
A New Data Abstraction Layer Required For OODBMS

Eun-Sun Cho Sang-Yong Han Hyoung-Joo Kim

Department of Department of Department of
Computer Science Computer Science Computer Engineering

Seoul National University Seoul National University Seoul National University
Seoul, Korea 151-742 Seoul, Korea 151-742 Seoul, Korea 151-742

e-mail: { eschough@candy, syhanepandora, hjkepapaya} .snu.ac. kr

Abstract

A ‘class ’ in object-oriented paradigm represents
both interface and implementat ion of the class. How-
ever, interface and implementation of a class are
needed o n different purposes, since class interface i s
shared among most users, while class implementat ion
is used only to the implementors of the class.

I n this papef i , we introduce a new level of data
abstraction, called the ‘class-implementation level’,
which i s based o n the separated management of inter-
face and implementat ion of a class. A n d we describe
a n e w model f o r OODBMS which provides users with
the abstract view of the class implementation.

1 Introduction

Most OODBMSs are based on ‘classes[G]’. The
definition of a ‘class’ can be divided into two part
- class interface and class implementation. Class
interface represents data semantics which is shared
among users, while class implementation implements a
class including data structures and method definitions.
Many extended relational database management sys-
tems(ERDBMS) and OODBMSs allow users to iden-
tify class interface and class implementation by the
keywords ‘public/private’. For example, the inter-
face of a class is a collection of data/method declara-
tions which are specified with ‘public’.

However, according to the semantics of database
schema, class interface is shared by more than one ap-
plications, while class implementation is used only for

IThis work is supported in part by KOSEF under grant
KOSEF94-2180, “Research on Object-Oriented Database Pro-
gramming Language Based on C++ and ODMG Standard Ob-
ject Model”.

the implementors of the class. Since interface and im-
plementation of a single class are on such different pur-
poses that there are many limitations in OODBMSs
as well as in conventional application programs. In
this paper, we introduce a new data-abstraction level
called ‘the class-implementation level’ for OODBMSs,
This new layer solves many problems rising in the
previous abstraction model, and guarantees ‘class-
implementat ion independence’ which means the ability
to modify the class implementation without causing
application programs to be rewritten.

The sequence of the paper is as follows. The next
section shows the motivation of a new integration
mechanism. Section 3 presents an overview of the
concept of the class-implementation abstraction. And
section 4 describes how the new abstraction concept
effects the data model and APIs(app1ication program-
ming interface) for OODBMSs. Section 5 investigates
more on the semantics of the OODBMSs with the new
abstraction layer. Section 6 introduces an example
of the proposed OODBMS architecture which is cur-
rently being implemented. Section 7 covers some re-
lated works. Finally, section 8 concludes this paper.

2 Motivations

2.1 Implementation hiding

These days, object-oriented concept has proved to
be the solution for distributed computing with its mes-
sage sending mechanismi5, lo]. And, in many dis-
tributed OOPLs[5, lo], a class is required to be shown
as two separate modules - one is the ‘interface’ of a
class which can be accessed by all users regardless of
their sites, and the other is the ‘implementation’ of a
class, used only for implementation of the class. So

144
0-8186-8114-4/97 $10.00 0 1997 IEEE

Account 53
Deposit 3

-

Figure 1: A mixed class hierarchy

does some distributed DBMSs to allow users to access
distributed data in more elegant ways[l4, 181.

ODMG-93[6], a de facto standard of OODBMS
model, also suggests the separation of interface and
implementation of classes. The main purpose of
such separation in ODMG model is to provide multi-
language environments and allow sharing the database
among applications in various languages, such as
OQLs(object query language)[6], C++, Smalltalk,
and so on. Thus, ODMG proposes an applica-
tion language-independent ODL(object definition lan-
guage) to define database schema[6]. It is not surpris-
ing that most ODL-compliant OODBMSs are based
on CORBA[lO]. But, in such case, no changes are
made in DBMS architectures or semantics, but they
provide only a kind of CORBA gateways. Even in the
OODBMSs tightly bound to CORBA[12], the library
interface for CORBA has limitations[3].

In this paper, we suggest the new abstraction
layer, called the ‘class-implementation layer’, which ef-
fects all database APIs, and propose that 00DBMSs
should be designed with consideration for the new
layer so that users could take advantage of the class-
separation easily. The new layer with class-separation
is useful not only for the distributed or multi-language
applications, but also for the normaf OODBMSs.

