
Techniques for the evaluation of XML queries: a survey q

Tae-Sun Chung *, Hyoung-Joo Kim

School of Computer Science and Engineering, Seoul National University, San 56-1, Shillim-dong,

Gwanak-gu, Seoul 151-742, South Korea

Received 31 October 2001; accepted 13 March 2002

Abstract

As XML has become an emerging standard for information exchange on the World Wide Web it has

gained great attention among database communities with respect to extraction of information from XML,

which is considered as a database model. XML queries enable users to issue many kinds of complex queries
using regular path expressions. However, they usually require large search space during query processing.

So, the problem of XML query processing has received significant attention. This paper surveys the state of

the art on the problem of XML query evaluation. We consider the problem in three dimensions: XML

instance storage, XML query languages and XML views, and XML query language processing. We de-

scribe the problem definition, algorithms proposed to solve it and the relevant research issues.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Semistructured data; XML; Query processing; Database

1. Introduction

Recently, XML [4] has become an emerging standard for information exchange on the World
Wide Web. It has gained great attention among database communities with respect to extraction
of information from XML, which is considered as a database model. That is, as XML is self-
describing, we can issue many kinds of queries against XML documents in heterogeneous sources
and get the necessary information.

qThis work was supported by the Brain Korea 21 Project.
* Corresponding author.

E-mail addresses: tschung@papaya.snu.ac.kr (T.-S. Chung), hjk@papaya.snu.ac.kr (H.-J. Kim).

0169-023X/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0169-023X(02)00211-2

www.elsevier.com/locate/datak

Data & Knowledge Engineering 46 (2003) 225–246

mail to: tschung@papaya.snu.ac.kr

In this paper, we survey the state of the art in XML query processing and indexing/storage
techniques. We consider the problem in three dimensions: XML instance storage, XML query
languages and XML views, and XML query language processing.
First, there are two kinds of approaches to storing XML documents. One is using special

purpose query engines for semistructured data since an XML document can be regarded as an
instance of a semistructured data set. That is, data in XML is mapped to a semistructured data
model and the query processor based on graph traversal processes XML queries.
The other is using traditional databases such as relational databases or object-oriented data-

bases for storing and querying XML documents. This has the advantage of using the traditional
database engines. However, as there exist differences between XML data model and traditional
database ones, there are problems of impedance mismatch.
We classify the techniques of using commercial database systems to store and query XML

documents into two types. One is to store the graph to which XML data is mapped. It is simple
and has an advantage that it works in the absence of DTDs. However, complex queries are
constructed to query XML documents and many join operations are required to process the
queries.
The other is inferring schemata from the DTDs of the XML documents. In this case, issues on

how to store XML data that has variability in structural characteristic should be addressed.
In the context of XML query languages and XML views, we classify the works based on

whether the queries and views are composed of single or multiple regular path expressions. We
present the problem definition and review the query rewriting problem.
Finally, in the context of XML query processing, we classify the techniques into two types. The

first category is the schema extraction technique. That is, given a particular data instance of large
size, the technique finds the schema for it and traverses the schema graph of small size instead of
the data graph. Graph schemas [16,35], DataGuides [19,29], T-index [27] and so on belong to this
group.
Second, the graph pruning technique is proposed. It restricts search to a fragment of the graph

by adding information to each object. NodeInfo [11], MergeNodeInfo [11], SigDAQ [32] and so
on are classified to be in this group.
In addition, stream-based query answering methods such as X-scan [22] are proposed. For

example, X-scan matches regular path expressions and returns results in pipelined fashion. The
stream-based query answering methods are beyond the scope of this paper.

2. Basic concepts

2.1. Semistructured data model

In this paper, we use the object exchange model (OEM) [30] which is the most representative
among semistructured data models.
Data in the OEM model is represented as an edge-labeled graph. Every object in OEM consists

of an identifier and a value, and the nodes in the graph are objects and edges are labeled with
attribute names. The OEM objects are classified as the following two kinds of objects, depending
on their values.

226 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

• Atomic objects: The value of the atomic objects is an atomic quantity, such as an integer, string,
image, sound and so on.

• Complex objects: The value of the complex objects is a set of <label; id> pairs.

The right side of Fig. 1 shows an OEM graph. Here, &0, &1, etc. are object identifiers. Objects
such as &12 and &13 are atomic objects and those such as &1 and &2 are complex objects.

2.2. XML

XML (eXtensible Mark-up Language) is an emerging standard for information exchange on
the World Wide Web. An XML document is composed of the optional DTD which describes the
document�s structures and data encoded in XML. Data in XML is composed of sequences of
elements which can be nested and may have attributes. For example, Fig. 2 shows a DTD
specification.
Here, the second line states that an element person has the name and address subelements, and

he or she has zero or more vehicles, and finally, is a student or a company employee. The left side
of Fig. 1 shows an XML document that conforms to the DTD in Fig 2.
XML corresponds closely to semistructured data based on edge-labeled graph, so it is possible

to map data in XML to a semistructured data model such as OEM. Before mapping data in XML
to an OEM graph, we assume that no element has attributes other than the attribute ID and the
attribute IDREF [4]. The XML elements which have attributes other than those mentioned above
can be redefined as ones that do not have them in the following manner [34].

<Paper format¼ 00ps00>
<author> Serge Abiteboul </author>

</Paper>

This is converted to the following XML data.

