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Abstract

The performance of object access can be drastically
improved by efficient object prefetch. In this paper we
present a new object prefetch policy, Selective Eager Ob-
ject Fetch(SEOF) which prefetches objects only from se-
lected candidate pages without using any high level object
semantics. Our policy considers both the correlations and
the frequencies of fetching objects. Unlike existing prefetch
policies, this policy utilizes the memory and the swap space
of clients efficiently without resource exhaustion. Further-
more, the proposed policy has good adaptability to both the
effectiveness of clustering and database size. We show the
performance of the proposed policy through experiments
over various multi-client system configurations.

1. Introduction

The advantages of object-oriented databases in terms
of a rich data model for next generation database appli-
cations, such as CAD/CAM/CASE, AI expert shell, and
multimedia office information system have become widely
recognized[2, 5]. One of the key issues of such applications
is the performance due to their computationally complex
data management. To meet their stringent requirements,
there have been numerous works concerning clustering and
pointer swizzling which are major issues of high perfor-
mance object management[5, 9, 12, 15, 22, 23].

The most common approach for building an object-
oriented DBMS is the data shipping architecture in client-
server environment: e.g., O2[2], ORION-1SX[14]. There-
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fore, in order to speed up object access it is necessary to re-
duce object misses at clients and to minimize client-server
interactions. As such, it is well known that efficient ob-
ject buffer management can significantly improve the over-
all performance.

However, object buffer management has a number of
complex and difficult problems to be solved for efficient
object buffering. The object buffer should handle fragmen-
tations as well as heavy memory allocations and dealloca-
tions, since it should manipulate objects of various size.
Moreover, a buffer consistency protocol may make the ob-
ject buffer management harder[3].

It is also not easy for an object buffer to delimit the span
of an object access. This is because the FIX/UNFIX proto-
col of page buffer management cannot be employed without
any performance degradation of object access. So, efficient
buffer replacement is very difficult, if not impossible.

Due to these difficulties related to object buffering, most
previous works[3, 5, 19] to increase object buffer hit ra-
tio have investigated efficient object prefetch policies rather
than efficient object buffer replacement algorithms. An
early work proposed the policy which exploits high level
object semantics in terms of inheritance and structural
relationship[5]. Alternative approaches based on profiling
or learning of object access pattern have been studied in
[3, 19].

The prefetch policy which uses high level object seman-
tics is likely to help efficient retrieval of complex objects.
However, this approach cannot predict general object ac-
cess patterns which might result from invoking a method[7].
Moreover, it is not easy for the object manager fashioned in
a byte server to understand all of object semantics because
the byte server has no idea about class, relationship, or in-
heritance. In predictive schemes, it is expensive to keep pro-
filing or learning of object access patterns on every access
context and hard to realize these policies. And all of the pre-
vious works[3, 5, 9, 13, 22] took little thought of exhaustion



and competition of memory and swap resources, since most
experiments were performed on small databases. And the
performance issues in multi-client environments have been
rarely studied.

Along this line, we set out to build a new object prefetch
policy, Selective Eager Object Fetch that prefetches objects
only from selected candidate pages without using any object
semantics. We then studied the performance of our new
policy over various multi-client system configurations.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses in further detail the techniques of object
prefetch and their related works. In section 3, we introduce
our Selective Eager Object Fetch algorithm and the intu-
ition behind it. Section 4 describes the simulation model
and presents the experiment results. Finally, conclusion of
our study and some areas for future research are given in
section 5.

2. Techniques of Object Prefetch

Most of object-oriented database applications have a
strong tendency to cache a large number of objects in vir-
tual memory and perform extensive computation on them.
However, it is not desirable to keep objects in page frames,
because pure page-based buffering leads to inefficient space
utilization if databases are clustered poorly[3, 13, 14].

