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Abstract

Most of all index structures based on the R-tree have failed to support e�cient indexing mechanisms for similarity

search in high-dimensional data spaces. This is due to the fact that most of the index structures commonly use balanced

split strategy in order to guarantee storage utilization and the shape of queries for similarity search is a hypersphere in

high-dimensional spaces. In this paper, we propose the Spherical Pyramid-Technique (SPY-TEC), an e�cient indexing

method for similarity search in high-dimensional data space. The SPY-TEC is based on a special partitioning strategy,

which is to divide the d-dimensional data space ®rst into 2d spherical pyramids, and then cut the single spherical

pyramid into several spherical slices. This partition provides a transformation of d-dimensional space into one-di-

mensional space as the Pyramid-Technique [14] does. Thus, we are able to use a B�-tree to manage the transformed

one-dimensional data. We also propose the algorithms to process hyperspherical range queries on the data space

partitioned by this partitioning strategy. Finally, we show that the SPY-TEC clearly outperforms other related tech-

niques including the Pyramid-Technique in processing hyperspherical range queries through various experiments using

synthetic and real data. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The high-dimensional index technique is one of the most important techniques needed for next-
generation database applications.

Recently, a variety of new database applications have been developed which substantially di�er
from conventional database applications in many respects [14]. For example, new database ap-
plications, such as data warehousing, produce very large relations which require a multi-dimen-
sional view on the data, and in areas such as multimedia, high-dimensional feature vectors
extracted from multimedia data have been used for similarity search in content-based retrieval
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applications. Generally, these applications use high-dimensional data. Thus, the underlying dat-
abase systems have to support e�cient indexing methods for high-dimensional data spaces to
provide fast retrieval in very large databases.

Recent research activities [4,13±15] reported the result that basically none of the querying and
indexing techniques which provide good results on low-dimensional data perform su�ciently well
on high-dimensional data for larger queries. Many database related researchers have called this
problem ``curse of dimensionality'' [5] and many database related projects have tried to tackle it.
As a result of these research e�orts, a variety of new index structures [3,7,15], cost models [12,13]
and query processing techniques [16] have been proposed. Most of the index structures are ex-
tensions of multi-dimensional index structures adapted to the requirements of high-dimensional
indexing [14]. Thus, all of these index structures are limited with respect to the data space par-
titioning and su�er from the well-known drawbacks of multi-dimensional index structures, such
as high costs for insert and delete operations and a poor support of concurrency control and
recovery [14].

To overcome these drawbacks, the Pyramid-Technique [14] proposed the method which can use
the B�-tree to manage fast insert, update, and delete operations on high-dimensional data by
transforming d-dimensional space into a one-dimensional value. In [14], Berchtold et al. proposed
a special partitioning strategy which divides the data space ®rst into 2d pyramids and then, cut the
single pyramid into several slices. They also proposed the algorithms for processing hypercubic
range queries on the space partitioned by this strategy. However, in content-based retrieval, which
is one of the most important applications in multimedia database, similarity search has been
frequently used and the shape of queries used in similarity search is not a hypercube, but a hy-
persphere [1,2,5,17]. Thus, when processing hyperspherical range queries with the Pyramid-
Technique, there is a drawback which exists in all the index structures based on the bounding
rectangle. Namely, they ®rst have to perform the query using the minimum boundary rectangle
(MBR) of hyperspherical queries, and then perform post-processing which determines whether the
object inside the MBR of the range query is really lying in the hyperspherical region [5]. This
processing needs unnecessary data page accesses and deteriorates the overall performance [1,5].

In this paper, we propose the new special space-partitioning strategy, the SPY-TEC, which is
optimized for similarity search in high-dimensional spaces, and propose the algorithms for pro-
cessing hyperspherical range queries on the data space partitioned by this strategy.

The SPY-TEC partitions the data space in two steps as the Pyramid-Technique does. In the ®rst
step, we ®rst divide the d-dimensional space into 2d spherical pyramids having the center point of
the space as their top, and the curved �d ÿ 1�-dimensional surface as their basis. In the second
step, each of the spherical pyramids is cut into spherical slices, such as fan-shaped partitions,
having their top as the center point of the data space. We show experimentally that the SPY-TEC
clearly outperforms other related techniques, including the Pyramid-Technique, when processing
hyperspherical range queries.

Another advantage of the SPY-TEC is the fact that we can use the main advantage of the
Pyramid-Technique. Namely, we can transform the given d-dimensional data space into a one-
dimensional value by the partitioning strategy of the SPY-TEC. Thus, we can use a B�-tree to
store and access data items, and take advantage of all the bene®ts of a B�-tree, such as fast insert,
update and delete operations, and good concurrency control and recovery [14]. The SPY-TEC can
easily be implemented on top of an existing DBMS as the Pyramid-Technique does.
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This paper is organized as follows. Section 2 describes related work in high-dimensional in-
dexing techniques in recent years. In Section 3, we explain the Pyramid-Technique in detail and
the disadvantages of this method in similarity search. In Sections 4 and 5, we present our new
method, especially focusing on the query processing algorithm of the SPY-TEC. Then, in Section
6, we show a variety of experiments using synthetic data and real data to demonstrate the impact
of the SPY-TEC. Finally, Section 7 contains conclusions and our future works.

2. Related work

A few high-dimensional index structures have been proposed in recent years.
The TV-tree [7] presented by Jagadish and Faloutsos is an R*-tree-like index structure for high-

dimensional feature vectors. It improves the performance of the R*-tree by employing the re-
duction of dimensionality and the shift (telescoping) of active dimensions [10]. The reduction of
dimensionality is achieved by activating only a few of the more important dimensions, not acti-
vating all the dimensions for indexing. If feature vectors in a sub-tree have the same coordinates
on the most important active dimensions, the shift of active dimensions, in which the dimension
used for sub-tree branching is made inactive and the less important dimension is newly activated
for indexing, occurs [10]. As mentioned in [4,10,14], the major drawback of the TV-tree is that
information on the behavior of the dimensions is required. In other words, there exists no such
feature vector, that always allows the shift of active dimensions because real-valued feature
vectors usually have wide diversity. Thus, the e�ectiveness of the TV-tree is dependent on the
application domain.

