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Abstract

In this paper, we propose a schema version model which allows to restructure complex object hierarchy in object-ori-
ented databases. This model extends a schema version model, called RiBS, which is based on the concept of Rich Base
Schema. In the RiBS model, each schema version is in the form of updatable class hierarchy view over one base schema,
called the RiBS layer, which has richer schema information than any existing schema version in the database.

In this paper, we introduce new operations for restructuring composite object hierarchy in schema versions, and explain
their semantics. We also touch upon the ways to transform queries posed against a restructured composite object hierarchy
into one against the base schema. In addition, we identify several types of conflicts during schema version merging which
result from the restructuring operations, and provide a semi-automatic algorithm to resolve the conflicts. The originality of
this paper lies in that (1) we introduce several new operations to restructure composite object hierarchy, and (2) this
extended RiBS model operations raise the concept of data independence in OODBs upto the schema level.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, many new database applications such
as CAD, CASE and WWW have emerged. One
common requirement from these applications is to
model complex objects and the relational databases
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are not adequate for them. In order to support these
applications, many object-oriented data models
have been developed since the mid 1980s, and the
advantages of object-oriented database systems
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(OODBMSs) have been widely recognized in terms
of rich modeling power and performance.

Differently from the traditional RDBMS applica-
tions, new OODB applications require the function-
ality of powerful schema management such as
dynamic schema changes and more flexible schema
management. Therefore, there has been so much
work on schema evolutions in OODBMSs [5,31],
and many commercial OODBMSs (e.g. O2 [31],
ObjectStore [23], Objectivity [21], and Versant [29])
support basic schema evolution operations.

With these systems, however, only a single
schema can exist at any point in time: if a schema
evolution operation completes, the previous schema
state is no longer valid. This single schema modifica-
tion mechanism has several drawbacks [13]. First,
schema updates may invalidate programs written
against old schema. Second, because all the users
share a single schema, a schema update by one user
may change the views of all other users. These
shortcomings can be summarized as the lack of log-
ical data independence in OODBMS:s. In order to
overcome these drawbacks, schema version mecha-
nism has been introduced [15,16].

Recently, the functionality of schema versions has
been re-motivated in the emerging OODBMS appli-
cations such as Repositories [7], Portable Common
Tool Environment (PCTE) [10], and WWW [3].
Atwood points out that many web sites publish
new versions of their applications with new database
schema versions without changing the existing ver-
sions of the applications and their schema [3]. Data
repositories, which are expected to be a killer appli-
cation for DBMS technology, also should be able to
change the structure of information and its meta-
data without breaking existing applications [7,27].
Another strong requirements for schema versions
come from PCTE where the role of OODBMSs is
to manage PCTE schema, to support its evolution
over time, and to manage the resulting schema ver-
sions, as Loomis says [19], Thus, in order for
OODBMSs to be adopted in the new applications,
the functionality of schema versions is essential. In
fact, a commercial OODBMS, POET, supports
basic schema version mechanism [22].

There have been several approaches to schema
version mechanisms in object-oriented databases
(OODBs) [15,20,24], but they have not reached a
satisfactory status yet. In particular, these works
have mainly focused on schema versions over class
inheritance hierarchy. To our best knowledge, there
has been no works on schema versions for complex

object hierarchy. In fact, many OODBMS applica-
tions requires schema versions over complex object
hierarchy, rather than over class hierarchy.

In [17], we developed a simple-yet-powerful
schema version model, called RiBS, which is based
mainly on two major concepts of rich base schema
and wupdatable class hierarchy view. We call this
schema version model as the basic RiBS model,
because it supports schema versions only for class
hierarchy. In this paper, we propose an extended
schema version model, called the extended RiBS
model, which can restructure the complex object
hierarchy. The main contribution of this paper is
to propose a set of schema evolution operations
for complex object hierarchy and to describe the
semantics of each operation. As far as we know,
there has been no work on this issue. In addition,
we deal with the issues of query processing and
schema version merging.

The remainder of this paper is organized as fol-
lows. Section 2 briefly explains the object model
and the basic RiBS model. Section 3 proposes new
schema evolution operations for restructuring com-
plex object hierarchy, and explain their semantics.
Then, Sections 4 and 5 deals with query processing
and schema version merging, respectively. And Sec-
tion 6 compares the related works with our extended
RiBS model, and Section 7 concludes this paper.

2. Object model and basic RiBS model

In this section, we describe the object model
assumed in this paper, and review the basic RiBS
model briefly. We suppose that the readers are
somewhat familiar with some important concepts
of object-oriented data models, such as class hierar-
chy and inheritance [13,17].

2.1. Object model

A user-defined class, as well as the built-in data
type, can be used as the domain of an attribute of
a class, and an instance object of this class may have
the object identifier of an object of that class as its
value of the attribute. The object-oriented data
model, in contrast to the relational data model in
which the relationships between entities are implic-
itly represented using data values, explicitly repre-
sents the relationships using object identifiers.
These reference relationships between classes make
a complex object hierarchy. Even though the term
‘complex object’ is generally used to represent the
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part-of relationship as in [13], it is also used, in this
paper, to cover simple references between objects.

Fig. 1 shows an example of complex object hier-
archy throughout this paper. The complex object
hierarchy has the VEHICLE class as its root class
and each of the other classes as its part class. In
Fig. 1, for the simplicity, we use the same name
for a class and an attribute, which refers the class.
A dotted arrow in Fig. 1 represents a reference rela-
tionship from a starting class to an end class. Each
attribute in a class can be classified into either a leaf
or a non-leaf attribute depending on the type of its
domain: that is, an attribute whose domain is a
built-in class, such as integer and string, is called a
leaf attribute, while an attribute whose domain is
a user defined class is a non-leaf attribute.