To solve this problem, many of object-oriented DBMSs
are based on the dual-buffer architecture in which an ob-
ject buffer functions on top of a page buffer[3, 14]: Exam-
ples are Itasca[10], Ontos[18], and Versant[21]. The parti-
tioned buffering provides good space utilization by filtering
out useless objects from the page buffer and allows efficient
garbage collection.

Performance when accessing objects in the dual-buffer
architecture primarily depends on the object buffer hit ra-
tio. However, as mentioned above, object buffer manage-
ment has many difficult issues to be resolved. Among
them, delimiting the span of an object reference is the most
significant problem, since unused objects cannot be dis-
placed deliberately without the notion of it. So, adopting
a replacement algorithm such as LRU to an object buffer
might be a big burden, if not impossible. In addition,
paging or buffer replacement in object-oriented database
applications, whose working cycles are characterized as
load-work-save model, are less important than in traditional
ones[15]. Taking this considerations, many systems in-
cluding O2, Objectivity/DB[16], Versant, Mneme[15], and
EPVM[22] cache objects in virtual memory without object
replacement and an underlying operating system takes all
responsibility of memory management and swap I/O. That
is, all fetched objects are kept in memory until a transaction
commits or a reference is definitely finished.

Consequently, the performance of object access can be

improved not by efficient buffer replacement but by effi-
cient object prefetch. Moreover, prefetching objects is more
profitable in object-oriented database applications, since
fetched objects do not likely happen to be invalidated by
other clients due to their aspects of high read/write ratio and
weak data sharing[5, 15, 19].

We can classify object prefetch policies into three cat-
egories according to how to select candidate objects for
prefetching. The first one is the aggressive eager prefetch
scheme where all of objects are extracted from a page or a
segment together upon the first of fetching an object from
the page or the segment. ORION and ENCORE[8] use this
scheme. This policy allows the good performance of object
access by improving the object buffer hit ratio and it can be
highly profitable in multi-client environments, since object
hits save the work load on the server.

However, since a number of unneeded objects can be
held in memory by eager prefetching, this policy may lead
to many page faults and swappings as well as unnecessary
copy overhead. Thus, this approach may induce a signifi-
cant performance degradation although it can benefit from
small and well clustered databases.

The second policy is equipped with advanced object se-
mantics. That is, all of the objects linked with the requested
one are fetched recursively on every object miss. Observing
the access patterns of object-oriented database applications,
Chang and Katz[5] proposed a run time clustering algorithm
and a smart buffering policy which exploits the knowledge
about inheritance and structural relationship. Their smart
buffering uses access hints provided by a user and object
relationships to obtain all to-be used objects in advance.
It also gives high priority to the pages related with the ac-
cessed objects, if they are already cached.

This achieves extremely good performance for retriev-
ing complex objects, if they are clustered well. When ob-
jects have multiple relationships, however some object ac-
cess patterns cannot be incorporated with clustering[3, 19].
That is, this policy may actually cause more unnecessary
object fetching than the first one if only a part of relation-
ships are utilized. It also cannot predict general object ac-
cess patterns and it is difficult to facilitate this scheme on a
byte server

The third one is the predictive approach which pre-
dicts to-be used objects through profiling or learning of ac-
cess patterns. In the profile-based policy[3], sophisticated
buffering hints are stored in a profile to prefetch objects
more precisely. As an alternative, Palmer and Zdonik[19]
proposed a predictive cache that employs associative mem-
ory to recognize access patterns. In these policies, profiling
or learning should be associated with each access context,
since access patterns even on the same data may be different
according to applications. However, it is difficult to profile
or learn access patterns on every context with some accu-
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racy.
Kemper and Kossmann[13] made another effort to im-

prove the performance of object access, which tried to adapt
to more complex and various object patterns by mixing
page-based buffering and object-based buffering simultane-
ously.

Object prefetch has been also studied in many previous
researches on swizzling, since these two topics are closely
related[9, 12, 15, 22, 23]. Although these studies made ob-
servations mainly about various swizzling techniques, their
results exhibit the evaluation of object prefetch schemes in-
directly.