The SS-tree [4] is another R-tree-like index structure designed for the similarity indexing of
high-dimensional point data. It uses bounding spheres instead of bounding boxes in the directory
to enhance the performance of the nearest neighbor query. As depicted in [14], although the SS-
tree outperforms the R*-tree, spheres tend to overlap in high-dimensional spaces.

The SR-tree [10] is an index structure integrating the advantage of the R-tree and the SS-tree to
avoid the drawbacks that appear when using only bounding spheres in the SS-tree. In other
words, it uses both bounding boxes and bounding spheres in the directory. Thus, the performance
of the SR-tree clearly outperforms the R*-tree and the SS-tree. The SR-tree and the SS-tree
mainly focused on the improvement of the performance on nearest neighborhood queries.

The X-tree [15] is another variant of the R*-tree and improves the performance of the R*-tree
using two techniques. The ®rst is an overlap-free split algorithm which divides the search space
into disjoint regions like the K-D-B-tree. The second is the concept of a supernode. If the overlap-
free split algorithm leads to an unbalanced directory, the X-tree omits the split and the according
directory node becomes the so-called supernode [14]. Supernodes are oversized directory nodes
which are arranged to circumvent the overlap among nodes. The X-tree improves the performance
of point queries and enhances the I/O throughput for reading and writing nodes [10].

The VAMSplit R-tree [3] is another optimized R-tree, i.e., it is built in the top-down manner
with a given data set. Thus, all data items must be available at the time of creating the index
[10,14]. According to [3], the VAMSplit R-tree outperforms both the R*-tree and the SS-tree.
However, the size of the VAMSplit R-tree is limited by the main memory because it must be built
in the main memory and then stored on a secondary storage [3,14]. The Hilbert R-tree [6] has the
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properties analogous to those of the VAMSplit R-tree. Thus, these memory-based indexing
methods are called static index structures [14].

As mentioned in [12,14], all of the above approaches have the common property that they must
use the balanced splits when splitting a data page in order to guarantee storage utilization. The
Pyramid-Technique [14] showed analytically that this balanced split is the worst case in high-
dimensional indexing because the resulting pages have an access probability close to 100% when
going to high-dimensional data space [14].

To overcome this drawback, Berchtold et al. proposed the Pyramid-Technique, a new space-
partitioning strategy and the algorithms for processing hypercubic range queries on the space
partitioned by this strategy. In the next section, we will describe the Pyramid-Technique in detail
because this technique is a motivation of our work.

3. The Pyramid-Technique

The main concept of the Pyramid-Technique is that they can use the B�-tree to store and access
the transformed one-dimensional value after transforming d-dimensional data space into one-
dimensional data space. Thus, they can use all the advantages of the B�-tree, such as fast insert,
update and delete operations, good concurrency control and recovery, and easy implementation.

The transformation of d-dimensional data space into one-dimensional data space is based on a
special space partitioning which is achieved in two steps. In the ®rst step, the data space is split
into 2d pyramids having the center point of the data space �0:5; 0:5; . . . ; 0:5� as their top and a
�d ÿ 1�-dimensional surface of the data space as their base. In the second step, each of the 2d
pyramids is divided into several partitions parallel to the basis of the pyramid. Each of the
partitions corresponds to one data page of the B�-tree.

The (I) of Fig. 1 shows the space-partitioning strategy of the Pyramid-Technique in a two-
dimensional example. In (a) of Fig. 1(I), the space has been divided into four triangles, which all
have the center of the data space as the top and one edge of the data space as the base. In (b) of
Fig. 1(I), these four triangles are split again into several partitions, each corresponding to one data
page of the B�-tree. This strategy can be extended to d-dimensional data space in a straight-
forward way [14].

Fig. 1. Pyramid-Technique.
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Given a d-dimensional point, they ®rst determine the number of the pyramid that the point
belongs to, and then calculate the height of the point within its pyramid. By adding this height to
the number of the pyramid, they can transform the d-dimensional point to one-dimensional point.
The (II) of Fig. 1 shows this processing. They insert this one-dimensional point into the B�-tree
and perform queries on the B�-tree. They also proposed the algorithms for processing point
queries and hypercubic range queries based on this space-partitioning strategy.

However, the shape of queries used for similarity search is not a hypercube but a hypersphere.
Thus, as mentioned above, if we were to process hyperspherical range queries using the Pyramid-
Technique, we have to access unnecessary data page. Therefore, the overall performance is de-
graded. To overcome this drawback, we proposed a new space-partitioning strategy in which the
data space is partitioned as like the annual ring of a tree. The right of Fig. 2 shows the partitions
resulting from a split of the SPY-TEC, which is shaped like the annual ring of a tree, in a two-
dimensional example.

Given a query circle as depicted in Fig. 2, the Pyramid-Technique accesses unnecessary data
pages because it ®rst has to perform the query using an MBR of the query circle. In the left of Fig.
2, we can see that the MBR of the query circle intersects eight partitions out of a total of 12
partitions. Thus, the Pyramid-Technique has to access eight pages for processing this query circle.
However, the SPY-TEC can process the query with accessing only four pages. Thus, four page
accesses are saved in the SPY-TEC. As we will show in our experimental evaluation, the SPY-
TEC will save more page accesses when going to higher dimensions and more data objects.

4. The SPY-TEC

The main idea of the SPY-TEC is based on the observation that spherical splits will be better
than right-angled splits of the Pyramid-Technique for similarity search. This observation is due to
the fact that the shape of the queries used in similarity search is not a hypercube, but a hyper-
sphere. The SPY-TEC is to transform the d-dimensional data points into one-dimensional values
and then store and access the values using the B�-tree as the Pyramid-Technique does. Also, we
store a d-dimensional point plus the corresponding one-dimensional key as a record in the leaf
nodes of the B�-tree. Therefore, we do not need an inverse mechanism of this transformation.

