1985.

[41] J. E. B. Moss. Working with Persistent Objects: To Swizzle or Not to
Swizzle. IEEE Trans. Softw. Eng., 18(8), 1992.

[42] Object Design, Inc. ObjectStore Release 4.0 Online Documents, 1995.

[43] Object Design, Inc. Objectstore technical overview, 1997.
http://www.odi.com/products/os/techovrwv.html.

[44] Objectivity, Inc. Objectivity/DB Technical Overview, Version 3, 1995.

[45] Objectivity, Inc. Objectivity technical overview, version 4, 1997.
http://www.objectivity.com/Products/TechOv.html.

[46] Ontos, Inc. ONTOS Product Description, 1996.

[47] M. Palmer and S. B. Zdonik. Fido: A Cache That Learns to Fetch. In
Proceedings of the International Conference on Very Large Data Bases,
1991.

[48] E. Panagos, A. Biliris, H. Jagadish, and R. Rastogi. Client-Based Logging
for High Performance Distributed Architecture. In Proceedings of the
International Conference on Data Engineering, 1996.

[49] R. Ramarkishnan and D. J. Ram. Modeling Design Versions. In Proceed-
ings of the International Conference on Very Large Data Bases, pages
556-566, 1996.

[50] D. Schuh, M. J. Carey, and D. J. DeWitt. Persistence in E Revisited—
Implementation Experiences. Technical Report #957, University of
Wisconsin-Madison, 1990.

[61] E. Sciore. Versioning and Configuration Management in an Object-
Oriented Data Model. VLDB journal, 3(1), 1994.

[52] E. Shekita and M. Zwilling. Cricket: A Mapped, Persistent Object Store.
Technical Report Computer Sciences #956, University of Wisconsin-
Madison, 1990.

[53] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An Efficient, Portable
Persistent Store. In Proceedings of the 5th International Workshop on
Persistent Object Systems, 1992.

[64] O Technology. A Technical Overview of The O System, 1994.

[65] Oy Technology. O9Engine Technical Features, 1997.
http://www.o2tech.fr.

[56] M. M. Tsangaris and J. F. Naughton. On the Performance of Object
Clustering Techniques. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 1992.

[67] F. Vaughan and A. Dearle. Supporting Large Persistent Stores Using
Conventional Hardware. In Proceedings of the 5th International Workshop
on Persistent Object Systems, San Minato, Italy, 1992.

[58] Versant Object Technology Corp. Versant ODBMS Release 4, 1996.

[59] Versant Object Technology Corp. Versant ODBMS Release 5, 1997.
http://www.versant.com/products/rel5/index.html.

[60] Y. Wang and L. A. Rowe. Cache Consistency and Concurrency Con-
trol in a Client/Server DBMS Architecture. In Proceedings of the ACM

30

SIGMOD International Conference on Management of Data, 1991.

[61] S. J. White. Pointer Swizzling Techniques for Object-Oriented Database
Systems. PhD thesis, University of Wisconsin-Madison, 1994.

[62] S. J. White and D. J. DeWitt. A Performance Study of Alternative
Object Faulting and Pointer Swizzling Strategies. In Proceedings of the
International Conference on Very Large Data Bases, 1992.

[63] S. J. White and D. J. DeWitt. QuickStore: A High Performance Mapped
Object Store. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, 1994.

[64] P. R. Wilson and S. V. Kakkad. Pointer Swizzling at Page Fault Time:
Efficiently and Compatibly Supporting Huge Address Spaces on Stan-
dard Hardware. In Proceedings of the International Workshop on Object
Orientation in Operating Systems, 1992.

31