3. Selective Eager Object Fetch Policy

In general, the cost of object access in the dual-buffer
architecture can be computed as:

Access Cost � Ohit � COhit
�

Omiss � �Phit � CPhit � Pmiss � CPmiss
� COmiss

�

Where Ohit(Omiss) is the hit(miss) ratio of the object
buffer, Phit(Pmiss) is the hit(miss) ratio of the page buffer,
COhit

(COmiss
) is the access cost for a hit(missed) object,

and CPhit (CPmiss
) is the access cost for a hit(missed) page.

This is explained by the steps in accessing an object: If the
object is missed, the page which has the object is fixed and
then the object is copied from it. In the same way, if the
page is missed, the page should be fetched from a server
or a disk device. Here, CPmiss

is much greater than any
other costs since it includes the cost for client-server inter-
actions. Therefore, decreasing Pmiss and Omiss is the key
for improving the performance of object access1. First, an
efficient page buffer replacement policy can raise the page
buffer hit ratio. Several alternatives are possible including
LRU, LFU, LRU-K[17], and 2Q[11]. In object-oriented
DBMSs, these replacement polices may be as good as in
traditional DBMSs2.

As noted in section 2, however, an efficient object
prefetch policy is needed to reduce object misses rather than
an efficient object buffer replacement algorithm. Existing
prefetch policies are already reviewed in section 2.

Now we drive our new object prefetch policy, Selective
Eager Object Fetch. We decided to choose the eager ob-
ject prefetch policy(the first policy classified in section 2)
as the basis of our new algorithm, since this policy does not
require any object semantics. Furthermore, this scheme in-
duces little overhead for incorrect prefetches, because this

1We are primarily concerned with the page server architecture, since it
is most popular. But our work can be applied to the object-server architec-
ture easily.

2Unfortunately, so far as we know, there does not exist any replacement
policy tuned for object-oriented database systems.

approach does not issue any additional page requests for
prefetching.

The OO1 object operation benchmark[4], which was de-
veloped to evaluate scientific and engineering applications,
exhibits the aspect of navigational object access in gen-
eral object-oriented database applications. The OO1 bench-
mark database consists of Part and Connection ob-
jects, where every Part is connected to three other Parts
via Connections. The connections between Parts are
selected randomly to produce 90%-1% clustering factor:
90% of the connections are to the closest 1% of Part ob-
jects. The traversal operation of the OO1 benchmark
accesses all Parts connected to a randomly selected Part
object recursively, up to 7 hops.

Figure 1 shows the access pattern of the traversal
operation on the small OO1 benchmark database which
contains 20,000 Part objects. The X and Y axes repre-
sent the page id where accessed objects reside in and the se-
quence of object accesses respectively. Figure 1(a), which
shows the access pattern when running traversal 10
times, indicates the two distinct localities of page accesses
on each traversal: The one is for accessing Parts and the
other is for Connections. Figure 1(b) scales up a portion
of figure 1(a).

Given this access pattern, we found that the page which
contains many objects accessed by traversal is contin-
uously referenced at regular intervals. Figure 1(b) shows
some examples: page 681, 682, � � �, 685. On the other
side, the page which is accessed intermittently is consid-
ered to have only a few objects to be fetched. This obser-
vation allows us to select the page which has been accessed
successively as a candidate from which objects are eagerly
prefetched.

However, there may exist a group of objects whose ob-
jects are created and stored sequentially and also retrieved
together on every access. So, choosing candidate pages only
by access frequencies can mislead prefetching since only a
few objects may be actually used. Page 705, 706, and 708
in figure 1(b) are not accessed again after fetching two or
three objects in a row.

To solve the problem described above, the correlation of
fetching objects should be factored out. Until now, the cor-
relation problem has been considered only by several page
buffer management schemes. Frequency-based replacement
algorithm excludes out the surge of references to a page by
not incrementing the reference count if the page has been
referenced repeatedly in a short interval[20]. From this, the
policy does not give high priority to the page which is ac-
cessed repeatedly in a short interval and yet relatively in-
frequently referenced overall. The problem of correlated
references is also mentioned in LRU-K[17] and 2Q[11] in a
similar manner.