The transformation itself is based on a speci®c partitioning of the SPY-TEC. To de®ne the
transformation, we ®rst explain the data space partitioning strategy of the SPY-TEC.

Fig. 2. Partitioning strategies.
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4.1. Data space partitioning

The SPY-TEC partitions the data space in two steps: The ®rst step is the same as the Pyramid-
Technique. Namely, we split the d-dimensional data space into 2d spherical pyramids having the
center point of the data space �0:5; 0:5; . . . ; 0:5� as their top and a �d ÿ 1�-dimensional curved
surface of the data space as their bases. The second step is to divide each of the 2d spherical
pyramids into several spherical slices with a single slice corresponding to one data page of the B�-
tree. Fig. 3 shows the data space partitioning of the SPY-TEC in a two-dimensional example.
First, the two-dimensional data space has been divided into four spherical pyramids resembling a
fan. All of these spherical pyramids have the center point of the data space as their top and one
curved line of the data space as their bases. In the second step, each of these four spherical
pyramids is split again into several data pages which are shaped like the annual ring of a tree.
Given a d-dimensional space instead of the two-dimensional space, the base of the spherical
pyramid is not a one-dimensional curved line as in the example, but a �d ÿ 1�-dimensional curved
hyperplane. As a sphere of dimension d has 2d �d ÿ 1�-dimensional curved hyperplane as a
surface, we obviously obtain 2d spherical pyramids such as in the case of the Pyramid-Technique.

Numbering the spherical pyramids is the same as in the Pyramid-Technique. Given a point v,
we have to ®nd the dimension i having the maximum deviation j0:5ÿ vij from the center to de-
termine the spherical pyramid which the point v belongs to. If vi is greater than, or equal to 0.5,
then the spherical pyramid which the point v belongs to is spi�d . If it is smaller than 0.5, the
spherical pyramid which the point v belongs to is spi. As depicted in (I) of Fig. 4, the value of
j0:5ÿ v1j of a point v in two-dimensional space is greater than the value of j0:5ÿ v0j. Thus, the
dimension having the maximum deviation j0:5ÿ vij from the center is d1 and the value of v1 is
smaller than 0.5. Therefore, the point v belongs to the spherical pyramid sp1. For example,
consider another point v0 � �0:8; 0:4�. The dimension having the maximum deviation from the
center for each dimension of v0 is d0�0:3 � j0:5ÿ v00j > j0:5ÿ v01j � 0:1�. And, the value of v00 is
greater than 0.5. Therefore, the point v0 belongs to the spherical pyramid sp�0�2�. Although the
formal expression about this processing is the same as [14], we rede®ne it formally to help in
understanding the partitioning strategy of the SPY-TEC.

De®nition 1 (Spherical pyramid of a point v). A d-dimensional point v is de®ned to be located in
spherical pyramid spi.

Fig. 3. Partitioning strategy of the SPY-TEC.
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i � jmax if vjmax
< 0:5;

�jmax � d� if vjmax
P 0:5;

�

jmax � �j j�8k; 06 �j; k� < d; j 6� k : j0:5ÿ vjjP j0:5ÿ vkj��:

In De®nition 1, jmax is the dimension having the maximum deviation j0:5ÿ vij from the center
for each dimension of a d-dimensional point v and i is the number of the spherical pyramid which
v belongs to.

In order to transform d-dimensional data into a one-dimensional value, we have to determine
the location of a point v within its spherical pyramid. The Pyramid-Technique uses the height of
the point within the pyramid as the location of the point. However, we use the distance from the
point to the center point of the data space as the location of the point. The (II) of Fig. 4 shows the
process of determining the distance of the point v as the location within its spherical pyramid. We
assume that the distance function is the Euclidean distance which is frequently used for similarity
measurement in content-based retrieval. More formally:

De®nition 2 (Distance of a point v). Given a d-dimensional point v, the distance dv of the point v is
de®ned as

dv �
����������������������������Xdÿ1

i�0

�0:5ÿ vi�2
vuut :

According to De®nitions 1 and 2, we are able to transform a d-dimensional point v into a one-
dimensional value (i � ceil� ���dp � � dv). In this one-dimensional value, i is the number of the
spherical pyramid which the point v belongs to, d is the dimension of the point v, and dv is the
distance from the point v to the top of its spherical pyramid. More formally:

Fig. 4. The SPY-TEC.
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De®nition 3 (Spherical pyramid value of a point v). Given a d-dimensional point v, let i be the
number of the spherical pyramid to which v belongs according to De®nition 1, and dv be the
distance of v according to De®nition 2. Then, the spherical pyramid value spvv of v is de®ned as

spvv � i � ceil
���
d
p� �

� dv

� �
:

Note that i is an integer in the range �0; 2d�, dv is a real number in the range �0; 0:5 ���
d
p � and

ceil� ���dp � is the smallest integer not less than or equal to
���
d
p

. Therefore, every point within a
spherical pyramid spi has a value in the interval of [i � ceil� ���dp �; �i � ceil� ���dp � � 0:5

���
d
p �]. In order to

make the sets of spherical pyramid values covered by any two spherical pyramids spi and spj to be
disjunct, we multiply i by ceil� ���dp �. If we would not multiply i by ceil� ���dp �, then the interval of
every point within a spherical pyramid spi is [i; �i� 0:5

���
d
p �]. Thus, there may be intersections in

the sets of spherical pyramid values covered by any two spherical pyramids spi and spj when the
dimension is higher than 4.

For example, in a 16-dimensional data space, the interval of every point within a spherical
pyramid sp1 is �1; 3�, and the interval of every point within sp2 is �2; 4�. Therefore, these two in-
tervals have an intersection. This intersection may cause the key values of the B�-tree to be re-
dundant. The redundancy of the key values degrades the performance of the B�-tree. In order to
avoid this e�ect, we do multiply the spherical pyramid number i by ceil� ���dp �. However, note that
the multiplier needs not to be ceil� ���dp �. Any multiplier can be used if it prevents the sets of
spherical pyramid values from being overlapped. Note further that this transformation is not
injective, i.e., two points v and v0 may have the same pyramid value, but, as mentioned above, we
do not need an inverse transformation because we store a d-dimensional point plus the corre-
sponding one-dimensional key as a record in the leaf nodes of the B�-tree. Therefore, our tech-
nique does not require a bijective transformation as the Pyramid-Technique [14] does not.