<Paper>
<format> ps </format>
<value>
<author> Serge Abiteboul </author>

</value>
</Paper>

Data in XML can be represented by the OEM model. 1 That is, XML elements are represented
by nodes of an OEM graph and element–subelement, element–attribute and reference relation-
ships are represented by edges labeled by the corresponding names. Values of XML data are
represented by leaves in the OEM graph. Fig. 1 shows an XML data instance and a corresponding
OEM graph.

1 In this case some information can be lost.

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 227

Fig. 1. An example of XML data and OEM graph.

Fig. 2. An example DTD.

228 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

2.3. Query language

XML query languages are derived from those of object-oriented DBMSs such as OQL [7] and
XSQL [23]. In these object-oriented database query languages, the presence of path expressions
provides syntactic sugar for long join sequences. Path expressions describe paths along the class
composition hierarchy and are defined as follows.

Definition 1 (Path expression). A path expression is of the form

selector0:Att1f½selector1�g: . . . :Attmf½selectorm�g
where mP 0, and selector1; . . . ; selectorm are optional terms. The selectork ðk ¼ 0; 1; . . . ;mÞ is an
object id, a variable that ranges over object ids, or object values. The Attk ðk ¼ 1; 2; . . . ;mÞ is
either an attribute name or an attribute variable that ranges over attribute names.

Example 1. The following query retrieves all persons� schools that have the url �http://www.
snu.ac.kr�.

select Y
from Person X
where X.School[Y].url[‘‘http://www.snu.ac.kr’’]

XML query languages are based on the following regular path expressions that expand the path
expressions. For instance, XML-QL [13], UnQL [5], Lorel [1] and so on are query languages based
on the regular path expressions.

Definition 2 (Regular path expression). A regular path expression is a form of H.P where

1. H is an object name or a variable denoting an object,
2. P is a regular expression over labels in an OEM graph. Namely, P ¼ labeljðPjPÞjðP:PÞjP	.

Example 2. By using regular path expressions, the following query can be issued even though one
does not know the database schema.

select P.name
from person P, P._	.url U
where U ¼ ‘‘http://www.snu.ac.kr’’

The query retrieves all names of persons when there is a path that has the edge person followed
by any sequence of arbitrary edges, and next, have the edge url with the value of ‘‘http://
www.snu.ac.kr’’.

For simplicity, we use the regular path expression throughout the paper and it can cover most
of techniques for evaluation of XML queries. However, the regular path expression does not

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 229

http://www.snu.ac.kr
http://www.snu.ac.kr
http://www.snu.ac.kr
http://www.snu.ac.kr

represent conditions on siblings. On the other hand, XQuery [8] which embeds XPath [3] can
represent conditions on siblings and an index structure for XPath queries in proposed in [21]. In
addition, a formal framework for addressing orderedness in XML documents is studied in [28].

3. XML instance storage

In this section we address XML instance storage. We classify the techniques of XML instance
storage into two categories. The one is using native XML databases and the other is using
commercial database systems.
Lore [25] can be considered as a native XML database management system for XML. The data

model used in Lore is OEM which is presented in Section 2.1. XML instance is stored as graph
form in Lore.
As a commercial product, native XML instance includes exelon [15] and Tamino [2]. They

provide persistence for XML data and query languages. In Section 3.1 we discuss XML instance
storage using commercial database management systems.

3.1. Relational and object-oriented databases

There have been many activities dealing with storing and querying XML documents using
relational or object-oriented database systems. In this case, since we can use query engines of
traditional database systems, the key point is how to create database schemas to store XML
documents. We classify the techniques into two groups: One is using relational database systems
and the other is using object-oriented database systems.

3.1.1. Storing XML documents using a relational database system

Since relational database systems are widely used database systems, many researchers have
discussed the problem of storing and querying XML data using a relational database system. We
classify the techniques into two categories. One strategy [17] is to store the graph to which XML
data is mapped. Another option [14,33] is to infer relational database schemas to store the XML
documents.

3.1.1.1. Graph based approach. In the graph based approach, XML data is represented as a graph
and the graph itself is mapped into relational tuples.
The simplest scheme is to use edge tables and value tables. In this section we will consider the

basic scheme that uses edge tables and value tables for storing XML documents. The edge table
stores the oids of the source and target objects of each edge of the graph, the label of the edge, an
ordinal number representing the order of edges, and a flag that shows whether the edge is an
internal node or a leaf node. The value table stores values (i.e. strings) of XML documents. So, it
has the field vids storing oids of values and values storing all strings. 2

2 We assume that all XML data types are strings.

230 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

For example, if we store the MLB database in Fig. 8 in a relational database system, the re-
lational table is constructed as follows. Here, assume that the vids of the leaf nodes 3, 4, and 5 are
v3, v4, and v5 respectively.

The queries over semistructured data are converted to SQL queries. For example, consider the
following Lorel-like query over semistructured data that asks for the stadiums of national league
teams in the MLB.

select X

from MLB.National.stadium X

The query is converted to the following SQL query.

select v.value

from Edge e1, Edge e2, Edge e3, Val v

where e1.source¼root and e1.label¼MLB
and e1.target¼e2.source and e2.label¼National
and e2.target¼e3.source and e3.label¼stadium
and e3.target¼v.vid

3.1.1.2. Schema extraction. Another approach is to infer relational database schemas from the
DTDs of XML documents. Although the DTD is an optional feature of XML, the DTD can be
inferred from XML data by the technique proposed in [18]. Similarly, the authors in [14] provided
a technique of storing semistructured data in the absence of DTDs. They provided a query