This factor can be incorporated into the object prefetch
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Figure 1. Access Pattern of OO1 Traversal Operation
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policy, where a page is not selected as a candidate if the
page is referenced successively in a short interval. Since
the page with correlated references seems to contain only
a few objects to be used, fetching only a requested object
would save the buffer space. Furthermore, the page is very
likely to be hit since the time interval of fetching objects
from the page is sufficiently short.

As such, our Selective Eager Object Fetch(SEOF) algo-
rithm is based on the two ideas addressed below:

� The page which has been referenced repeatedly in a
short interval seems to have only a few objects to be
fetched. This is considered as the correlation of object
fetches.

� If there are frequent non-correlated references to a
page, the page is likely to have many objects to be
used.

The conceptual outline of SEOF algorithm is as follows.
SEOF maintains two FIFO queues3, Sin and Sout as shown
in figure 2. Two queues are ThreshSin and ThreshSout

long respectively. On every fixing a page for a missed ob-
ject, SEOF places the page in Sin, if the page does not be-
long to either of Sin and Sout. Here, when Sin becomes
larger than ThreshSin , the first-come entry of Sin is moved

3Experiments with LRU queues gave us the similar results.

to Sout. Sout keeps its length in the same way. If the fixed
page is in Sout SEOF fetches all uncached objects from the
pages, but the reference is ignored during its stay in Sin.

In SEOF, Sin solves the correlated fetch problem by
counting the repeated references within a short interval as
one and Sout selects the frequently referenced page as a
candidate for prefetch. Using these two queues, SEOF
fetches objects eagerly only from pages which are likely
to have many to-be used objects. The detailed algorithm is
given in table 1.

ThreshSin and ThreshSout of SEOF are the impor-
tant tuning parameters. Qualitatively, as ThreshSin gets
smaller and ThreshSout gets larger, SEOF prefetches
objects more aggressively. If ThreshSin is large and
ThreshSout is small, SEOF takes no prefetching due to too
strong test for candidate selection. The sensitivity of these
parameters will be discussed more in section 4.

Our SEOF algorithm works independently with the page
buffer management. However, the page buffer can employ
Sin and Sout as its own buffer pools. How SEOF is incor-
porated with the page buffer management is potentially our
next research topic.

4. Performance Evaluation

4.1. Simulation Model

The performance evaluation employed in this study is
based on the page-server architecture using dual-buffering4.
The conceptual structure of the simulation model is shown
in figure 3. Several components are simulated in the model:

4The results of our experiments can be also adopted to the object-server
architecture, where the results explain the evaluation of object prefetch
from a server.
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�� when the reference to object o, which locates in page p, is invoked

if o is already in the object buffer then
�� do nothing (an object cache hit)

else
if p is in Sout then

fetch all uncached objects in p eagerly
dequeue p from Sout

else
if p is in Sin then

�� do nothing (a correlated access)
else

if sizeof(Sin) � ThreshSin then
if sizeof(Sout)� ThreshSout then

dequeue the first-come entry eout from
Sout

end if
dequeue the first-come entry ein from Sin
enqueue ein into Sout

end if
enqueue p into Sin

end if
fetch object o

end if
end if
return object o

Table 1. SEOF Algorithm

CPU, DISK, VM, PAGE BUFFER, OBJECT BUFFER, and
NETWORK.
VM component of the simulator is used for modeling

page faults and swap I/Os. VM manages physical mem-
ory by page aging[1], where the pages that are no longer
part of working set are aging at regular intervals. When
there is no available physical memory, VM swaps out some
oldest memory. In the simulator, a virtual memory block
is 4 K bytes long. PAGE BUFFER component uses LRU
for buffer replacement and all fetched objects are kept in
OBJECT BUFFER until a transaction ends. All requests
in the simulator are scheduled on first-come-first-serve ba-
sis and concurrency control is simulated by piggybacking
page-level locks on page requests.