4.2. Index creation

It is a very simple task to build an index using the SPY-TEC as for the Pyramid-Technique.
Given a d-dimensional point v, we ®rst determine the spherical pyramid value spvv of the point and
then insert the point into a B�-tree using spvv as a key. Finally, we store the point v and spvv in the
according data page of the B�-tree. Update and delete operations can be done similarly.

The spherical pyramid values of points which all belong to the same spherical pyramid lies in an
interval given by the minimum and maximum key values of the data pages. Thus, a single B�-tree
data page corresponds to a partition of a spherical pyramid as shown in the right of Fig. 3.

5. Query processing

There are two types of queries which are used in similarity search [4]. One is the k-nearest
neighbor query that returns the k most similar objects to the query object. The other is the hy-
perspherical range query that returns all objects within a threshold level of similarity to the query
objects. Although the shape of these two queries is a hypersphere in high-dimensional spaces, both
have totally di�erent implications when processing queries. For example, in the case of range
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queries, the order in which the pages have to be processed is known in advance, whereas in the
case of k-nearest neighbor queries, this order is rather arbitrary.

In this section, we propose the algorithms for processing hyperspherical range queries. The task
of processing this query using the SPY-TEC is a very complex operation in contrast to the insert,
delete and update operations. The point queries which are de®ned as Given a query point q, decide
whether q is in the database, can be processed as for the Pyramid-Technique.

For hyperspherical range queries, two parameters are given. The ®rst parameter is a query
point which represents the query object and the second is a threshold level of similarity which
represents the limit of distance from a query point. The problem is de®ned as follows:

Given a query point and a threshold (e) of similarity

query point�Q� : �q0; q1; . . . ; qdÿ1�; distance : e

find the points in the database which are within the distance (e) from the query point.
Note that the geometric correspondence of this similarity query is a hypersphere having the

query point as the center point and e as the radius of the sphere. To process this hyperspherical
range query, we have to transform the d-dimensional query into one-dimensional interval queries
on the B�-tree. However, as the simple two-dimensional example depicted in the left of Fig. 5
demonstrates, a query circle may intersect several spherical pyramids and the computation of the
area of intersection is not trivial.

We process a hyperspherical range query in two main steps: in the ®rst step, we have to de-
termine which spherical pyramids are a�ected by the query, and then in the second step, we have
to determine the ranges inside the spherical pyramids. The test to see whether a point is inside the
ranges or not is based on a single attribute criterion (dv between two values). Therefore, deter-
mining all such objects is a one-dimensional indexing, i.e., a B�-tree indexing problem. Objects
outside the ranges are guaranteed not to be contained in the query circle. Points lying inside the
ranges, are candidates for a further investigation. As depicted in the left of Fig. 5, points lying
between dlow and dhigh are candidates. Some of the candidates are hits, others are false hits. Thus,
in the re®nement step, we have to investigate whether a point is inside the query circle or not.
However, in order to investigate whether or not a point is inside the query circle, we have to
calculate the distances from the query point to all of the points of the candidates. Through our
experiments, we found out that this task consumes a lot of CPU time. Thus, before starting the

Fig. 5. Transformation of hyperspherical range queries.
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re®nement step, we perform the ®ltering step, which tests whether or not the ith coordinate of a
point is in the interval [qi ÿ e, qi � e]. This is a simple comparison operation so that its CPU time is
less than that of the arithmetic operation. Therefore, we can eliminate a large amount of false hits
before the re®nement step and can save a lot of CPU time.

For the sake of simplicity, we focus on the description of the algorithm only on spherical
pyramids spi where i < d. However, our algorithm can be extended to all spherical pyramids in a
straight-forward manner. Given a query point and an e, we have to determine whether or not a
spherical pyramid spi is a�ected by a given query area in the ®rst step of our algorithm.

In Fig. 6, the query circle intersects the spherical pyramids sp0 and sp1. The spherical pyramid
sp0 intersects the query circle because the query point falls into sp0. And, in the case of sp1, the
distance (a) from the query point to the closest-side plane of sp1 is shorter than e which is the
radius of query circle. Thus, the sp1 intersects the query circle. As the example of Fig. 6, the basic
idea of the following Lemma 1 is that we can determine whether or not a spherical pyramid spi

intersects the query circle using a simple formula, which calculates the distance from a point to a
hyperplane, used in geometry [8].

Lemma 1 (Intersection of a spherical pyramid and a query circle). Given a query point
Q � �q0; q1; . . . ; qdÿ1� and e, let j �j < d� be the number of a spherical pyramid to which a query point
belongs and i be the number of a spherical pyramid which will be tested for an intersection. The
intersection of a query circle and a spherical pyramid spi is defined as

Case 1 (i � j): In this case, the spherical pyramid spi always intersects the query circle.
Case 2 (jiÿ jj � d): In this case, the spherical pyramid spi is in the opposite side of spj. Let b be

the distance from the query point to the center of the data space. According to Definition 2, b � dQ.

bÿ e6 0:

Case 3 (i < d):

jqj ÿ qij���
2
p 6 e:

Case 4 (i P d):

Fig. 6. Intersection of a spherical pyramid and a query circle.
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jqj � qi ÿ 1j���
2
p 6 e:

Proof. Given a point (�q0; q1; . . . ; qdÿ1�) and a hyperplane (k0x0 � k1x1 � � � � � kdÿ1xdÿ1 � C � 0),
the distance from the point to the hyperplane in geometry is de®ned as

Distance � k0q0 � k1q1 � � � � � kdÿ1qdÿ1 � Cj j����������������������������������������
k2