In relation to complex object hierarchy, one
important concept is the path expression [9,30],
which is used to represent a path of attributes along
complex object hierarchy. In particular, a path
expression is used to express a query condition suc-
cinctly. The following query shows a usage of path
expression to select all car objects whose engine
power is more than 100 horse powers from the
VEHICLE class in Fig. 1:

select Car

from VEHICLE Car

where Car.DriveTrain.Engine.Power >=
'100hyp'.

2.2. Basic RiBS model

Fig. 2 shows the structural component of the
basic RiBS model, and it has a three-layer architec-
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Fig. 1. VEHICLE complex object hierarchy.
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Fig. 2. RiBS model: architecture.

ture: (1) (extensional) object base layer, (2) RiBS
(Rich Base Schema) layer, and (3) schema version
layer [17]. Each application or user is concerned
only with schema versions in the schema version
layer. In turn, each schema version is in the form
of a class hierarchy view over the next RiBS layer.
The RiBS layer accumulates all the necessary
schema information ever defined in any schema ver-
sion, including classes, inheritance, attributes, and
relationships. Finally, the object base layer physi-
cally stores all the instance objects of the RiBS
layer.

With the RiBS model, user can execute arbitrary
schema evolution operations against current schema
version. The RiBS model supports all the schema
change operations in the taxonomy of Orion
OODBMS [13]. As shown in Fig. 2 direct schema
updates on schema versions are allowed, and their
effects are, if necessary, automatically propagated
down to the RiBS layer and/or to the object base
layer. At a certain point of time, either a user or
an application can access and manipulate database
through a specific schema version, which we call
current schema version (CSV). A schema version is
actually a logical view over the RiBS layer in the
sense that all the objects visible through a schema
version are derived from the objects stored in the
extensional object base. Thus, an application pro-
gram or a query over a schema version, before its
execution, need to be automatically rewritten into
one over the RiBS layer.
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Meanwhile, it should be noted in Fig. 2 that any
schema change within a schema version has no effect
on other schema versions in the database. That is,
every schema change operation in the basic RiBS
model has effects only on the schema version itself
and the RiBS layer.

One important characteristic of the RiBS model
is to allow direct schema updates over a schema
version which is a class hierarchy view over the
RiBS layer. This allows us to avoid some disadvan-
tages of the existing schema version models, (1)
storage overhead due to many replicated copies
for an object [15,24], (2) the complexity in schema
change process in view approaches [8], and (3)
schema management overhead in class version
model [20].

In the RiBS model, however, the execution of a
schema evolution operation does not derive a new
schema version implicitly. Instead, the RiBS model
provides another operation to derive a new schema
version from the existing ones: the former is called
the “child schema version” and the latter “parent
schema version (s)”. The derived-from relationships
between schema versions constitute a Schema Ver-
sion Derivation Graph (SVDG). This schema deri-
vation operation requires a rather complex process
to create a new schema version by merging two or
more existing ones, which we call “schema version
merging”’. The schema version merging in the basic
RiBS model might encounter three types of con-
flicts: (1) homonym, (2) synonym and (3) extent
migration conflict. The first two conflicts are a type
of name conflict while the last one a kind of struc-
tural conflict. The basic RiBS model identifies the
conflicts during schema version merging and pro-
vides a schema version merging algorithm for
resolving the conflicts. Please refer to [17] for more
details.

The basic RiBS model supports the query
rewrite: that is, an application program or a query
posed against a schema version is automatically
translated so as to run against the RiBS layer for
its execution. In practice, this translation can be
handled by an ODL/OML (Object Definition Lan-
guage/Object Manipulation Language) preproces-
sor [9], as suggested by ODMG. During the
translation, the preprocessor might need to interact
with the schema manager module to get information
about the schema mapping between RiBS and cur-
rent schema version. The final program or query
against RiBS can be executed without extra run-
time overhead.

At this point, some readers might regard our
RiBS approach as yet another view mechanism for
OODBs because you can think that the RiBS model
has several different logical schema views over one
common base schema. In this respect, it is very sub-
tle to differentiate schema versions in the RiBS
model from other existing view approaches. Even
though we will compare our approach with the
related works later, here we would like to argue
some important differences between them so that
the readers can understand the unique aspects of
our approach. First, schema versions in the RiBS
model are updatable while the old views in the exist-
ing view approaches should be dropped and
redefined for simulating a schema evolution. Next,
the existing view approaches do not support the
capacity augumenting schema updates which are
the basic functionality in the RiBS model. Finally,
the existing view approaches do not support
any type of schema version merging. In summary,
our RiBS model raises the level of data inde-
pendence up to the schema level, while the existing
view approaches merely support the logical data
independence.

In this subsection, we described the basic RiBS
model which supports schema evolutions against
class inheritance hierarchy in a schema version. In
this paper, we extend the basic RiBS model to sup-
port the restructuring of complex object hierarchy,
and we call the extended schema version model as
the extended RiBS model. Hereafter, whenever there
is no ambiguity, we will call the extended RiBS
model simply as RiBS model. In other cases, we will
explicitly differentiate two models.

3. Restructuring complex object hierarchy

In this section, we give a set of operations for
restructuring complex object hierarchy; its taxon-
omy and a detailed semantics of each operation.

3.1. Operations for restructuring complex object
hierarchy

The following operations are introduced for
restructuring complex object hierarchy. The first
two operations are originally included in the basic
RiBS model, but we include them in this taxonomy
because they can be regarded as to restructure com-
plex object hierarchy. The remaining four opera-
tions are newly introduced in the extended RiBS
model.
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1. Add a part class into complex object hierarchy.