Table 2 presents the parameter settings used in the exper-
iments. The values listed in the table were obtained by pro-
filing our own object manager which is based on the page-
server architecture.

We used the traversal operation of the OO1 bench-
mark as work load5. Two databases are used: the
small database of 20,000 Parts and the large database
of 200,000 Parts. With Part of 200 bytes and
Connection of 32 bytes, the small and large database

5We are preparing to evaluate our algorithm with real world applica-
tions.

VM

Work Load

NETWORK

BUFFER
PAGE

OBJECT CPU CPU
BUFFER

PAGE
BUFFER

DISK

Client Server

Figure 3. Simulation Model

Parameters Value(msec)

Part processing time 5.0/Part
Connection processing time 0.5/Connection
Object copy time 0.003/object
Avg. Object buffer processing time 0.077
Avg. Page buffer processing time 0.025
Avg. Swap I/O time 16.0
Avg. Disk access time 17.0/8 K bytes
Network processing time 1.1 + 0.00075/byte
Network transfer time 4.5 M bits/sec

Table 2. Simulation Parameter Settings

sizes are 6.4 M bytes and 64 M bytes respectively.
The page size is 8 K bytes. We also used two alter-
native clustering factors, 90%-1% and 80%-5% in or-
der to evaluate the performance with varying the good-
ness of clustering. These versions of database shall
be referred to as SMALL-DB-90-1, LARGE-DB-90-1,
SMALL-DB-80-5, and LARGE-DB-80-5 respectively.
Each client generates a single stream of object access by
tracing the traversal operation with random seeds. In
order to study the effects of prefetching in multi-client en-
vironments, we varied the number of clients from 1 to 20.

The simulator was coded in C++SIM[6], since we can
use C++ directly without learning another language and it
is available in public.

4.2. Simulation Results

The experiments were performed to compare three dif-
ferent prefetch policies: 1) EOF that fetches all objects ea-
gerly from a page upon every the first object miss in the
page, 2) LOF that fetches only one requested object at a
time, and 3) SEOF we proposed. EOF and LOF set the page
buffer size of the client to 8 K bytes and 4.3 M bytes respec-
tively, which offered the best performance to each one in our

5



additional experiment6. Based on [11], we ran SEOF with
parameters ThreshSin and ThreshSout set to (120,120),
(160,160), and (80,120), where ThreshSin is ranged from
12.5% to 25% under the constraint of 10 M byte object
buffer. On all three cases of SEOF, the size of the client
page buffer is set to 2.7 M bytes. The server page buffer of
5.5 M bytes and 5 M byte client physical memory are used
for all of the experiments.

We first present the results of the simulation for the OO1
benchmark databases clustered by 90%-1% factor.

Figure 4 shows the average elapsed time of run-
ning traversal 10 times. Not surprisingly, EOF
shows the best performance over all other policies for
SMALL-DB-90-1. This is due to the fact that the small
database of 6.4 M bytes is such that most of the database can
fit in the physical memory. That is, EOF can get the high ob-
ject buffer hit ratio by prefetching the entire database while
it experiences a small number of swappings.

The performance curves of SEOF on small database lie
in the middle of EOF and LOF, but SEOF on the large
database is very close to LOF. The reason is that the large
working set of the large database prevents SEOF from
prefetching enough objects to keep the hit ratio high. Of
SEOF policies, SEOF(120,120) is slightly closer to LOF
than other two SEOFs, although it is not easy to see in
figure 4. This can be explained by their ThreshSin and
ThreshSout , as described in section 3.

Observing the performance as a function of the number
of clients, we see that the experiments with two or three
clients offer a reasonable performance improvement over
one client. This is because with two or three clients, cached
pages in the server are likely to be used by more than one
client. However, as more clients are added, this advantage
has been lost due to the contention against the server page
buffer and the server tends to be overloaded.