0 � k2
1 � � � � � k2

dÿ1

p : �1�

We are able to prove Cases 3 and 4 using this formula.
1. spi is a spherical pyramid to which a query point belongs, because i � j. Therefore, the query

region intersects the spherical pyramid spi.
2. spi is a spherical pyramid in the opposite side of spj. Thus, if b6 e, then the center point of the

data space is included in the query region. Therefore, spi is a�ected by the query region.
3. In formula (1), the index kn and the constant C have discrete values �ÿ1; 0; 1� because of unit

space. If i < d, then an equation for the closest-side plane of a spherical pyramid adjacent to
the query point is kjxj � kixi � 0 as depicted in the two-dimensional example of Fig. 6. This for-
mula can be extended to d-dimensional data space in a straight-forward way. Given a d-dimen-
sional space instead of the two-dimensional space, the side plane of a spherical pyramid is not a
one-dimensional line as in the example of Fig. 6, but a �d ÿ 1�-dimensional hyperplane, and the
equation for this �d ÿ 1�-dimensional hyperplane has the common property that all indices ex-
cept ki and kj are 0. In this case, kj � 1 and ki � ÿ1 because i < d. Thus, the distance from the
query point to the closest-side plane of an adjacent spherical pyramid spi is jqj ÿ qij=

���
2
p

. There-
fore, if jqj ÿ qij=

���
2
p
6 e, then a part of the query region intersects spi.

4. If i P d, then an equation for the closest-side plane of a spherical pyramid adjacent to the query
point is kjxj � kixi ÿ 1 � 0 (refer to Fig. 6). In this case, kj � 1 and ki � 1 because i P d. Thus,
the distance from the query point to the closest-side plane of adjacent spherical pyramid spi is
jqj � qi ÿ 1j= ���

2
p

. Therefore, if jqj � qi ÿ 1j= ���
2
p
6 e, spi is a�ected by the query region. �

If the query circle includes the center point of the data space, all the spherical pyramids are
a�ected by the query region such as in Case 2.

In the second step, we have to determine which spherical pyramid values inside an a�ected
spherical pyramid spi are a�ected by the query. Thus, we should ®nd an interval [dlow; dhigh] in the
range of [0; 0:5

���
d
p

] so that the spherical pyramid values of all points inside the intersection of the
query circle and spherical pyramid spi are in the interval [i � ceil� ���dp � � dlow; i � ceil� ���dp � � dhigh].

We are able to determine the values of dlow and dhigh using a simple mathematical formula such
as the Pythagoras theorem [8].

For a case in which the center point of the data space is in the query region, the value dlow is
always 0. Thus, we have only to determine the value dhigh. In case (a) of Fig. 7(I), dhigh can be
determined by using the distance from the center point of the data space to the query point and e
as the radius of query circle. If we let b be the distance from the center to the query point, then
dhigh is �b� e�. Also, in cases (b) or (d) of Fig. 7(I), dhigh can be determined by using the Pythagoras
theorem. Let a be the distance from the closest-side plane of a spherical pyramid adjacent to the
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query point. The length (d) of the base line in a right-angled triangle which consists of two sides, a

and b, is

���������������
b2 ÿ a2

q
, and the length (c) of the base line in a right-angled triangle which consists of

two sides, a and e, is
��������������
e2 ÿ a2
p

. In this case, dhigh is �c� d�. Finally, in case (c) of Fig. 7(I), the
spherical pyramid spi is in the opposite side of the spherical pyramid spj which the query point
belongs to. Thus, dhigh is �cÿ d�, but in this case, note that a is the maximum value of the distances
from the query point to the closest-side plane of all adjacent spherical pyramids.

For a case in which the center point of the data space is not inside the query region, we are able
to determine the values of dlow and dhigh analogously. As depicted in (a) of Fig. 7(II), in a spherical
pyramid which the query point belongs to, dlow and dhigh are determined as follows:
dlow � bÿ e; dhigh � b� e. And, in a spherical pyramid which the query point does not belong to
(refer to (b) of Fig. 7(II)), dlow and dhigh are determined as follows: dlow � dÿ c; dhigh � d� c. As
depicted in an example of Fig. 7, the basic idea of the following Lemma 2 is to determine the
interval �dlow; dhigh�, in which the query circle intersects the spherical pyramids, using the Pytha-
goras theorem.

Lemma 2 (Interval of intersection of query and spherical pyramid). Given the number j of a
spherical pyramid to which the query point belongs, and the number i of a spherical pyramid which is
affected by the query region, the intersection interval [dlow; dhigh] is defined as follows:

Case 1: The case in which the center point of the data space is inside the query region.
Subcase 1.1 (j � i): Let b be the distance from the center point to the query point and e be the

radius of the query circle.

dlow � 0; dhigh � b� e:

Fig. 7. Interval of intersection of query and spherical pyramid.
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Subcase 1.2 (jjÿ ij � d): Let a be the maximum value of the distances from the query point to the
closest-side plane of all the adjacent spherical pyramids and d be the length of the base line in a right-
angled triangle which consists of two sides, a and b. Also, let c be the length of the base line in a right-
angled triangle which consists of two sides, a and e.

dlow � 0; dhigh � cÿ d �
��������������
e2 ÿ a2
p

ÿ
���������������
b2 ÿ a2

q
:

Subcase 1.3 (Otherwise): Let a be the distance from the query point to the closest-side plane of an
adjacent spherical pyramid and d, c be the same as in Subcase 1.2.

dlow � 0; dhigh � c� d �
��������������
e2 ÿ a2
p

�
���������������
b2 ÿ a2

q
:

Case 2: The case in which the center point of the data space is not inside the query region.
Subcase 2.1 (j � i):

dlow � bÿ e; dhigh � b� e:

Subcase 2.2 (j 6� i):

dlow � dÿ c; dhigh � d� c:

Proof. We have to show for any point v which is located inside the query circle and an a�ected
spherical pyramid spi that dv is lying in the resulting query interval [dlow; dhigh]. Therefore, we have
to prove that

dlow6 dv6 dhigh:

1. dlow6 dv: This holds because the center of the data space is included in the query region so that
dlow � 06 dv.
1.1. dv6 dhigh: This case corresponds to (a) of Fig. 7(I). Let v be the point which has the max-

imum of the distances of points lying inside the query region and an a�ected spherical pyr-
amid spi. Then, dv is less than, or equal to (b� e). Therefore, dv6 dhigh � b� e.