2. Remove a part class from complex object
hierarchy.

. Pull an attribute of a part class to root class: pull.

. Unnest a part class on root class: unnest.

5. Nest part attributes into a new virtual part class:

nest.
6. Move a part attribute to a part class: move.

B W

Please note that only the first operation will affect
the RiBS layer, while others have no effect on the
RiBS layer. The last five operations are intended
to customize complex object hierarchy, and thus
we need to simply change the mapping information
between RiBS layer and current schema version.

Before proceeding, we need to mention the cardi-
nality issue of the attributes in the above opera-
tions. Informally, the cardinality of an attribute
can be either atomic or set. In each operation, we
specify the attribute to be moved in a part class
as a form of path expression. If the cardinalities
of one or more attributes are sets, the type of the
new attribute which is created as the result of a
schema change operation could be ambiguous.
Any valid path expression, in theory, can be used
to specify the attribute to be moved, but if we allow
an attribute with the cardinality of greater than 1 in
the path expression, we might encounter an updat-
ability issue, as like in ambiguous view updatability
problem in relational views, which is still very hard
to solve [26]. Thus, current RiBS model assumes
only simple cases where such a subtle issue do not
arise: (1) every attribute in the path expression is
atomic, and (2) only the last attribute in the path
expression is set and all the other attributes are
atomic. In both case, the type of a new attribute
is same to that of the last attribute in the path
expression. For other cases, the RiBS model simply
rejects the operation.

3.1.1. Add a part class into complex object hierarchy

As we already mentioned, the operation to add a
new attribute into a class version, which comes from
the basic RiBS model, can be regarded as an opera-
tion to add a part class into complex object hierar-
chy. That is, when the domain of the new attribute
pv of class version CV is another class version CV,
on the current schema version CSV, the complex
object hierarchy which contains CV; has class ver-
sion CV> as its new part class. In this case, it should
be noted that a new base class bp corresponding to
pv is added to the RiBS layer.

3.1.2. Remove a part class from complex object
hierarchy

A part class can be removed from a complex
object hierarchy using the operation drop an existing
attribute version v from a class version, which also
comes from the basic RiBS model. Using this oper-
ation, we can drop an attribute version pv whose
domain is the class version to be removed from a
complex object hierarchy. In this case, in contrast
to adding a part class into a complex object hierar-
chy, only the information about pv is removed
from the current schema version, and the corre-
sponding base attribute still remains in the RiBS
layer.

3.1.3. Pull a property of a part class to root class

In the object-oriented data model, an attribute
on a superclass is inherited into a subclass down-
wards along the class hierarchy via the inheritance
mechanism. Similarly, an attribute in a part class
on a complex object hierarchy can be conceptually
viewed as an attribute of its root class; that is, ‘an
attribute in a part class is also an attribute of its root
(or any whole) class upwards along the complex
object hierarchy’.

For easy access to an attribute which are deeply
nested from its root class, users would like to view
the attribute as if it is defined on root class. This
is very similar to a relational view which is defined
using several complex join conditions and thus can
be used as a shorthand for long and complex que-
ries. The following operation allows users to do this
kind of restructuring:

pull path_exp [as new_attribute_name] in class

class_name.

The semantics of pull operation is that on a complex
object hierarchy having the root class class name,
the leaf attribute over path expression path_exp is
pulled to the root class. When the leaf attribute
causes a name conflict with an attribute which is lo-
cally defined in the root class, this operation is re-
jected. In order to avoid this kind of name conflict
or to assign a more meaningful name to the attri-
bute, the user can use the optional as clause. For
example, the following operation pulls the attribute
of Model# in class version CHASSIS in Fig. 1 to
root class VEHICLE, and renames the attribute
ChassisModel in the root class

pull Body.Chassis.Model# as ChassisModel
in class VEHICLE.
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Fig. 3 shows the result of this operation (for the
simplicity of presentation, we assume here that
before running this operation, the structure of the
complex object hierarchy rooting from class version
VEHICLE is exactly the same as that of the RiBS)
layer. As the result of the pull operation, a new attri-
bute ChassisModel is introduced in class version
VEHICLE, while the attribute version Model# is
removed from class version CHASSIS, the reason
for which is given later in this section. Please note
that the domain of new attribute ChassisModel is
same to that of Body. Chassis. Model#.

In that a new attribute is added to the root class,
the operation pull is similar to the operation add an
attribute from the basic RiBS model. However, one
important difference between these operations is
that the operation add an attribute requires a base
attribute to be added into the RiBS layer while the
operation pull, without affecting the RiBS layer,
requires changes only in the current schema version.
In case of the pull operation, the value of a newly
introduced attribute in the root class is derived from
that of the original path expression.

The above example shows how to upwardly pull
(that is, move) a leaf attribute in a complex object
hierarchy. In addition, the pull operation can be
used to the non-leaf attribute, as shown below

pull DriveTrain.Engine in class VEHICLE.

Moreover, the pull operation can be applied to the
cases where the path expression is cyclic, as shown

CHASSIS
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Fig. 3. Restructured complex object hierarchy using the pull
operation.

Manufacture

in Fig. 4. Fig. 5 exemplifies how the pull operation
is used to introduce a new attribute GrandFather
in class PERSON which is a root class of a complex
object hierarchy with a cyclic path.