Edge table

Source Target Label Ordinal Flag

root 1 MLB 1 Ref
1 2 National 1 Ref
1 14 National 2 Ref
1 24 American 3 Ref
2 v3 Division 1 String
2 v4 Stadium 2 String
2 v5 Name 3 String

Value table

vid Value

v3 West
v4 Dodgers stadium
v5 LA Dodgers

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 231

language named STORED that specifies the mapping between the semistructured data model and
the relational model.
Here, we will review the key idea underlying the algorithm in [33]. First, a DTD graph is in-

troduced. The DTD graph represents the structure of a DTD. Formally, a DTD graph GD ¼
ðV ;EÞ is a graph where V is a set of nodes, i.e. elements, attributes and operators. E
 V � V is a
set of edges representing relationships between nodes. For the set of nodes V , each element ap-
pears exactly once, while attributes and operators appear as many times as they appear in the
DTD. Here, the DTD is a simplified one [33]. That is, the binary operators (�;� or �j�) do not appear
inside any of the operators. Fig. 3 shows an example DTD graph.
Next, we decide what relations to create from the DTD graph, based on the following rules.

1. Relations are created for element nodes that have an in-degree of zero. Otherwise, the element
cannot be reached. For example, the relation for ‘‘alumni’’ is created, because the element node
alumni has an in-degree of zero.

2. Elements below a �	� or a �þ� node are made into separate relations. This is necessary for cre-
ating a new relation for a set-valued child. For instance, the element node vehicle that is below a
�	� node is made into a separate relation.

3. Nodes with an in-degree of one are inlined. For example, in Fig. 3, nodes gear or model are
inlined as they have in-degree of one.

4. Among mutually recursive elements all having in-degree one, one of them is made into a sep-
arate relation.

5. Element nodes having an in-degree greater than one are made into separate relations.

If we apply these five rules to the DTD graph in Fig. 3, the relations Person, Vehicle, Company,
School, Alumni, and Url will be created. Once we decide which relations are created, we construct
a relational schema. In the DTD graph, if X is an element node that is made into a separate
relation, it inlines all the nodes Y that are reachable from it such that there is no node that is made
into a separate relation in the path from X to Y . A relational schema is created for the DTD graph
in Fig. 3 as follows.

Fig. 3. A DTD graph.

232 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

The ID field that each relation has serves as the key of that relation and relations corresponding
to element nodes that have a parent also have a parentID field that serves as a foreign key. For
example, the relation vehicle has a foreign key vehicle.parentID that joins vehicles with persons.
Semistructured queries are processed as follows. For instance, consider the following Lorel-like

query over semistructured data.

select X.name.firstname, X.name.lastname

from Person X, X.vehicle Y

where Y.model¼ 00SM 500

The query is converted to the following SQL query.

select P.00person.name.firstname00, P.00person.name.lastname00
from person P, Vehicle V

where P.personID ¼ V.00vehicle.parentID00 and V.00vehicle.model00¼ 00SM 500
and V.00vehicle.parentCODE00¼0

Here, the expression V.‘‘vehicle.parentCODE’’¼ 0 indicates that the parent of the vehicle is a
person.

3.1.2. Storing XML Documents in an Object-oriented database systems

Like in the case of relational database systems, the techniques of storing XML documents using
an object-oriented database system are classified in two groups. One [15] is to store the graph to
which XML data is mapped. The other [9,12] is to infer object-oriented database schemas from
the DTDs of the XML documents. In the graph based approach, there is no special difference
between relational and object-oriented approaches. So, we will consider the technique of ex-
tracting object-oriented schemas from XML DTDs.

person(personID: integer, person.ParentID: integer, person.parent-

CODE: integer,

person.name.firstname:string, person.name.lastname:string,

person.address:string)

vehicle(vehicleID: integer, vehicle.parentID: integer,

vehicle.parentCODE: integer, vehicle.gear:string, vehicle.model:

string)

company(companyID: integer, companyparentID: integer,

company.parentCODE: integer, company.name:string)

school(schoolID: integer, school.parentID: integer, school.parent-

CODE: integer,

school.name:string, school.baseball-team:string)

alumni(alumniID: integer, alumni.name:string, alumni.year:string)

url(urlID: integer, url.parentID: integer, url.parentCODE: integer)

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 233

Authors in [9] suggest a technique of processing SGML data using an OODBMS. They derive
an object-oriented schema by using the DTD. That is, each class is derived from each element
declaration. The choice operator (�j�) is modeled by an union type and the occurrence indicators
(�þ� or �	�) are represented by lists. Values (e.g. strings) of XML data are represented by O2 classes
of appropriate content types (e.g. text) using inheritance. Fig. 4 shows an object-oriented schema
for the DTD in Fig. 2. As an extension to the work in [9], the technique of extracting object-
oriented schemas using inheritance has been proposed in [12]. As we considered in Section 5, we
can classify the person element into four categories: (1) ones who have one or more vehicles and
work for companies, (2) ones who have no vehicle and work for companies, (3) ones who have one
or more vehicles and are students and (4) ones who have no vehicle address and are students. The
classification information can be used for designing object-oriented schemas by means of inher-
itance semantics. In the above example, each group is defined as Person1, Person2, Person3, and
Person4 type classes that inherit the general class Person. Here, for example, as Person1 is a
specialization of Person, the inheritance semantics is satisfied.
If we design object-oriented schemas in this way, it can be used for enhancing query evaluation.