2.2 Two different kinds of class hierar-
chies

In OOPLs, subclass relationships are identified
with inheritance for code-reuse. For example, the def-
inition of class ‘Deposit’ reuses the implementation of
the system defined class ‘money’.

class Deposit : money {
private: time issue-date;
public : number account-number;

void show-amount (1 ; 3;

However, in a database schema, subclass relation-
ships are defined based on subset relationships, in-
stead of reuse relationships. So, the subclass rela-
tionship sets in an OOPL and the database schema
do not go with each other. In above example, class
‘Account’ can be a super class of ‘Deposit’ in the
database schema.

Figure 2: A class hierarchy for database schema

class Account {
number account-number;
void show-amount 0 ;
void show-date(); 1;

public:

class Deposit: public Account{ . . . 1;
class Loan : public Account{ . . . 1;

Although both class ‘Deposit’ and class ‘Loan’ are
the subclasses of class ‘Account’, they might be im-
plemented differently that it can be, for example, a
subclass of ‘Deposit’ itself for code-reuse. In cur-
rent OODBMSs, this situation can be realized by
multiple inheritance, as shown in figure 1. However,
such multiple inheritance from the mixture of the
two independent hierarchies is known to cause seri-
ous complexity[4, 81. And it may be more serious in
database applications, because the schema evolution
cost, in proportion to the complexity of the schema,
is much higher than in conventional object-oriented
programs.

Note that the hierarchy for persistent classes be-
comes more complicated than originally intended for
a schema classes shown in figure 2, which makes
the database users confused, and schema evolu-
tion costs increased. For example let us assume
that a class ‘Deposit’ has multiple implementa-
tions named ‘MoneyDeposit’, ‘Depositlmpll’, and
‘Deposit-Impl2’. They have to be made subclasses of
‘Deposit’ in the persistent class hierarchy. These can
be represented in a C++ like syntax as follows.

class Deposit{ . . . 3; // a schema class
// various ways of implementing Deposit
class Money-Deposit : virtual Deposit{ ... 1;
class Deposit-Imp11 : virtual Deposit{ ... 1;
class Deposit-Imp12 : virtual Deposit{ . . . 1;

At this time, if a new class ‘SpecialDeposit’ is
created as a subclass of ‘Deposit’ in the schema, it
should be inherited from all the three classes. How-
ever, an ambiguity[ll] can arise if any pair of those
three classes happen to have common datalmethods.
And users have to overriding the datalmethods from
three super classes in order to implement the class
‘SpecialDeposit’ of its own.

145

view 2 view n view 1 view n ... view 2

conceptual level

physical data

conceptual level

new layer

”
physical data n

3 Overview of the Class Implementa-
tion Abstraction

Conventionally, there are three levels of data ab-
straction - the physical level, the conceptual level and
the view level, as shown in the figure 3[15]. In this
paper, we introduce a new level of abstraction, the
‘ class-implementation level’, as illustrated in figure 4.
This new level includes method definition and data
structure definition which are related to implement-

Figure 4: The proposed database abstraction layers

4 OODB Language Interfaces and The
Class-Implementat ion Layer

In this section, we describe what the language in-
terfaces for OODBMSs will be like when they provide
users with the views of the class-implementation ab-
straction level.

4.1 ODLs(0bject definition languages
ing the class.

ODLs are almost same as ODMG-ODL[6]. How-
To achieve the class-implementation independence,

an ‘interface’ and an ‘implementation’. For example,
a schema class ‘Deposit’ mentioned above, is defined
as follows.

ever, as mentioned earlier, ODL

class ‘Loan’ and class ‘Account’ are defined as follows
in an ODL.

do not
a schema is defined as two separated -

about private part of classes. Thus, class ‘Deposit’,

// interface
persistent class Deposit c

number account-number;
void show-amount 0 ;
void show-date0 ; 1 ;

// implementation
class DepositImpll c

account-data p;
implements Deposit; 1;

The implementation ‘Deposit Impli’ is bound
to the interface ‘Deposit’ with the keyword
‘implements’, which means that the implementation
‘DepositImpll’ implements the interface ‘Deposit’.
The definitions of implementations are shown only at
the class-implementation level, that is, only to the ap-
plication programmers implementing the very classes.
Note that without the class-implementation level ab-
straction, all users have to see the whole classes in-
cluding the implementation-related portions. The sep-
arated definition of an interface also allows ODL users
to ignore the private datalmethods of the class.