The restructured root class using the pull opera-
tion is similar to the concept of views in relational
databases, in the sense that the values of some attri-
butes of its instance objects are derived from those
of corresponding base attributes. For example, the
restructured class VEHICLE in Fig. 3 is similar to
a relational view via joining classes VEHICLE,
BODY and CHASSIS and then projecting all of
the attributes of VEHICLE and the attribute
Model# of CHASSIS. However, there exists a big
difference between these two concepts, that is, upd-
atability. In relational databases, update operations
on a join view defined over two or more base rela-
tions are not allowed because of the ambiguity for
the updates [26]. In contrast, in case of the restruc-
tured root class using the pull operation, the concept
of the object identifier in the object-oriented data
model allows the avoidance of ambiguity in
updates, and thus it is possible to update the
instance objects of the restructured root class.

Finally, let us examine why the attribute version
Model# is deleted from class version CHASSIS as
the result of the pull operation, as shown in Fig. 3.
This is due to the principle of the RiBS model, say-
ing that a concept in the RiBS layer, such as a class
or an attribute, has only one corresponding concept
in a schema version. For instance, unless the attri-
bute Model# is not deleted from class version
CHASSIS, both attributes Model# in class CHAS-
SIS and ChassisModel# in class VEHICLE have, as
their base attribute, the attribute Model# of base
class CHASSIS in RiBS in Fig. 3. However, in a
cyclic relationship of complex object hierarchy, a
class can become both a root class and a part class
(e.g. Fig. 4), and this raises a subtle issue about the
attribute list in a class version after a pull operation
when the class version is both a root class and a part

Fig. 4. A complex object hierarchy with a cycle.

pull Father.Father as GrandFather in class PERSON;

Fig. 5. Restructuring a cyclic complex object hierarchy using the
pull operation.
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class of the pull operation. That is, according to the
semantics of the pull operation in non-cyclic rela-
tionship, where the pulled attribute is added to a
root class, but removed from a part class, what
should we do for a class which is a root class as well
as a part class in the pull operation? In this case,
because a part class itself can become a root class
of another complex object hierarchy in the recursive
class definition, we simply take the semantics of the
perspective of a root class, that is, we do not remove
the pulled attribute from the class, and add the
pulled attribute (which must be renamed) into the
class. This cyclic relationship in a pull operation
can be simply detected if the root class in the oper-
ation is same to the domain of the pulled attribute,
and thus we can automatically enforce this semantic
for the pull operation.

3.1.4. Unnest: unnest a part class on root class

In this section, we describe the unnest operation,
which generalizes the pull operation described in the
previous section. The unnest operation allows infor-
mation which was modeled as a part class to be rep-
resented by a set of attributes of the root class

unnest path_expression in class class_name.

Using the above syntax, all of the attributes of the
class corresponding to the leaf node of the path
expression path_exp are pulled upwards into the
root class class_name. For this operation to be valid,
the path expression should not end with a leaf attri-
bute. The following example shows how this unnest
operation is used to restructure the information
modeled in a part class ENGINE in Fig. 1 as attri-
butes of root class VEHICLE

unnest DriveTrain. Transmission in class VEHICLE.

This operation changes the complex object hierar-
chy of VEHICLE into the status shown in Fig. 6;
while all of the attributes of class ENGINE move
upwards to class VEHICLE preserving their names
and domains, the attribute Engine is deleted from
class DRIVETRAIN and class ENGINE itself disap-
pears from the complex object hierarchy. The two
attributes circled in class VEHICLE has come from
the unnested class ENGINE.

Note that the upwardly pulled attribute Weight
in Fig. 6 models the weight of the engine of a vehi-
cle, not that of the vehicle itself, and thus the name
of the attribute needs to be changed. To do this, we
can use the operation change the name of an attri-
bute version from the basic RiBS model.

VEHICLE
Y
Body B Il =
DriveTrain _ | _ . DRIVETRAIN
Color >
Engine  “f----- =
Color

Fig. 6. Restructured class VEHICLE using unnest operation.

The unnest operation is similar to the pull opera-
tion in that both operations move attributes of part
classes to the root class, but there exists a significant
semantic difference between them. With the unnest
operation, a part class is removed from the complex
object hierarchy, while, with the pull operation, only
an attribute is moved to the root class with its origin
class surviving. In the latter case, the class version is,
even after the operation pull, necessary still to be
modeled.

3.1.5. Nest: nest part properties into a new virtual
part class

This section introduces the nest operation which
is converse to the unnest operation. The nest opera-
tion allows users to create a new virtual part class by
combining several attributes from root class and
part classes, and then models the new class as the
domain of an attribute of the root class

nest new_class_name{attribute_list} as

new_attribute_name in class class_name.

In the above syntax, new_class_name, new_attri-
bute_name and attribute_list represents the name
of the new virtual class, the name of the new attri-
bute, and the list of the attributes to be included
in the virtual class, respectively. attribute_list is a list
of attributes, whose syntax is as follows:

{path_exp |as new_attribute_name]}"

We call the new class version resulting from the
nest operation as a virtual class version because
the new class version does not have its correspond-
ing base class in the RiBS layer. In fact, its attri-
butes may originate from several different class
versions and thus the attributes have their corre-
sponding base attributes spreaded over different
base classes. In contrast, each class version in the
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basic RiBS model has its corresponding base class in
the RiBS layer, and in this respect, all the class ver-
sion in the basic RiBS model are non-virtual.

The following example shows how a virtual class
PARTMODEL is created, using the nest operation:
the nest operation collects all the model numbers of
the parts of class VEHICLE into the class PART-
MODEL. Fig. 7 shows the result of this operation,
where a new attribute PartModel is added to the
class VEHICLE and it has the new virtual class
PARTMODEL as its domain.

nest PARTMODEL {Body.Chassis.Model# as
ChassisModel#,
DriveTrain. Transmission.
Model# as TransModel#,
DriveTrain.Engine.Model
# as EngineModel#}

as PartModel in class VEHICLE.