1.2. dv6 dhigh: In this case, a spherical pyramid spi is in the opposite side of a spherical pyramid
spj so that there is no side plane of a spherical pyramid adjacent to the query point (refer to
(c) of Fig. 7(I)). d, c are de®ned as follows by the Pythagoras theorem:

d �
���������������
b2 ÿ a2

q
; c �

��������������
e2 ÿ a2
p

:

Let v be the point which has the maximum of the distances of points lying inside the query region
and an a�ected spherical pyramid spi. Then, dv is less than, or equal to (cÿ d). Therefore,
dv6 dhigh � cÿ d.

1.3. In this case, there is the closest-side plane of a spherical pyramid adjacent to the query
point (refer to (b), (d) of Fig. 7(I)). Let v be the point which has the maximum of the dis-
tances of points lying inside the query region and an a�ected spherical pyramid spi. Then,
dv is less than, or equal to (c� d). Therefore, dv6 dhigh � �c� d�.
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2. dlow6 dv6 dhigh: In this case, dlow is not 0 and a spherical pyramid in the opposite side of the
spherical pyramid which the query point belongs to, is not a�ected by the query region. Thus,
we have to show that dlow6 dv6 dhigh.
2.1. In this case, spi is the spherical pyramid which the query point belongs to (refer to (a) of

Fig. 7(II)). Let v be the point which has the minimum of the distances of points lying inside
the query region and an a�ected spherical pyramid spi. Then, dv is greater than, or equal to
(bÿ e), and if v is the point which has the maximum of the distances of points lying inside
the query region and an a�ected spherical pyramid spi, then, dv is less than, or equal to
(b� e). Therefore, �bÿ e� � dlow6 dv6 dhigh � �b� e�.

2.2. d, c are the same as in Subcase 1.3. This case corresponds to (b) of Fig. 7(II). Let v be the
point which has the minimum of the distances of points lying inside the query region and
an a�ected spherical pyramid spi. Then, dv is greater than, or equal to (dÿ c), and if v is the
point which has the maximum of the distances of points lying inside the query region and
an a�ected spherical pyramid spi, then, dv is less than, or equal to (d� c). Therefore,
�dÿ c� � dlow6 dv6 dhigh � �d� c�. �

If b� e > 0:5
���
d
p

or d� c > 0:5
���
d
p

, then dhigh is properly 0:5
���
d
p

. With Lemmas 1 and 2, we can
process the hyperspherical range query by Algorithm 1.
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6. Experimental evaluation

We performed various experiments to show the practical impact of the SPY-TEC and com-
pared it to the following related techniques:
· Pyramid-Technique [14].
· R*-tree [9].
· X-tree [15].
· Sequential scan.
The Pyramid-Technique has been chosen for comparison, because it is a motivation of our
technique. The R*-tree has been most commonly used in multi-dimensional indexing applications
and the X-tree was proposed as an indexing structure for high-dimensional data. Thus, we in-
cluded these techniques in our experiments. Recently, the criticism arose that index-based query
processing is generally ine�cient in high-dimensional data spaces and that sequential scan pro-
cessing yields better performance in this case [11,14]. Therefore, we also included the sequential
scan in our experiments.

For clear comparison, we assume that all the relevant information is stored in the various
indexes, as well as in the ®le used for the sequential scan. Therefore, no additional accesses to
fetch objects for presentation or further processing are needed in any of the techniques applied in
our experiments.

Our experiments have been performed on SUN Sparc 20 workstations with 8 GBytes of sec-
ondary storage. We performed our experiments using both real and synthetic data sets and hy-
perspherical range queries with a constant radius (e) in all the experiments. The query points were
selected randomly from the data space so that the distribution of the queries equals the distri-
bution of the data set itself. Thus, in the case of uniform data distribution, we used 100 query
points that are uniformly distributed.

6.1. Evaluation using synthetic data

The synthetic data set contains 200,000±1,000,000 uniformly distributed points in 8±24-di-
mensional data spaces.

In our ®rst experiment, we measured the performance behavior while we varied the number of
objects. Before the experiment, in order to select the reasonable radii of query circles, we mea-
sured the average result set size with varying the radius. We performed hyperspherical range
queries with 100 query points in a 16-dimensional data space and varied the radius of query circle
from 0.3 to 0.9. We also varied the database size from 200,000 to 1,000,000. Table 1 shows the
result of this experiment. In this procedure, we found that we could obtain adequate average
result set size when the radii of query circles are from 0.6 to 0.8. Thus, we performed hyper-
spherical range queries with 100 query points and the same constant radii for each database size
and measured the number of page accesses, CPU time and ®nally the total elapsed time needed for
processing hyperspherical range queries. The page size is 4096 Bytes and the e�ective page ca-
pacity is 41.0 objects per page in all the index structures.

Fig. 8 shows the results of our ®rst experiment. The (d) of Fig. 8 shows the radii of query circles
used in this experiment and their average result set sizes. The speed-up with respect to the number
of page accesses seems to be almost constant and ranges between 1.10 and 1.13 over the Pyramid-
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Technique, between 1.45 and 1.49 over the R*-tree, between 1.29 and 1.36 over the X-tree, and
between 2.14 and 2.15 over the sequential scan. The speed-up in CPU time is higher than the
speed-up in page accesses, but is only increasing with growing database sizes.