For example, if a query is related to students having vehicles, a query processor can only traverse
extents of Person3.
Like in the relational database case, queries over semistructured data can be converted to

object-oriented database query. For example, consider the following Lorel-like query over
semistructured data.

select X.name.firstname, X.name.lastname

from person X, X.vehicle Y

where X.address ¼ 00Seoul00, Y.model ¼ 00EF-Sonata00, Y.gear¼ 00auto00

The query asks for the first and last name of the person who has a vehicle ‘‘EF-Sonata’’ with an
automatic transmission. The query is converted to the following object-oriented database query

Fig. 4. An OODB schema.

234 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

language. Here, as the variable p bound to the class Person has an attribute vehicle, only the
instances of the class Person1, Person2 are traversed.

select tuple(f:p.00name.firstname00, l:p.00name.lastname00)
from p in (Person1 or Person2),y in (p.Vehicle and Vehicle1)

where p.address ¼ 00Seoul00, y.model ¼ 00EF-Sonata00, y.gear¼ 00auto00

4. XML query languages and XML views

We classify the problem of answering XML queries into two categories according to whether
the queries and views are composed of single or multiple regular path expression. In this section,
we address the problem definition and present query rewriting using views.

4.1. Single regular path expression

4.1.1. Problem definition

We define single regular path queries as follows.

Definition 3 (Single regular path query). Given a regular path expression r and a data graph D
which is an OEM edge-labeled graph, the result of r on D is the set of objects on D that are
reachable by the regular path expression r.

The result of single regular path query is computed as follows. First, construct some automaton
A that is equivalent to the regular path expression r. And then, traverse the automaton A from the
initial state to the final state while keeping the corresponding nodes in the data graph. And finally,
retrieve the set of nodes corresponding to the final state of the automaton A. Algorithm 1 shows
this process.

Algorithm 1. Computing simple regular path query

1: Input: A regular path expression r and a data graph D
2: Output: the set of object ids on D that are reachable by the regular path expression r
3: Procedure Query-Evaluationðr;DÞ
4: Construct an automaton A corresponding to r;
5: Closure ¼ fðx1; s1Þg where fx1; x2; . . . ; g is the set of nodes in D, with x1 being the root and
fs1; s2; . . . ; g is the set of states in A with s1 being the start state;

6: while Closure has not reached a fixpoint do
7: if for some ðx; sÞ 2 Closure there exist ðx!a x0Þ in D and ðs!a s0Þ in A then
8: Closure þ ¼ ðx0; s0Þ;
9: end if
10: end while
11: p the set of nodes x such that Closure contains some pair ðx; sÞ, with s a terminal state in A;
12: return p;

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 235

Example 3. Suppose the regular path expression �AGroup.(personjschool).email� and the data
graph in Fig. 1 are given. The non-deterministic automaton corresponding to the regular path
expression is shown in Fig. 5. Table 1 shows the change of the set Closure in the while loop in
Algorithm 1. After three iterations, the set Closure reaches a fixpoint. As the state s9 is a final
state, the object id &6 is returned.

In addition, authors in [20] provide a technique that uses a lazy DFA for XML stream pro-
cessing. The lazy DFA is constructed at run time, on demand. Authors show that only a small set
of the DFA states need to be computed.

4.1.2. Rewriting of single regular path queries

The problem is computing the rewriting of a regular expression E0 in terms of other regular
expressions e ¼ fE1; . . . ;Eng. The authors in [6] showed that the problem of checking whether
there is a non-empty rewriting is EXPSPACE-complete and provided an optimal 2-EXPSPACE
algorithm for computing the rewriting.
Algorithm 2 shows the proposed rewriting algorithm. Let reðeÞ denote the regular expression

associated to the symbol e. First, the algorithm constructs a deterministic automaton Ad such that
LðAdÞ ¼ LðE0Þ. Next, it constructs the automaton A0 ¼ ð

P
e; S; s0; d

0; S � F Þ where sj 2 d0ðsi; eÞ if
and only if 9w 2 LðreðeÞÞ such that sj 2 d	ðsi;wÞ.

Fig. 5. The NFA for the regular path expression.

Table 1

The change of the set Closure

Iteration Closure

0 fðroot; s1Þg

1 fðroot; s1Þ; ð&0; s2Þ; ð&0; s3Þ; ð&0; s4Þ; ð&0; s5Þg

2 fðroot; s1Þ; ð&0; s2Þ; ð&0; s3Þ; ð&0; s4Þ; ð&0; s5Þ; ð&1; s6Þ;
ð&1; s8Þ; ð&3; s6Þ; ð&3; s8Þ; ð&4; s7Þ; ð&4; s8Þg

3 fðroot; s1Þ; ð&0; s2Þ; ð&0; s3Þ; ð&0; s4Þ; ð&0; s5Þ; ð&1; s6Þ; ð&1; s8Þ;
ð&3; s6Þ; ð&3; s8Þ; ð&4; s7Þ; ð&4; s8Þ; ð&6; s9Þg

236 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

Algorithm 2. Rewriting of single regular path queries

1: Input: A regular path query E0, a set of views e ¼ fE1; . . . ;Eng
2: Output: An automaton Re;E0 which represents the rewriting
3: Procedure Query-RewritingðE0; eÞ
4: Construct an automaton Ad ¼ ð

P
; S; s0; d; F Þ such that LðAdÞ ¼ LðE0Þ;

5: Construct an automaton A0 ¼ ð
P

e; S; s0; d
0; S � F Þ where sj 2 d0ðsi; eÞ if and only if 9w 2

LðreðeÞÞ such that sj 2 d	ðsi;wÞ;
6: Return Re;E0 ¼ A

0
;