As we have noted above, the nest operation cre-
ates a virtual class version in the current schema ver-
sion. However, the virtual class version raises a
subtle issue with regard to schema evolutions. Since
a virtual class version is also a class version, all valid
schema evolution operations for class versions
should also be applicable to this virtual class ver-
sion. However, unlike the basic RiBS model where
each class version has its corresponding base class
in the RiBS layer, each virtual class version in the
extended RiBS model does not have its base class
in the RiBS layer, and thus, for example, when the
schema evolution operation add a new attribute ver-
sion is imposed on it, it does not have base class to
which a corresponding base attribute is added. We
take a simple approach to this problem, that is,
when the operation add a new attribute version is
imposed on a virtual class version, we create a cor-
responding base class in the RiBS layer with a base

VEHICLE

()
BOdy - T -=-== =
DriveTrain _
Color PARTMODEL
Id

Manufacture -
PartModel |~
-

ChassisModel#
TransModel#
EngineModel#

Fig. 7. An example of the nest operation.

attribute corresponding to the new attribute ver-
sion, and the class version becomes non-virtual.

3.1.6. Move: move a part property to a part class

In some cases, a user may want to customize his/
her own view for a complex object hierarchy in a
different way so that an attribute version of a part
class is modeled as an attribute version of another
part class which is usually in a path from root class
different from the original part. In order to support
these requirements, we introduce the following move
operation:

move src_path_exp to dest_path_exp

[as new_attribute_name] in class class_name.

The above operation moves the (leaf or non-leaf)
attribute in path expression src_path_exp to the
class in path expression dest path _exp. dest_
path_exp must be a non-leaf node. In this case, the
attribute being moved disappears from the original
class, according to the principle of the RiBS model
described above. The as clause is optionally used
to change the name of the attribute.

The following exemplifies the usage of the move
operation: the Chassis attribute of class BODY in
Fig. 1 moves to class DRIVETRAIN. Fig. 8 shows
the result of this operation, where the new attribute
BodyChassis is added into the class DRIVETRAIN

move Body.Chassis to DriveTrain as
BodyChassis in class VEHICLE.

However, with regard to the move operation, there is
a constraint on the two path expressions src_path_
exp and dest_path_exp, that is, src_path_exp should
not be a part of dest_path_exp. The following exam-
ple violates this constraint:

move Drivelrain to DriveTrain.Transmission
in class VEHICLE.

VEHICLE
— CHASSIS
Body
DriveTrain _ | _ Size
~ ~ = DRIVETRAIN Model#
Color
7 7

Id Transmission

Manufacture

Engine— - -

Color .

4

‘ BodyChassi D

Fig. 8. The move operation: an example.
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__ DRIVETRAIN
ST _ = TRANSMISSION

Transmission

] ~. Weight
Engine~ . S~ < _  |Modem
Color ENGINE _ [DriveTrain

Power
Model#

Fig. 9. An illegal usage of the move operation.

The above operation, as shown in Fig. 9, causes two
problems; (1) class DRIVETRAIN is no longer a
part class of the complex object hierarchy, and (2)
class DRIVETRAIN becomes a part class of class
TRANSMISSION. As a result of the first problem,
the information available in the complex object
hierarchy with DRIVETRAIN as its root is
unreachable from the root class VEHICLE. The
second problem introduces the relationship IsPar-
tOf(B, A), which is contradictory to the relationship
IsPartOf(A, B). Due to these problems, we do not
allow the move operation which violates the
constraint.

4. Query processing for restructured complex
object hierarchy

In the basic RiBS model, as mentioned in Section
2, a query or an application program written against
a schema version, before its execution, is translated
into one against the RiBS layer. In this section, we
will illustrate how the preprocessing step translates
a query against a schema version resulting from
the operations in Section 3, into the query against
the RiBS layer.

When a user imposes a query against class VEHI-
CLE of Fig. 3, this query, during the preprocessing
step, changes into a query against the RiBS layer.
The attribute ChassisModel which has moved to
root class VEHICLE by the pull operation, is
replaced with its corresponding path expression
Body. Chassis. Model#. In case of a complex object
hierarchy restructured using the unnest operation,
this kind of simple transformation is also applicable
select Car.Color

from VEHICLE Car
where Car.ChassisModel = 'MDOO1%

select Car.Color

=> fromVEHICLE Car
where Car.Body
.Chasssi.Model# = MDOO1%

However, the move operation requires a little more
complex transformation. For example, let us sece
an example query written against the schema ver-
sion of Fig. 8, the query graph of which does not in-
clude class version VEHICLE

select Engine.Model#

from DRIVETRAIN Train

where Train.BodyChassis.Model# =
‘MDOO1'.

In case of the above query, the path expression in
the where clause cannot be replaced with a path
expression starting with the base class of class ver-
sion DRIVETRAIN. Instead, this query must be
transformed into a query against the RiBS layer,
the query graph of which starts from class VEHI-
CLE, as follows:

select Car.DriveTrain.Engine.Model#
from VEHICLE Car

where Car.Body.Chassis.Model# =
‘MDOO1'.

A similar transformation should be applied to a
query whose query graph starts from the virtual
class version which was created using the nest
operation.

5. Schema version merging

As we have mentioned in Section 2, the basic
RiBS model supports the schema version merging.
In this section, we extend the process of schema ver-
sion merging so that it can handle the restructured
complex object hierarchy also. In particular, we
identify several new conflicts during the schema ver-
sion merging, which arises from the operations in
Section 3, and provide an algorithm which can
detect and resolve these conflicts. This algorithm is
semi-automatic in that it automatically detects all
types of conflicts while users are responsible for
resolving the conflicts.