Figure 4(b) also shows that LOF(and also SEOF) outper-
forms EOF in the range of 4 or less clients. This is due to the
fact that naturally EOF suffers from heavy swappings, since
it tends to prefetch many unneeded objects. However, as
clients are added, a small number of page requests of EOF
can pay off the swapping overhead by reducing the response
time of the server. This fact is well reinforced by figure 5
which plots the total number of page requests and table 3
that represents the average response time of the server at
the peak load. The server gives near-linear increase of the
response time beyond 4 or 5 clients.

Considering the number of page requests, the response
time of the server in SEOF is slightly worse than our expec-
tation. This is due to the fact that prefetching by SEOF may

6In this experiment, we examined the memory resource contention by
the object buffer and the page buffer. This results confirm our intuition that
the large page buffer may suffer from heavy swappings, although it gives
high buffer hit ratio.

result in the lower hit ratio of the server, since prefetching
can make the cached pages in the server useless. In addi-
tion, the server response time in LOF for the small database
increases a bit slowly because the server page buffer can
cache almost the entire database.

Table 4 presents the size of the object buffer and the to-
tal number of swappings observed during our experiments.
The ratio of actually used objects to (pre)fetched objects is
also listed in parentheses. One interesting fact from this re-
sult is that LOF experiences more swappings for the small
database than for the large database. This is explained by
the fact that an object hit may require two swap I/Os: a swap
out for making room and a swap in for reading a memory
block in which the object is cached, while an object miss
requires at most only one swap out. Thus, more object hits
in the small database might induce more swappings.

Table 4 also reveals that EOF might be infeasible to run
in a real environment especially for large database applica-
tions7. That is, considering 5 M bytes of physical memory,
EOF may not be allowed to use about 40 M bytes of swap
space. This is because EOF tends to prefetch too many
unnecessary objects blindly, as noted in section 2. Con-
sequently, we can consider EOF as a theoretically optimal
policy, although it does not give the best performance in
some parts of the experiments. From this consideration, we
define the relative improvement provided by SEOF as fol-
lows:

Relative Improvement �
LOFelapsed � SEOFelapsed

LOFelapsed �EOFelapsed

This shows the improvement over LOF(no-prefetching
policy) as a fraction of the difference between EOF and
LOF. Table 5 lists the results. The negative means that LOF
performs better than SEOF and EOF. Please note that the
negative values are larger than their actual performance gap,
because the difference of EOF and LOF is very small at the
intersection of two curves.

Next, we consider the effects of clustering on the perfor-
mance of prefetch polices.

Figure 6 plots the average elapsed time of the traversal
on the databases clustered by 80%-5% factor. These graphs
show similar results with those for 90%-1% clustering fac-
tor. However, with increasing the number of clients, the
performance of LOF degrades more sharply than the previ-
ous result. The reason is that the server is saturated more
quickly because of the low buffer hit ratio in clients.

Comparing the results of SEOF with the previous ones,
SEOF moves more closely to EOF in the experiments with
the small database but behaves more similarly to LOF for
the large database. This is explained as follows. With 80%-
5% clustering factor, the small database has fewer cycles

7The system should be able to displace unused objects at any time in
order to use EOF policy. However, object replacement cannot be easily
done with C or C++ language binding.
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Figure 4. Average Elapsed Time (90%-1% clustering factor)
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Figure 5. Total Number of Page Requests (90%-1% clustering factor)

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Strategies
# of Clients 1 2 3 5 7 10 15 20

SMALL-DB EOF 0.036 0.036 0.038 0.049 0.073 0.113 0.172 0.223
-90-1 LOF 0.036 0.038 0.041 0.054 0.081 0.122 0.172 0.229

SEOF(120,120) 0.036 0.038 0.040 0.054 0.079 0.120 0.174 0.227
SEOF(160,160) 0.036 0.038 0.041 0.054 0.081 0.122 0.179 0.228
SEOF(80,120) 0.036 0.038 0.040 0.054 0.079 0.120 0.174 0.227