Here, if A0 accepts a
P

e-word e1; . . . ; en, then there exist n
P
-words w1; . . . ;wn such that

wi 2 LðreðeiÞÞ ði ¼ 1; . . . ; nÞ and such that the
P
-word w1; . . . ;wn is rejected by Ad . On the other

hand, if there exists n
P
-words w1; . . . ;wn such that wi 2 LðreðeiÞÞ ði ¼ 1; . . . ; nÞ and such that theP

-word w1; . . . ;wn is rejected by Ad , then the
P

e-word e1; . . . ; en is accepted by A0. Hence, Re;E0
which is the complement of A0 accepts a

P
e-word e1; . . . ; en if and only if all

P
-words w1; . . . ;wn

such that wi 2 LðreðeiÞÞ ði ¼ 1; . . . ; nÞ are accepted by Ad .

Example 4. Consider the query E0 ¼ AGroup:ðperson:companyÞ þ name:firstname and the set of
views e ¼ fAGroup;person:company; name:firstnameg. Here, reðe1Þ ¼ AGroup, reðe2Þ ¼ person:
company, and reðe3Þ ¼ name:firstname. Fig. 6(a)–(c) show Ad , A0, and A

0
which are constructed in

each step of Algorithm 2.

4.2. Multiple regular path expression

4.2.1. Problem definition
User�s queries are usually composed of several regular path expressions. For example, consider

the following query.

select p
from DB.movie p, p.actor.(Tom CruisejBrad Pitt)q
where p:year ¼ 2000

The query asks for movies which have actors �Tom Cruise� or �Brad Pitt� and were produced
in the year 2000. The query consists of three regular path expressions, namely, DB.movie p,

Fig. 6. Rewriting of a single regular path query: (a) An automaton Ad ; (b) an automaton A0; (c) an automaton A
0
.

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 237

p.actor.(Tom CruisejBrad Pitt)q, and p:year ¼ 2000. In processing XML queries, it is an im-
portant issue whether query optimization techniques can process queries that have more than one
regular path expression. So, we define multiple regular path queries as follows.

Definition 4 (Multiple regular path query). A multiple regular path query is an expression of the
form qðxÞ : �y0r0z0; . . . ; yn�1rn�1zn�1, where nvarðqÞ ¼ fy0; z0; y1; z1; . . . ; zn�1g are the query�s node
variables (they need not be distinct), x
 nvarðqÞ are the query�s head variables, and the ri,
06 i6 n� 1, are regular path expressions. Here, the query has the following properties of
branching regular path expressions. 3 For each query conjunct yirizið06 i6 n� 1), let yi be the
source variable and zi be the destination variable.

1. Each source variable, except the first one, appears as a destination variable in an earlier step.
2. A variable may appear as a source variable in more than one step.
3. A variable may not appear as a destination variable in more than one step.

Again, for each query conjunct yirizi, let d be a function which maps node variables to an in-
finite set O of oids, i.e. dðUÞ ¼ o where U 2 nvarðqÞ and o 2 O, there is a path which satisfies the
regular path expression ri between dðyiÞ and dðziÞ in the data graph DB. Each substitution d
defines a tuple in a relation Rq, whose attributes are variables in q. The result of the query q is the
projection of Rq on the variables in x.

Example 5. When the query qðbÞ : �aðNationalÞb; bðplayer:nickname:\BK"Þc is applied to the
database in Fig. 8, the relation Rqða; b; cÞ ¼ fð1; 2; 7Þg. Therefore, the result of q is pbðRqÞ ¼ f2g.

4.2.2. Rewriting of multiple regular path queries
As stated earlier, user queries are usually composed of multiple regular path expressions. So, it

is necessary to calculate rewritings of multiple regular path queries. The problem is, given the
following form of query q, and a set of views v, finding of the query q0 which accesses at least one
view of v and returns the same result as q.

qðuÞ : �p0 r0 p1; p1 r1 p2; p1 r2 p3; p3 r3 p4; p3 r4 p5
vðwÞ : �q0 r5 q1; q0 r6 q2

ð1Þ

The problem is addressed in [10,31]. Authors in [31] presented an algorithm of query rewriting
for TSL, a semistructured query language and showed its soundness and completeness. TSL has
restructuring capabilities but does not support regular path expressions. On the other hand, the
work in [10] supports regular path expressions but does not support restructuring capabilities.
Here, we will show the key idea of the technique in [10]. If a query q and a view v are composed of
n and m query conjuncts respectively, there are nm possible mappings. The technique in [10] im-
proves this potential complexity by introducing the query and view graph.

3 This is similar to the branching path expression in [26].

238 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

For example, there are 52 mappings from the view�s body to the query�s body in Formula (3).
However, Fig. 7 shows that there are only four possible mappings. 4 After applying the symbol
mapping, the query has the following form.

q0ðuÞ : �wðx; yÞ; cðy; zÞ ð2Þ
Here, wðx; yÞ denotes rewritten queries using views among query conjuncts and cðy; zÞ denotes
unchanged query conjuncts. When cðy; zÞ ¼ /, complete rewritings [24] exist and when
wðx; yÞ ¼ /, there is no rewriting using views. For the rewritten queries, the result of the query is
obtained by joining views and each query conjunct, which is unchanged. The basic query eval-
uation technique is the 2	-index. It is an expansion of the 2-index [27] which is an index structure
for efficiently finding all pairs of nodes that are connected by a regular path expression.