5.1. Types of conflicts

As the basic RiBS model in Section 2, the opera-
tions for restructuring the complex object hierarchy
also cause three kinds of new conflicts, as follows.
The homonyms and synonyms are not new types
of conflicts, but the sources for these conflicts are
the restructuring operations.
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1. Homonyms: Two or more class (attribute)
versions, from different schema (class) ver-
sions but having the same name, may have

different direct base classes (attributes).
We call them homonym class (attribute)
versions.

2. Synonyms: Two or more class (attribute) ver-
sions, from different schema (class) versions
and having different names, may have the same
direct base class (attribute). We call them syn-
onym class (attribute) versions.

3. Class-attribute conflicts: In different schema
versions, a real-world concept is represented
differently using two different constructs of
object-oriented data model, that is, the concept
of class and attribute. We say that any two
schema versions being merged, have class-attri-
bute conflicts if one schema version models a
real-world concept using a class version, while
the other models the concept as attributes of
another class version.

When merging the two schema versions in
Fig. 10, we meet all kinds of the above conflicts.
Here, we make the following assumption; each
schema version, after derived from a common
schema version exactly the same as RiBS, experi-
enced the following histories of evolutions, respec-
tively. In the following, drop and rename
represents the operation drop an existing attribute
version from a class version and change the name of
a attribute version, respectively.

e The evolution history of SV;

1. drop Color from VEHICLE;

2. pull Body.Chassis.Color in class VEHICLE;

3. move Body.Chassis to DriveTrain as Body-
Chassis in class VEHICLE;

4. rename DriveTrain as BodyTrain in class
VEHICLE;

5. nest MODEL {Transmission.Model# as Trans-
Model#, Engine.Model# as EngineModel#}
as Model in class DRIVETRAIN.

Model -~

Manufacture

Color

SV-i Size
Model#
VEHICLE ) A cHAssIS
7/
BodyTrain - | _ ‘>*DRIVETRAIN 7
Color 5
BodyChassis
Id
= MODEL

TransModel#

EngineModel#

. CHASSIS
SV-j 7
g
VEHICLE -~ Model#

-
e

—
Chassis

DriveTrain
Color
Id

____ = DRIVETRAIN

TransModel#

Manufacture EngineModel#

Color

BODY
7

.7 Chassis
VEHICLE -
s Color

=
Body

DriveTrain
Color
1d

Manufacture

RiBS Layer

Transmission

Engine ~ _
~

Color

CHASSIS

7
e Size
- Model#

““““ = DRIVETRAIN

_ 2 TRANSMISSION

Weight
Model#

ENGINE

Weight

Power
Model#

Fig. 10. Schema version merging: an example.
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e The evolution history of SV;

1. pull Body.Chassis in class VEHICLE;

2. pull Transmission.Model# as TransModel# in
class DRIVETRAIN;

3. pull Engine.Model# as EngineModel# in class
DRIVETRAIN;

4. drop Transmission from DRIVETRAIN;

5. drop Engine from DRIVETRAIN.

In Fig. 10, two attribute versions Colors in both
class version VEHICLEs of schema version SV;
and SV; are an example of homonym; the former
has attribute Color of class VEHICLE in RiBS as
its base attribute, while the latter has the
attribute Color of base class BODY as its base
attribute.

And, there are two examples of synonyms in
Fig. 10. First, the attribute Body Train in class VEHI-
CLE of SV; and the attribute DriveTrain in class
VEHICLE of SV, are an example of synonyms
because both of them, although their names are dif-
ferent from each other, have the attribute DriveTrain
in class VEHICLE in RiBS layer as its base attribute.
The second example of synonyms in Fig. 10 comes
from the attribute version BodyChassis of class ver-
sion DriveTrain in SV; and the attribute version
Chassis of class version VEHICLE in SV;. Both
attribute versions have the attribute Chassis of base
class BODY in RiBS as their base attribute. At this
point, note that these two attribute versions are from
two class versions having different base classes in
RiBS layer. In the basic RiBS model, in contrast,
all class versions of synonym attribute versions have
the same base class in RiBS layer.

Finally, an example of class-attribute conflicts is
that class version MODEL in SV; and two attribute
versions, TransModel and EngineModel in class
version DRIVETRAIN represents the same
information.

5.2. Schema version merging

In the basic RiBS model, schema version merging
largely consists of the following four steps:

1. To identify base classes to be included in the new
schema version.

2. To create a corresponding class version for each
base class.

3. To calculate local attribute versions for each class
version.

4. To make class hierarchy for the new schema
version.

Here, we briefly explain the role of each step.
Please refer [17] for more detailed explanation.
The step 1 identifies the base classes necessary in
the new schema version by including all the base
class in RiBS layer which are used as the direct base
class of a class version in any input schema version.
The step 2 is responsible for resolving the synonyms,
homonyms and extent conflicts among class ver-
sions, and the step 3 is for synonyms and hom-
onyms among attribute versions. The final step 4
makes DAG (Direct Acyclic Graph) relationships
among all the class versions in SV,.,. The opera-
tions for restructuring the complex object hierarchy
requires this process of schema version merging to
be extended. The following lists the issues which
should be considered:

1. Virtual class versions: when we identify base clas-
ses to be included in the new schema version, we
need to take the virtual class version into consid-
erations, which is created by the nest operation.

2. Class-attribute conflicts: it 1is necessary to
detect the class-attribute conflicts and resolve
them.

3. Synonyms: as we stated above, synonym attri-
butes of class versions having different base clas-
ses need another extension.