LARGE-DB EOF 0.036 0.040 0.047 0.064 0.092 0.136 0.207 0.286
-90-1 LOF 0.036 0.044 0.048 0.074 0.102 0.146 0.220 0.295

SEOF(120,120) 0.035 0.044 0.048 0.073 0.102 0.145 0.220 0.295
SEOF(160,160) 0.036 0.044 0.048 0.073 0.102 0.145 0.218 0.296
SEOF(80,120) 0.035 0.044 0.048 0.073 0.102 0.145 0.218 0.296

Table 3. Average Response Time of the Server(msec) (90%-1% clustering factor)
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SMALL-DB-90-1 LARGE-DB-90-1
Strategies Object buffer size Swap I/Os Object buffer size Swap I/Os

EOF 5.5 M bytes (26.8%) 382.1 38.1 M bytes (6.5%) 16717.8
LOF 1.5 M bytes (100%) 2223.9 2.8 M bytes (100%) 792.8
SEOF(120,120) 3.6 M bytes (37.8%) 966.8 9.5 M bytes (24.5%) 3146.0
SEOF(160,160) 3.9 M bytes (35.0%) 1270.3 10.1 M bytes (23.1%) 3336.3
SEOF(80,120) 3.7 M bytes (37.8%) 1104.7 10.5 M bytes (22.1%) 3497.3

Table 4. Object Buffer Size and Swap I/Os (90%-1% clustering factor)

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Strategies
# of Clients 1 2 3 5 7 10 15 20

SMALL-DB SEOF(120,120) 0.66 0.59 0.70 0.57 0.50 0.48 0.41 0.48
-90-1 SEOF(160,160) 0.56 0.42 0.57 0.47 0.44 0.47 0.50 0.54

SEOF(80,120) 0.60 0.48 0.66 0.55 0.54 0.53 0.51 0.55

LARGE-DB SEOF(120,120) -0.17 -0.22 -0.17 0.19 0.13 0.12 0.09 0.12
-90-1 SEOF(160,160) -0.18 -0.22 -0.18 0.17 0.16 0.13 0.13 0.15

SEOF(80,120) -0.20 -0.23 -0.20 0.20 0.20 0.16 0.14 0.15

Table 5. Relative Improvement (90%-1% clustering factor)
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Figure 6. Average Elapsed Time (80%-5% clustering factor)

between Part objects, while the working set covers al-
most of the small database still as before. Thus, SEOF
in SMALL-DB-80-5 selects more pages as candidates for
prefetch. On the contrary, the low clustering factor in the
large database causes only a few objects in a page to be
used. As a result, SEOF selects fewer pages as candidates
for the poorly clustered large database.

This behavior is also explained by table 6 that represents
the size of the object buffer and the total number of swap-
pings observed during the experiments for 80%-5% clus-
tering factor. A surprising result for the small database, that
EOF and SEOF utilize the object buffer space better than the

previous experiment, can be explained by the same reason
described before: a small number of cycles and the small
database size. For the large database, SEOF gets the high
buffer utilization due to its closeness to LOF and the blind-
ness of EOF decreases its utilization. These results show
that SEOF has good adaptability to both the effectiveness
of clustering and database size.

The total number of page requests and the average re-
sponse time of the server for 80%-5% clustering factor are
not given in the paper, since the results are consistent with
those of the previous experiment. We show the relative per-
formance improvement obtained by SEOF in table 7.
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SMALL-DB-80-5 LARGE-DB-80-5
Strategies Object buffer size Swap I/Os Object buffer space Swap I/Os

EOF 5.6 M bytes (36.3%) 2185.7 48.6 M bytes (5.7%) 33367.6
LOF 2.0 M bytes (100%) 7111.6 2.9 M bytes (100%) 995.0
SEOF(120,120) 4.6 M bytes (43.2%) 5568.1 7.3 M bytes (28.7%) 2739.1
SEOF(160,160) 4.7 M bytes (41.0%) 5477.2 7.9 M bytes (26.9%) 3070.0
SEOF(80,120) 4.6 M bytes (43.7%) 5661.9 7.7 M bytes (27.1%) 2940.4