// a l l data/methods are public
class Account I

number account-number;
void show-amount 0 ;
money show-date0 ; >;

class Deposit : Account c . . .>;
class Loan : Account c . . . I ;

4.2 Application programming languages

In this section, we introduces a language extension
to C++, to show how the models of such APIs are
changed. Most of all, in order to support the class-
implementation independence, the database program-
ming language should provide the facilities for the sep-
arated definition of schema interface and implemen-
tation. And in an application program two separated
hierarchies are maintained - one for persistent class in-
terfaces, and the other for implementations and usual
non-database classes.

A hierarchy for class interface is intended only for
modeling real worlds. The declaration of interfaces
in an application program are same as those in an
ODL except for they are specified with the keyword
‘persistent’ in an application program, which is a

146

conventional way to specify schema classes in database
programming languages[6].

An implementation is similar to a usual non-
database class except for the additional keyword
‘implements’ which binds it to an persistent class in-
terface. A hierarchy for class implementation can be
built at the class-implementation level, regardless of
its class interface hierarchy. Thus, any changes in a
class implementation hierarchy can be made without
any affection on its schema interface class hierarchy,
and vice versa. For example, both ‘MoneyDeposit’
and ‘Deposit Impll’ may implement class ‘Deposit’.
class Money-Deposit:moneyIimplements Deposit;..);
class DepositImpll c

implements Deposit;
void compute-date0 ; 1;

In an application program, an object is created in a
database through an implementation, and handled by
an ‘object handler’ of an interface pointer type. For
example, when an interface ‘Image’ is implemented
by the implementations ‘BitImagel’ and ‘BitImage2’,
their objects are used as follows.

persistent Deposit * x = new DepositImpll; . . .
x = new DepositImplZ;

4.3 OQLs(0bject query language)

OQL queries are almost same as in conventional
object-oriented queries. However, for implementation
independence, an extent for a schema class is collected
by traversing all the implementations which imple-
ment the interface, as well as its sub-interfaces in the
interface hierarchy tree.

5 Discussions

5.1 More on class-separation

Separation semantics of interface and implementa-
tions is not new in programming languages[2, 4, 5 , 91.
However, not all of them are satisfactory for the class-
implementation layer. In this section, we investigate
on the separation model appropriate for OODBMSs.

First, since database schema designers use sub-
classing for real-world modeling, explicit sub-classing
specified by users is preferable to implicit sub-classing
based on signatures[4, 71.

Second, there should be no obligation to bind in-
terfaces and implementations by one-to-one mapping.
By means of the multiple implementations for an in-
terface, some kinds of schema evolution can be also
simplified, as shown in the later sections.

Third, since different users have to get information
only from interfaces, an interface declaration itself is
also required to be constructed with the known types
to those users, such as primary types or common in-
terfaces. That is, the whole set of interfaces must be
described only with itself and primary types, named
the ‘self-containment’ property of the interface set.

5.2 Schema evolution costs

In general, the cases of schema evolution in
OODBMSs fall into two categories: one is the changes
of the entities and relationships in real worlds, the
other is modifying the class implementation usually
for the sake of performance. Although the former is
unavoidable, the latter kind of evolution is possible to
reduce its cost by class-implementation abstraction.

For example, let us consider the previous example
of class ‘Deposit’ with three subclasses for implemen-
tations. In our mechanism, such classes do not have
to be subclasses of the class ‘Deposit’ any more, but
instead, they are bound to the interface ‘Deposit’.
Thus, the new class ‘SpecialDeposit’ simply inher-
its from the class ‘Deposit’ directly, without consid-
eration of these implementations. And, when a user
wants to change, for efficiency, the private data dec-
laration ‘money amount;’ to ‘int amount;’ in class
‘Deposit’, it is unnecessary to change the whole class
declaration, but the user just creates a new implemen-
tation and binds it to the interface.

6 Implementing The Proposed Archi-
tecture

Implementation abstraction is being realized
on an OODBMS named ‘SOP(SNU OO-DBMS
Pla t f~rm)[l] ’~ as shown in figure 5, which provides
many facilities including those mentioned in this pa-
per. This system supports explicit sub-classing speci-
fied by users, and one-to-many mapping from inter-
faces to implementations. Typesafety in bindings
of interface and implementation with ‘implements’
phrase and self-containment of interfaces are checked
by the preprocessor of C++ API.