The following shows the extended process of
schema version merging taking into accounts all
the above issues, where the newly introduced steps
are marked using the symbol *:

1. To identify base classes to be included in the new
schema version.
2. To create class versions
(a) To create a corresponding class version for
each base class.
(b) To detect and resolve class-attribute conflicts.
(c) To create virtual class versions ().
3. To calculate local attribute versions
(a) To detect and resolve the synonym attribute
of class versions having different base classes
(*).
(b) To calculate local attribute versions for each
class version.
4. To make class hierarchy for the new schema
version.
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In the rest of this section, we will illustrate the
above steps using an example. Because the step 4
is to make class hierarchy, we omit the explanation
about it. Fig. 11 shows the steps of merging two
schema versions of Fig. 10. We refer to the result
schema version as SVyeyw-

First, the step 1 identifies three base classes,
VEHICLE, DRIVETRAIN and CHASSIS, each
of which is used as a base class of class version(s)
in either schema version SV; or SV, Next, using
these three base classes, the step 2(a) creates the
three corresponding class versions, as shown in
Fig. 11(a). Then, through the steps 2(2) and 2(3),
new class version MODEL is introduced by resolv-
ing class-attribute conflicts, as in Fig. 11(b). Let us
remind you that, in Fig. 10, class version MODEL
in SV; and two attribute versions, TransModel and
EngineModel in class version DRIVETRAIN in SV;
cause a class-attribute conflict. We assume that, for
this conflict, the user has chosen to model the infor-
mation as a class version in SV,... Please note that
since MODEL in SV; is a virtual class version, the
corresponding new class version in SV, must be
also virtual. And, during the step 3(a), there are
two resolutions for synonym attributes. Here, we
assume that for two synonym attributes BodyChas-
sis of SV; and Chassis of SV; in Fig. 10, the user
has chosen the latter. We assume also that for
two synonym BodyTrain of SV; and DriveTrain of
SV, in Fig. 10, the user has chosen the latter. Con-
sequently, as shown in Fig. 11(c), the attribute
Chassis is included in VEHICLE class version and

it has the class version CHASSIS as its domain,
and the attribute DriveTrain is included in VEHI-
CLE class version and it has the class version
DriveTrain as its domain. Finally, the step 3(b) cal-
culates the local attribute versions of each class ver-
sion. In particular, note that local attributes of each
class version can be automatically calculated: that
1S, we create an attribute version for each base attri-
bute in base classes which has its corresponding
attribute version in any schema version to be
merged. Fig. 11(d) shows the final status of merging
two schema versions SV; and SV, where the local
attribute versions of each class version in SVew
are calculated. Note that two attribute versions
Color and BodyColor of class version VEHICLE
in SVyew was derived from two homonyms attri-
bute versions Color of class version VEHICLE in
both schema version SV; and SV} and the user
has resolved this homonym problem so that attri-
bute Color from SV; is renamed as BodyColor in
SVneW~

Before closing this section, we would like to note
that any two concepts in new schema version SV ey
do not have a common corresponding base concept
in the RiBS layer, and this complies with the princi-
ple of the RiBS model, saying that a concept in the
RiBS layer, such as class or attribute, has only one
corresponding concept in a schema version. The
steps for resolving the synonyms and class-attribute
conflicts prevents a concept in the RiBS layer to be
redundantly modeled by more than one concepts in
the new schema version.

CHASSIS CHASSIS
VEHICLE VEHICLE
DRIVETRAIN DRIVETRAIN L=~
‘MODEL
(a) (b)
CHASSIS CHASSIS
_ 7 >
VEHICLE -7 VEHICLE -7 Size
-7 - Model#

Chassis
DriveTrain™

~ == DRIVETRAIN

Chassis  —
DriveTrain~

Color

X DRIVETRAIN MODEL
4

BodyColor

ld Model -~ TransModel#
Manufacture R
Color EngineModel#

(©)

(d)

Fig. 11. Schema version merging: an example.
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6. Related works

To our best knowledge, there has been no work
on schema versions for complex object hierarchy.
Therefore, we will review the four categories of
researches which are partly related to our schema
version model, that is, (1) views in OODBs
[1,8,14], (2) schema/class version [15,20], (3) data-
base schema integration [6,14], and (4) web site
management system [2,4,12,11]. This section sum-
marizes these approaches and explains their differ-
ences from our schema version model.

6.1. View approaches

There have been works to provide OODBs with
the advantages of view functionality in relational
databases, e.g. logical data independence and con-
tent-based security. Ref. [1] describes the view mech-
anism in O, system, which support the restructuring
of class hierarch and virtual classes. Kim presented a
view semantic within an Object/Relational DBMS,
UniSQL, by augmenting semantics of relational
views with object-oriented concepts such as inheri-
tance, method, and object identifier [14]. In addition,
they extended the use of views to dynamic windows
for schema, with which schema evolution in OODBs
can be simulated without affecting the database.
Rundensteiner proposes the MultiView methodol-
ogy, where a view schema, according to a user’s view-
point, can be defined over a global schema [25].
These works are along the same line as the approach
in [8] simulating schema evolution using views.

In the sense that schema versions of our model
provides logical views over base schema, it is in
the same vein of these works. However, any of these
view mechanisms does not consider the restructur-
ing of complex object hierarchy, which our schema
version model supports the restructuring of complex
object hierarchy.