Table 1

Average result set size over the radius (e) for each DB size

DB size Radius (e)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

200,000 1.02 1.04 1.08 2.18 10.92 54.44 224.98

400,000 1.04 1.06 1.29 3.41 19.04 104.24 447.67

600,000 1.07 1.12 1.58 5.13 29.27 160.56 681.74

800,000 1.09 1.17 1.62 6.31 38.48 209.92 899.71

1,000,000 1.13 1.23 1.69 7.23 47.81 260.46 1118.59

Fig. 8. Performance behavior over database size.
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The CPU time used for processing the query has been almost exhausted in the re®nement step
in both the SPY-TEC and the Pyramid-Technique. Although the algorithms to process the query
in the SPY-TEC are more complex than those of the Pyramid-Technique, we were able to save a
large amount of CPU time by ®ltering the candidate before the re®nement step.

Finally, most important is the speed-up in total elapsed time. It is higher than the speed-up in
the number of page accesses and CPU time so that reaches its highest value with the largest
database. The SPY-TEC with one million objects performs hyperspherical range queries 1.12
times faster than the Pyramid-Technique, 5.58 times faster than R*-tree, 4.47 times faster than the
X-tree, and 3.06 times faster than the sequential scan.

Range query processing on B�-tree can be performed much more e�cient than on index
structures based on the R*-tree because large parts of the tree can be traversed e�ciently by
following the side links in the data pages, and long-distance seek operations including expensive
disk head movements have a lower probability due to better disk clustering possibilities [14].
Specially, when processing hyperspherical range query, the SPY-TEC is more e�cient than the
Pyramid-Technique because its spherical split strategy is more suitable for the shape of queries
than the right-angled split strategy of the Pyramid-Technique.

In our second experiment, we measured the performance of query processing while we varied
data space dimension. For this experiment, we created ®ve ®les with the dimensionalities 8, 12, 16,
20 and 24. The database size ®xed at 500,000 objects. The page size is 4096 Bytes as in the ®rst
experiment and the e�ective data page capacity depends on the dimension and ranges from 28 to
74 objects per page. Before our second experiment, we measured the average result set size with
varying the radius for each data space dimension as in the ®rst experiment. Table 2 shows the
result of this procedure. As depicted in Table 2, the average result set sizes are changed a lot with
varying the data space dimension and the radius of query circle. Thus, it is not appropriate to use
the same radii for each data space dimension as in the ®rst experiment. Therefore, we chose the
radii of query circles so that the average result set sizes would be very similar (about 20). The (d)
of Fig. 9 shows the radii of query circles used in this experiment and their average result set sizes.
We performed hyperspherical range queries with 100 query points and a constant radius for each
data space dimension.

Fig. 9 shows the results of our second experiment. We observed that the R*-tree is more ef-
®cient than our technique, including the Pyramid-Technique, and sequential scan in eight-di-
mensional data spaces, but rapidly decreases with increasing dimension up to the 12-dimensional

Table 2

Average result set size over the radius (e) for each data space dimension

Dimension Radius (e)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

8 55.92 432.84 1997.99 6702.37 17694.53 39077.42 74947.06

12 1.14 4.53 30.37 192.72 868.08 3023.17 8804.22

16 1.02 1.12 1.38 4.33 25.09 131.72 558.6

20 1.01 1.01 1.02 1.09 1.32 4.37 23.26

24 1.01 1.01 1.01 1.02 1.07 1.12 1.29
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data space. From this point, the page accesses are growing linearly with the index size. In the case
of the X-tree, a phenomenon analogous to that of the R*-tree has appeared except that its e�-
ciency rapidly decreases in 16-dimensional data space. However, the SPY-TEC and Pyramid-
Technique have no rapid deterioration of the performance even though their performance
decreases slowly with increasing dimension. We also observed that the SPY-TEC clearly out-
performs the Pyramid-Technique and the sequential scan in all cases.

The speed-up in CPU time is analogous to the speed-up in page accesses, but is higher than it.
Finally, in total elapsed time, the SPY-TEC performs hyperspherical range queries 1.23 times
faster than the Pyramid-Technique, 3.18 times faster than the R*-tree, 2.69 times faster than the
X-tree, and 1.32 times faster than the sequential scan when the dimension is 24.

Through our second experiment, we observed that the performance of the R*-tree or the X-tree
is e�cient when the dimension is lower than 10, but rapidly decreases with going to higher di-
mension so that the sequential scan yields better performance than them. We also found out that
our new method outperforms the R*-tree or the X-tree when the dimension is higher than 10, and
outperforms the Pyramid-Technique and the sequential scan in all cases.

Fig. 9. Performance behavior over data space dimension.
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6.2. Evaluation using real data sets

To demonstrate the practical impact of our technique for real data sets, we performed an
experiment using feature vectors used for content-based image retrieval. We extracted feature
vectors from 56,230 images using the wavelet transform. Thus, our real data sets contains 56,230
points in 16-dimensional data space and each point is composed of normalized wavelet coe�-
cients.

We varied the radii of the query circles from 0.1 to 0.5 and measured the average result set size,
the number of page access, CPU time, and the total elapsed time absorbed to process hyper-
spherical range queries.

We found that the real data sets are more clustered than the uniform data distribution through
(d) of Fig. 10. As depicted in Fig. 10, the SPY-TEC clearly outperforms the other index structures
for any radius of query circles used in this experiment.

Fig. 10. Performance behavior on real data.
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The sequential scan take about 3.2 s to process queries regardless of the radius of query circles.
This result is deserved because the sequential scan has to access all pages and all objects stored in
database regardless of the radius. We found out that index-based query processing such as the R*-
tree and X-tree outperforms the sequential scan on real data sets.

When the radius of query circle is 0.1, the SPY-TEC performs hyperspherical range queries 1.92
times faster than the Pyramid-Technique, 1.59 times faster than R*-tree, 1.45 times faster than the
X-tree, and 31.5 times faster than the sequential scan. And, when the radius of query circle is 0.5,
the SPY-TEC performs hyperspherical range queries 1.20 times faster than the Pyramid-Tech-
nique, 1.87 times faster than R*-tree, 1.78 times faster than the X-tree, and 2.85 times faster than
the sequential scan.

Through the experiment on real data sets, we could observe that the SPY-TEC clearly out-
performs the Pyramid-Technique and other index structures for the reasonable radii of query
circles when processing hyperspherical range queries.