7 Related Works

Related works on DBMSs are listed in section
2. Here, we examine other works related to the

2An ODMG-based OODBMS developed from 1992 to 1995
at Seoul National University

147

SOP

Figure 5: The architecture of a C++ preprocessor for
the class-implementation level

class-separation concept. As mentioned earlier, the
concept of separation of interface and implementa-
tions of a class is in programming languages such as
Java, Objective-C and Emerald[2, 4, 5, 91. However,
those focus on distributed programming or separation
of inheritance hierarchies, without explicitly-defined
interface hierarchies, interface-implementation bind-
ings, implementation type-abilities and other issues
needed for database applications[2, 4, 5, 93. More-
over, their separation semantics are not properly used
for OODBMSs. For example, either ODMG2.0-Java
binding draft[l7] or JDBC[13I3 does not concern about
the Linterface’ feature in Java[2].

8 Conclusions

This paper introduces new abstraction level called
class-implementation layer’, which is based on the

separated management of interface and implementa-
tion of a class. The class-implementation abstraction
allows a schema class to have multiple implementa-
tions, which also reduces the schema evolution. And
it is also useful for distributed or multi-language ap-
plications.

Currently, we are investigating on the semantics of
class-separation for OODBMSs, and plan to complete
the realization of the new layer.

References

[l] J.H Ahn and H. J . Kim. Seof An adaptable ob-
ject prefetch policy for object-oriented database
systems. In Proc. of the Conf. on Data Engineer-
ing, 1997.

[2] Ken Arnold and James Gosling. The Java Pro-
gramming Language. Addison Wesley, 1996.

[3] Thomas Atwood. “Two Approaches to Adding
Persistence to C++ ”. In The Fourth Interna-
tional Workshop on Persistent Object Systems,
pages 369-383, 1991.

Signatures:
A C++ Extension for Type Abstraction and Sub-
type Polymorphism”. Technical Report CSD-TR-
93-059, Purdue University, September 1993.

[5] A. Black, N. Hutchinson, E. Jul, H. Levy, and
L. Carter. “Distribution and Abstract Ty es in
Emerald”. ACM Computing Surveys, 19(2y:l05-
190, June 1987.

[6] R. G. G. Cattell. Object Database Standard :
ODMG-93. OMG group, 1993.

[7] R.C.H Connor, A.L. Brown, &.I Cutts, and
A. Dearle. “Type Equivalence Checking in Per-
sistent Object Systems”. In The Fourth Inter-
national Workshop on Persistent Object Systems,
pages 154-167, 1990.

[8] William R. Cook. “Inheritance Is Not Subtyp-
ing”. In Proc. of SIGPLAN Conf. on Principle
of Programming Languages, pages 125-135,1990.

[9] Brad J . Cox and Andrew J. Novobilski, editors.
Object-Oriented Programming - An Evolution-
ary Approach . Addison- Wesley Publishing Com-
pany, Inc., second edition, 1991.

[lo] DEC, HP, HyperDesk, NCR, Object Design, and
SunSoft. The Common Object Request Broker
: Architecture and Specification . OMG group,
1991.

[11] Margaret A. Ellis and Bjarne Stroustrup, editors.
The Annotated C++ . Addison-Wesley Publish-
ing Company, Inc., 1990.

[12] IONA Technologies Ltd. Orbix-t Objectstore
Adapter, April 1996.

[13] Brian Jepson. JavaT” Database Programming.
John Wiley & Sons, Inc., 1996.

[14] E. Kilie and et al. L‘Experiences in Using CORBA
for a Multidatabase Imdementation ”. In Proc. of

[4] G. Baumgartner and V. F. Russo.

Database and Expert System Applications’, Lon:
don, 1995.

[15] Henry F. Korth and Abraham Silberschatz.
Database System Concepts. McGraw-Hill, Inc,
second edit ion , 199 1.

[16] Microsoft. Microsoft ODBC 2.0 : Programmer’s
Reference and SDK Guide (version 2.0), 1995.

[17] OMG Group. ODMG 2.0 draft, December 1996.

[18] M. Shan. LLPegasus Architecture and Desi n Prin-
ciples”. In Proc. of the ACM SIGMOD 8onf. on
Management of Data, 1993.

3A calling interface for relational database like ODBC[16]

148