Our RiBS approach is similar to these view
approaches in the sense that each schema version
is defined over one global base schema RiBS. How-
ever, there are several important differences between
our schema version model and the previous works
on views in OODBs. First, while direct schema
updates against a schema version are allowed in
our model, in earlier works a view schema can be
changed only by redefining a new view from scratch
after deleting the old one. Furthermore, capacity-
augmenting schema updates cannot be simulated
by earlier view approaches [24]. Finally, the existing

view approaches do not even consider the concept
of schema version merging which is an essential
functionality of OODB applications.

6.2. Schema versioning approaches

The work in [15] is the first substantial research
on schema versions in OODBs, based on the object
version model of Orion [5]. In this work, the schema
version model is expressed as several rules about
schema version management and access scope.
According to the access scope rules, each schema
version has a different set of objects visible to it, that
is, the access scope of the version. An instance
object thus may not be shared among schema ver-
sions. Moreover, in contrast to the RiBS model, a
new schema version can be derived from only one
parent schema version and thus the schema version
derivation hierarchy results in a tree.

As an alternative to schema versioning, there has
been the class versioning approach [20], where the
units of versioning are individual classes, instead
of the entire class hierarchy. Monk and Somerville
proposed a class versioning system CLOSQL [20],
based on dynamic instance conversion, which enables
an instance object to be seen from the outside by a
number of class version interfaces, and determines
the type of an instance object by the context of con-
cern (that is, dynamic instance objects). In this
respect, we can argue that in the RiBS model a
physical object residing in the RiBS layer is also a
dynamic object since it changes its type dynamically
depending on the current schema version (CSV)
accessing the object. However, with class versioning
approach, the burden to construct consistent ‘vir-
tual’ schema versions from various class versions
is left to users [15].

However, all these works deals only with changes
in ‘IS-A’ inheritance hierarch, but does not consider
complex object issues. Though, the moving informa-
tion operation [18] and capacity reducing transfor-
mation operation [28] have similar semantics with
our pull and unnest operations, respectively.

6.3. Database schema integration

In the database literature, many methodologies
for integrating database schema are found in the
form of view integration, database schema integra-
tion, or multi-database. Our work on schema ver-
sion merging for the RiBS model shares some
concerns with methodologies for database schema
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integration; the detection of several types of con-
flicts and their resolution.

In [6], a unifying framework for the problem of
view and database schema integration is provided,
and several earlier works are reviewed and com-
pared. The process of integration is divided into
four steps: pre-integration, conflict detection, conflict
resolution, and merging/restructuring. With regard to
conflict detection, the authors distinguish two types
of conflict: name conflicts and structural conflicts.
Name conflicts are further classified into homonyms
and synonyms. However, class-attribute conflict of
the extended RiBS model have no corresponding
concept in the taxonomy presented in [6], although
we classify them as structural conflicts. As for con-
flict resolutions, Batini et al. state that automatic
resolution is generally not feasible [6]. Our schema
version merging algorithm also leaves the burden
to users. In the final phase of merging/restructuring,
several criteria are tested to achieve a desirable glo-
bal schema. Among the criteria, most methodolo-
gies are geared toward minimality, and in
particular a removal of redundancy. A similar
framework for classifying schema and data conflicts
in federating multi-database systems can be found
in [14]. This work also deals with conflict issues such
as homonym and synonym.

However, there is one important difference
between these works on database schema integra-
tion and our work on schema-version-merging.
Schema versions being merged within the RiBS
model share some semantic knowledge (for exam-
ple, the direct base class for each class version),
whereas, for general database schema integration
problems, we cannot expect these kinds of knowl-
edge. This semantic knowledge enables the integra-
tion of schema versions with much less
intervention from the user.

6.4. Web site management systems

With the rapid spread of the Internet, enormous
information are being provided in the form of Web
pages. By the way, one problem during Web site
construction is how to separate the logical view of
each web page from the physical organization of
the website information [12]. Thus, it is very difficult
to restructure the content provides in each webpage,
that is, the lack of data independence.

To solve this problem, much work has been done
on Web site management system, which mainly sup-

ports the restructuring of user’s logical views
[2,4,12,11]. In that both our schema version model
and these systems customize user’s logical views
over complex graph data structure, they have com-
mon functionality. The main difference between our
model and web site management systems is that our
model supports restructuring of structured schema
while web site management systems supports semi-
structured schema.

7. Conclusions

Recently, the necessity for schema versions has
been rejuvenated from several new OODBMS
applications, but the schema evolution functionality
of commercial OODBMSs, under which only a sin-
gle schema exists at any point in time, cannot prop-
erly cope with the requirements of these
applications. Therefore, we strongly believe that
the functionality of the schema version will be a
pre-requisite for an OODBMS to be widely
accepted in the market.

In this paper, we proposed a schema version
model for complex objects. The model includes a
set of new operations for restructuring complex
object hierarchy, with which a user can customize
database schema according to his/her own view.
We also identified some issues to be considered
when preprocessing restructured complex object
hierarchy, and proposed ways to transform queries
against restructured complex object hierarchy into
one against the base schema. Because our model
has taken into account the concept of complex
object, it is more comprehensive than any other
schema version model ever developed. Also, these
schema evolution operations for complex objects
can be used as an alternative mechanism for view
definitions in OODBMSs. Finally we developed a
schema version merging algorithm for schema ver-
sions of complex objects. We identified several types
of conflicts, and took into account these conflicts
when devising our merging algorithm. This schema
version merging algorithm first resolves several con-
flicts among schema versions being merged, and
then generates class hierarchy for the new schema
version. This algorithm is unique, compared to tra-
ditional database schema integration algorithms,
because it exploits the semantics knowledge shared
by the schema versions being merged, and thus
can integrate schema versions with minimal user
involvement during the merging process.
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