7. Conclusions

In this paper, we proposed the SPY-TEC, a new indexing technique for similarity search which
is very frequently used in applications such as content-based multimedia retrieval.

The SPY-TEC is based on a special partitioning strategy which is optimized for hyper-
spherical range queries. This technique transforms d-dimensional data space to one-dimensional
data space and manages a B�-tree to store and access the transformed one-dimensional values
as the Pyramid-Technique does, and therefore, we are able to use all of the advantages of a B�-
tree. We also showed that the SPY-TEC outperforms other related techniques including the
Pyramid-Technique when processing hyperspherical range queries. For highly skewed data
distributions or queries, the SPY-TEC may perform worse than other index structures. How-
ever, none of the index structure proposed so far can handle highly skewed data or queries
e�ciently [14]. We plan to address the problem of handling highly skewed data or queries in our
future work.

A few cost models [13,12] for processing hyperspherical range queries in high-dimensional
spaces have been proposed. Although these models considered boundary e�ects which occur
frequently when processing hyperspherical queries in high-dimensional data spaces, we could
not take advantage of these models directly to tackle the cost model of the SPY-TEC, because
they assumed that the shape of the index pages was a rectangle or a sphere. We have found out
that we need a new cost model for the SPY-TEC, which is a very complex problem. Therefore,
we plan to study a new cost model for the SPY-TEC. Also, we plan to develop an e�cient
algorithm for another similarity query, i.e., the k-nearest neighbor query with the SPY-TEC in
our future work.

Acknowledgements

We are thankful to Dr. Stefan Berchtold in AT&T Bell laboratory for providing the X-tree
code, the Pyramid-Technique code, and helpful comments.

96 D.-H. Lee, H.-J. Kim / Data & Knowledge Engineering 34 (2000) 77±97



References

[1] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, W. Equiz, E�cient and e�ective querying by image

content, Journal of Intelligent Information System 3 (3) (1994) 231±262.

[2] C.E. Jacobs, A. Finkelstein, D.H. Salesin, Fast multiresolution image query, in: Proceedings of the 1995 ACM SIGGRAPH, 1995.

[3] D.A. White, R. Jain, Similarity indexing: algorithms and performance, in: Proceedings of the SPIE Storage and Retrieval for

Image and Video Databases IV, vol. 2670, 1996, pp. 62±75.

[4] D.A. White, R. Jain, Similarity indexing with the SS-tree, in: Proceedings of the 12th International Conference on Data

Engineering, 1996, pp. 516±523.

[5] C. Faloutsos, Fast searching by content in multimedia databases, Data Engineering Bulletin 18 (4) (1995) 31±40.

[6] I. Kamel, C. Faloutsos, Hilbert R-tree: An improved R-tree using fractals, in: Proceedings of the 20th International Conference on

Very Large Database, September 1994, pp. 500±509.

[7] K.-I. Lin, H.V. Jagadish, C. Faloutsos, The TV-tree: an index structure for high-dimensional data, VLDB Journal 3 (4) (1994)

517±542.

[8] G.E. Martin, The Foundations of Geometry and the Non-Euclidean Plane, Springer, Berlin, 1996.

[9] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an e�cient and robust access method for points and rectangles,

in: Proceedings of the ACM SIGMOD International Conference on Management of Data, May 1990, pp. 322±331.

[10] N. Katayama, S. Satoh, The SR-tree: an index structure for high-dimensional nearest neighbor queries, in: Proceedings of the

ACM SIGMOD International Conference on Management of Data, May 1997, pp. 517±542.

[11] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is ``Nearest Neighbor'' meaningful? in: Proceedings of the Seventh

International Conference on Database Theory, January 1999, pp. 217±235.

[12] R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in high-dimensional

spaces, in: Proceedings of the 24th International Conference on Very Large Database, August 1998, pp. 194±205.

[13] S. Berchtold, C. B�ohm, D.A. Keim, H.-P. Kriegel, A cost model for nearest neighbor search in high-dimensional data space, ACM

PODS Symposium on Principles of Database Systems, 1997, pp. 78±86.

[14] S. Berchtold, C. B�ohm, H.-P. Kriegel, The Pyramid-Technique: towards breaking the curse of dimensionality, in: Proceedings of

the ACM SIGMOD International Conference on Management of Data, 1998, pp. 142±153.

[15] S. Berchtold, D.A. Keim, H.-P. Kriegel, The X-tree: an indexing structure for high-dimensional data, in: Proceedings of the 22nd

International Conference on Very Large Database, September 1996, pp. 28±39.

[16] S. Berchtold, D. Keim, H.-P. Kriegel, T. Seidl, Fast nearest neighbor search in high-dimensional spaces, in: Proceedings of the

14th International Conference on Data Engineering, 1998, pp. 209±218.

[17] P.M. Kelly, T.M. Cannon, D.R. Hush, Query by image example: the CANDID approach, in: Proceedings of the SPIE Storage

and Retrieval for Image and Video Databases III, vol. 2420, 1995, pp. 238±248.

Dong-Ho Lee received his BS degree
from Hong-Ik University, and MS
degree in computer engineering from
Seoul National University, Seoul, Ko-
rea, in 1995 and 1997, respectively. He
is currently enrolled in a Ph.D. pro-
gram in computer engineering at Seoul
National University. His research in-
terests include high-dimensional index
techniques, content-based retrieval
system, multimedia databases, and
object-oriented databases.

Hyoung-Joo Kim received his BS de-
gree in computer engineering from
Seoul National University, Seoul, Ko-
rea, in 1982 and his MS and Ph.D. in
computer engineering from University
of Texas at Austin in 1985 and 1988,
respectively. He was an assistant pro-
fessor of Georgia Institute of Tech-
nology, and is currently a professor in
the Department of Computer Engi-
neering at Seoul National University.
His research interests include object-
oriented databases, multimedia data-

bases, HCI, and computer-aided software engineering.

D.-H. Lee, H.-J. Kim / Data & Knowledge Engineering 34 (2000) 77±97 97