5. XML query processing

In this section, we address efficient XML query processing techniques. We classify the tech-
niques into two categories. The first category is the schema extraction technique and the second
category is the graph pruning technique.

5.1. Schema extraction

Query evaluation techniques based on graph traversal are usually inefficient compared to those
of traditional database systems since there is no schema fixed in advance. That is, to process given
queries targeted to specific schemas in traditional database systems, a query processor can only
process the schemas targeted. On the other hand, in semistructured data models, the entire data
graph should be processed by a query processor. So, optimization techniques for queries by
schema extraction are proposed. We classify the techniques into two groups: techniques of using
automata and those of using simulations.

5.1.1. Schema extraction using automata
A schema extraction technique using automata theory is proposed in [19,29]. DataGuides in-

troduced in [19,29] are structural summaries of semistructured databases. The technique regards a

Fig. 7. A query graph and a view graph.

4 Fig. 7 shows only two mappings but there are four possible mappings as the order of child mappings can be changed.

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 239

source database as a non-deterministic finite automaton and creates a data guide that is the
corresponding deterministic finite automaton. Formally, the NFA ðQ;

P
; d; qo; F Þ corresponding

to an object o in OEM is constructed as follows.

• Q ¼ stateðDÞ [fendg
•

P
¼ L [f?g

• dðstateðcÞ; lÞ ¼ stateðobjectðidÞÞ for 8c 2 C and 8 <l; id>2 valueðcÞ
• dðstateðaÞ;?Þ ¼ end for 8a 2 A
• q0 ¼ stateðoÞ
• F ¼ Q:

Here, the function state maps every object within o to a unique automaton state corresponding
to it and maps a set of objects within o to the set of the automaton states corresponding to them. A
denotes the set of all atomic objects within o, C the set of all complex objects within o, D the set of
all objects within o, and L the set of all different labels of object references within o.
For example, assume that a data graph which represents a partial MLB (Major League

Baseball) database. If we regard nodes in the graph as states in an automaton and edges as
transitions, Fig. 8 becomes a non-deterministic automaton. That is, for example, there are two
transitions labeled �National� out of state 1, one going to state 2 and another going to state 14. Fig.
9 shows a DataGuide for Fig. 8. Since a DataGuide is a deterministic finite state automaton, its
size is usually small compared to the size of the source database. So, we can speed up query
processing for semistructured queries by a DataGuide, since it serves as a path index.
For example, consider the regular path expression �MLB.National.player.nickname�. Without a

DataGuide, a query processor would be forced to examine each National, in turn each player of
each National and finally return each nickname object of each player object. The bold lines in Fig.
8 shows this process. In the DataGuide technique, any object in a DataGuide graph has a target
set that denotes all objects reachable by a given label path in the source database. For example,
the target set of the object 2 in Fig. 9 is f2; 14g in Fig. 8. In the above example, the query result is
the objects in the target set of �MLB.National.player.nickname�. So, the target set of the object 6
in Fig. 9, that is, f7; 18g, is returned. This traversing is shown in the bold lines in Fig. 9. In this
way, the object search space is reduced.

Fig. 8. An example MLB data graph.

240 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

However, this technique can be applied only to queries with a single regular expression. That is,
it cannot be directly applied to complex queries with several regular expressions and variables.
For example, let�s consider the following query which is composed of multiple regular path ex-
pressions.

q0ðbÞ : �a ðNationalÞ b; b ðplayer:name:\Park"Þ c ð3Þ
The query asks for teams which have the player named ‘‘Park’’. The result of the query cannot

be returned by only traversing the DataGuide graph. That is, if we traverse the DataGuide graph,
the results of the query are nodes 2 and 7 and the corresponding target sets are {2,14} and
f8; 12; 19; 22g. However, since there is no path information between nodes 2 and 7, we cannot
answer the query by using only the DataGuide graph. Thus, we should traverse the source data
graph and the DataGuide graph simultaneously.

5.1.2. Schema extraction using simulation

By constructing a schema graph to which a data graph conforms, we can reduce the search
space in query processing and can create a schema graph by using the concept of simulation. If
there is a simulation relation between two graphs G1 and G2, every edge in G1 has a corresponding
edge in G2. Formally, given graphs G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ, a relation R on V1, V2 is a
simulation if it satisfies

8l 2 L 8x1; y1 2 V1 8x2 2 V2ðx1½l�y1 ^ x1Rx2) 9y2 2 V2ðy1Ry2 ^ x2½l�y2ÞÞ ð4Þ
Here, L is a set of edge labels and ½l� is a binary relation on V ¼ V1 [V2. The notation x½l�y means
that there is an l-labeled edge from x to y. A simulation between a semistructured data instance
and a schema graph can be defined by expanding the definition of simulation, as follows.

• The roots of the OEM data and schema graph must be in the simulation.
• An edge x1½l�y1 in the data graph can be simulated by some edge x2½l0�y2 when l0 is a wild card �-�
or an alternation containing the label l.

Fig. 10 shows a schema graph corresponding to the data graph in Fig. 8 and Table 2 shows the
simulation relation between nodes of Figs. 8 and 10.

Fig. 9. A DataGuide.

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 241

Since the size of a schema graph is usually small compared to a data graph, we can reduce the
search space in query processing by traversing schema graphs instead of data graphs.