Table 6. Object Buffer Size and Swap I/Os (80%-5% clustering factor)

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Strategies
# of Clients 1 2 3 5 7 10 15 20

SMALL-DB SEOF(120,120) 0.58 0.56 0.59 0.61 0.66 0.71 0.78 0.83
-80-5 SEOF(160,160) 0.60 0.59 0.62 0.64 0.69 0.75 0.82 0.86

SEOF(80,120) 0.57 0.54 0.59 0.60 0.67 0.73 0.81 0.83

LARGE-DB SEOF(120,120) -0.03 -0.14 -1.22 0.04 0.05 0.04 0.03 0.03
-80-5 SEOF(160,160) -0.04 -0.18 -1.15 0.07 0.06 0.04 0.05 0.04

SEOF(80,120) -0.05 -0.16 -1.19 0.08 0.07 0.05 0.05 0.04

Table 7. Relative Improvement (80%-5% clustering factor)

LOF

EOF

100
200

300
400

500
600

50
100

150
200

250
300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sin queue size

Sout queue size

object buffer space utilization

Figure 7. Sensitivity of SEOF to ThreshSin and
ThreshSout

In order to test the sensitivity of SEOF to its parameters,
we conducted more experiments with various ThreshSin
and ThreshSout . The traversal operation was repeated
on SMALL-DB-90-1 for ThreshSin and ThreshSout

ranging from 20 to 600. The results are plotted in figure 7.
The X and Y axes are ThreshSin and ThreshSout respec-
tively and the Z axis shows the ratio of used objects to
(pre)fetched objects.

As described in section 3, SEOF moves closer to LOF as

ThreshSin gets larger and ThreshSout gets smaller. With
small ThreshSin and large ThreshSout , SEOF performs
very similarly to EOF. SEOF is insensitive to ThreshSout

of beyond 300 and that portion of results is not plotted. This
is because the maximum interval of accesses to a same page
is small. LOF and EOF labeled in figure 7 represent the
results of the each named polices.

5. Conclusion and Future Remarks

In this paper we have developed a new object prefetch
policy, Selective Eager Object Fetch which prefetches ob-
jects only from selected candidate pages without using any
high level object semantics. Our policy is based on two
ideas: 1) The page which has been referenced repeatedly
in a short interval seems to have only a few objects to be
fetched. 2) If there are frequent non-correlated references
to a page, the page is likely to have many objects to be
used. Unlike existing prefetch policies, SEOF utilizes the
memory and the swap space of clients efficiently without
resource exhaustion.

The results of our experiments indicate that object
prefetch can improve overall performance significantly, al-
though it may suffer from heavy swappings caused by
prefetching too many unneeded objects. The relative im-
provement obtained by SEOF over LOF as a fraction of the
difference between EOF and LOF is from 41% to 70% for
the well clustered small database. For the large database,
SEOF offers the improvement of up to 20%.
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The additional experiments with low clustering factor
confirm that SEOF has good adaptability to both the ef-
fectiveness of clustering and database size. SEOF tends to
be closer to LOF with decreasing the clustering factor and
SEOF behaves as EOF when the database is well clustered
and small. We also investigated the sensitivity of SEOF to
fixing its parameters.

We are currently implementing the proposed SEOF pol-
icy on top of our ODMG-93 compliant object-oriented
DBMS, SOP8. In the future, we would like to extend our
prefetch policy in a way that a series of unused prefetched
objects can be displaced efficiently. We are also inter-
ested in finding an algorithm of fixing ThreshSin and
ThreshSout dynamically according to access patterns and
memory space utilization. We conjecture that these two
methods could improve the performance of SEOF substan-
tially.
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