5.2. Graph pruning

Graph pruning techniques which prune the search space of query processing by adding some
information to data graphs have been proposed [11,32].
The techniques do not require much additional storage for indexes, and since the structure of

the source database to which queries are processed is preserved, they can process complex queries
such as those that have more than one regular expressions.
We will address the key idea of the NodeInfo technique [11] as an example. The NodeInfo

technique extracts information from DTDs statically and provides a query processor with it at run
time. For example, consider the following DTD definition for the element person.

<!ELEMENT person (name, address, e-mail*,(school|company))>

From the DTD, we can classify the person element into four groups: (1) ones who have one or
more e-mail addresses and work for companies, (2) ones who have no e-mail address and work for
companies, (3) ones who have one or more e-mail addresses and are students and (4) ones who
have no e-mail address and are students. That is, the element person is divided into four groups
according to its labels as in Table 3.

Fig. 10. A schema graph.

Table 2

Data nodes and schema nodes

Data node Schema node

1 Root

2, 14 N-team

24 A-team

6, 11, 17, 21 N-player

27 A-player

3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30 String

242 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

When each element is classified in this way, the search space can be reduced. For example, when
the query that is related to students who have e-mails is processed, the nodes denoting persons
who have no e-mail and work for companies need not be traversed.
The NodeInfo technique gives classification information about each object to a query pro-

cessor. For example, the object &1 in Fig. 1 belongs to 2:{e-mail, company} and the object &3 to
2:{school}. The variable node_info in the NodeInfo technique stores the index of the label set
which the corresponding object belongs to in the classification table. For example, the object &1
has node_info of 2 which is an index of a label set {e-mail, company}. So, when a query which is
related to company employees who have e-mail address is processed, the node &3 in Fig. 1 which
denotes a student need not be traversed.
However, the technique suffers from combinatorial explosion. That is, each occurrence of �	� or

�j� doubles the number of classes.

5.3. Comparison

Table 4 shows a comparison of XML query processing techniques. 5 The construction cost and
index size is a worst case scenario. The schema extraction using automata shows exponential cost
in construction and index size since conversion of an NFA to a DFA requires in worst case time
(and space) exponential in the size of the data graph. Schema extraction techniques cannot be
directly applied to multiple regular path queries since the structure of the database to which
queries are processed is not preserved.

6. Conclusion

Recently, as XML is emerging as the standard for information exchange on the World Wide
Web, the problem of XML query evaluation raises significant challenges among database

Table 3

A classification table

1 {e-mail; school}
2 {e-mail; company}
3 {school}

4 {company}

Table 4

A comparison of query evaluation techniques

Construction cost Index size Single Multiple

Based on automata Exponential Exponential O X

Based on simulation m logðnÞ Linear O X

Graph pruning (NodeInfo) OðknÞ OðtnÞ O O

5 Assume that the data graph has n nodes and m edges and k and t denote some constants in each algorithm.

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 243

communities. As XML queries are composed of arbitrary regular expressions and wild-cards, they
usually require large search space during query processing. Thus, many techniques of querying
XML documents have been proposed.
As this survey has shown, there are three dimensions in storing and querying XML documents:

XML instance storage, XML query languages and XML views and XML query language pro-
cessing. First, there are two approaches to storing XML documents. One is using special purpose
query engines for XML data and the other is using traditional database systems.
In the context of using traditional database systems, the main issue is how to infer database

schemas to store XML documents. As described in this article, we classify the techniques in two
groups. The first one is storing the graph itself to which XML data is mapped and the second one
is inferring schemas from XML DTDs. In this case, the challenge is how to store and query XML
documents that have different data models compared to traditional relational or object-oriented
data models.
Second, in the dimension of XML query language and XML views we classify techniques based

on whether the queries and views are composed of single or multiple regular path expressions.
Finally, in the context of XML query processing, the key point is how to reduce the search

space of the graph traversal. For this goal, many algorithms including schema extraction, graph
pruning have been proposed. In this case, whether the proposed techniques can be applied to
queries having multiple regular path expressions and the overhead for enhanced techniques are
comparison criteria.
We believe that there are still many challenges that remain open. That is, from theoretical

foundations to considerations of a more practical nature, how to process queries having arbitrary
regular expressions and to infer appropriate schemas to store XML documents should be ad-
dressed.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, The lorel query language for semistructured data,

International Journal on Digital Libraries (1996).

[2] Software AG, 2002. Available from <http://www.softwareag.com/tamino>.
[3] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, J. Simeon, XML Path Language

(XPath) 2.0. Technical report, W3C Working Draft, December 2001.

[4] T. Bray, J. Paoli, C. Sperberg-McQueen. Extensible markup language (XML) 1.0. Technical report, W3C

Recommendation, 1998.

[5] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, A query language and optimization techniques for

unstructured data, in: Proceedings of the ACM SIGMOD International Conference on the Management of Data,

1996.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Rewriting of regular expressions and regular path

queries, in: Proceedings of ACM Symposium on Principles of Database Systems, 1999.

[7] R.G.G. Cattell, The object database standard: ODMG-93, Morgan Kaufmann Publishers, 1994.

[8] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, M. Stefanescu, XQuery: a query language for XML, Technical

report, W3C Working Draft, February 2001.

[9] V. Christophides, S. Abiteboul, S. Cluet, M. Scholl, From structured documents to novel query facilities, in:

Proceedings of the ACM SIGMOD International Conference on the Management of Data, 1994.

[10] T.-S. Chung, H.-J. Kim, A two phase optimization technique for XML queries with multiple regular path

expressions, Technical report, Seoul National University, 2001.

244 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

http://www.softwareag.com/tamino

[11] T.-S. Chung, H.-J. Kim, Extracting indexing information from XML DTDs, Information Processing Letters 81 (2)

(2002) 97–103.

[12] T.-S. Chung, S. Park, S.-Y. Han, H.-J. Kim, Extracting object-oriented schemas from XML DTDs using

inheritance, in: 2nd International Conference on Electronic Commerce and Web Technologies(EC-Web) with

LNCS, 2001.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, Query language for XML, in: Proceedings of Eighth

International World Wide Web Conference, 1999.

[14] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructed data with STORED, in: Proceedings of the ACM

SIGMOD International Conference on the Management of Data, 1999.

[15] excelon corporation, 2002. Available from <http://odi.com>.
[16] M. Fernandez, D. Suciu, Optimizing regular path expressions using graph schemas, in: IEEE International

Conference on Data Engineering, 1998.

[17] D. Florescu, D. Kossmann, Storing and querying XML data using an RDBMS, IEEE Data Engineering Bulletin 1

(1999) 1.

[18] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim, XTRACT: a system for extracting document type

descriptors from XML documents, in: Proceedings of the ACM SIGMOD International Conference on the

Management of Data, 2000.

[19] R. Goldman, J. Widom, DataGuides: enabling query formulation and optimization in semistructured databases,

in: Proceedings of the Conference on Very Large Data Bases, 1997.

[20] T.J. Green, G. Miklau, M. Onizuka, D. Suciu, Processing XML streams with deterministic automata, in:

Proceedings of the International Conference on Database Theory, 2003.

[21] T. Grust, Accelerating XPath location steps, in: Proceedings of the ACM SIGMOD International Conference on

the Management of Data, 2002.

[22] Z.G. Ives, A.Y. Levy, D.S. Weld, Efficient evaluation of regular path expressions on streaming xml data, Technical

report, University of Washington, 2002.

[23] M. Kifer, W. Kim, Y. Sagiv, Querying object-oriented databases, in: Proceedings of the ACM SIGMOD

International Conference on the Management of Data, 1992.

[24] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using views, in: Proceedings of ACM

Symposium on Principles of Database Systems, 1995.

[25] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: a database management system for

semistructured data, SIGMOD Record (1997).

[26] J. McHugh, J. Widom, Optimizing branching path expressions, Technical report, Stanford University Database

Group, 1999.

[27] T. Milo, D. Suciu, Index structures for path expressions, in: Proceedings of the International Conference on

Database Theory, 1999.

[28] M. Murata, Extended path expressions for XML, in: Proceedings of ACM Symposium on Principles of Database

Systems, 2001.

[29] S. Nestorov, J. Ullman, J. Wiener, S. Chawathe, Representative objects: concise representations of semistructured,

hierarchical data, in: IEEE International Conference on Data Engineering, 1997.

[30] Y. Papakonstantinou, S. Abiteboul, Object fusion in mediator systems, in: Proceedings of the Conference on Very

Large Data Bases, 1996.

[31] Y. Papakonstantinou, V.A. Vassalos, Query rewriting using semistructured views, in: Proceedings of the ACM

SIGMOD International Conference on the Management of Data, 1999.

[32] S. Park, H.-J. Kim, SigDAQ: an enhanced XML query optimization technique, Journal of Systems and Software

61 (2) (2002) 91–103.

[33] J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. DeWitt, J.F. Naughton, Relational databases for

querying XML documents: limitations and opportunities, in: Proceedings of the Conference on Very Large Data

Bases, 1999.

[34] D. Suciu, Semistructured data and XML, in: Proceedings of International Conference on Foundations of Data
Organization, 1998.

[35] D. Suciu, M. Fernandez, S. Davidson, P. Buneman, Adding structure to unstructured data, in: Proceedings of the

International Conference on Database Theory, 1997.

T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246 245

http://odi.com

Tae-Sun Chung received his BS degree from KAIST (Korea Advanced Institute of Science and Technology),
in 1995 and his MS and Ph.D. degree in school of computer science and engineering from Seoul National
University, in 1997 and 2002, respectively. He is currently enrolled in Samsung Electronics Co., Ltd. His
research interests include semistructured and XML databases, object-oriented databases, and database pro-
gramming languages.

Hyoung-Joo Kim received his BS degree in computer engineering from Seoul National University, Seoul,
Korea, in 1982 and his MS and Ph.D. in computer engineering from University of Texas at Austin in 1985 and
1988, respectively. He was an assistant professor of Georgia Institute of Technology, and is currently a
processor in the Department of Computer Engineering at Seoul National University. His research interests
include object-oriented databases, multimedia databases, HCI, and computer-aided software engineering.

246 T.-S. Chung, H.-J. Kim / Data & Knowledge Engineering 46 (2003) 225–246

	Techniques for the evaluation of XML queries: a survey
	Introduction
	Basic concepts
	Semistructured data model
	XML
	Query language

	XML instance storage
	Relational and object-oriented databases
	Storing XML documents using a relational database system
	Graph based approach
	Schema extraction

	Storing XML Documents in an Object-oriented database systems

	XML query languages and XML views
	Single regular path expression
	Problem definition
	Rewriting of single regular path queries

	Multiple regular path expression
	Problem definition
	Rewriting of multiple regular path queries

	XML query processing
	Schema extraction
	Schema extraction using automata
	Schema extraction using simulation

	Graph pruning
	Comparison

	Conclusion
	References

