
Join Processing Using Bloom Filter in MapReduce

Taewhi Lee, Kisung Kim, and Hyoung-Joo Kim
School of Computer Science and Engineering, Seoul National University

1 Gwanak-ro, Seoul, Republic of Korea
{twlee, kskim}@idb.snu.ac.kr, hjk@snu.ac.kr

ABSTRACT
MapReduce is a programming model which is extensively
used for large-scale data analysis. The join operation is one
of the essential operations for the data analysis. However,
MapReduce is not very efficient to perform the join oper-
ation since it always processes all records in the datasets
even in the cases that only small fraction of datasets are
relevant for the join operation. We alleviate this problem
by applying bloomjoin algorithm, a classic distributed join
algorithm. We improve the join performance using Bloom
filters in MapReduce. In our approach, the Bloom filters
are constructed in distributed fashion and are used to filter
out redundant intermediate records. In order to apply the
Bloom filters in MapReduce, we modify Hadoop to assign
the input datasets to map tasks sequentially, and we propose
a method to determine the processing order of input datasets
based on the estimated cost. Our experimental results show
that the number of intermediate results is decreased and the
join performance can be improved in our architecture.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases, Parallel databases, Query processing

General Terms
Design, Performance

Keywords
Join processing, MapReduce, Hadoop, Bloom filter

1. INTRODUCTION
MapReduce [7] has been extensively used for large-scale

data analysis in both academic and business areas. It can
process huge amount of data in a reasonable time using a
large number of commodity hardwares, and so valuable in-
formation hidden in those big data can be revealed with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RACS’12 October 23-26, 2012, San Antonio, TX, USA.
Copyright 2012 ACM 978-1-4503-1492-3/12/10 ...$15.00.

much less cost compared to previous techniques. The major
benefits of MapReduce are a simple programming interface
and extremely high scalability combined with graceful fail-
ure handling.

Unfortunately, MapReduce has some limitations to per-
form a join operation on multiple datasets, one of the essen-
tial operations for practical data analysis [5, 19]. The main
problem of join processing in MapReduce is that the entire
datasets should be processed and sent among nodes in the
cluster via the network connection. This could cause a signif-
icant performance bottleneck, especially when only a small
fraction of data is relevant for the join. In the database area,
many techniques, such as semijoin [4] and bloomjoin [13],
have been studied over the past 30 years [8] to address this
problem. However, in MapReduce, any auxiliary data struc-
tures such as indexes or filters are not available because it is
initially designed to process only a single large dataset as its
input [7]. In this regards, some researchers criticized that
MapReduce ignores rich technologies in database manage-
ment systems, including efficient indexes and careful query
execution planning [17].

In this work, we adopt bloomjoin algorithm [13] into the
Hadoop [1], an open-source implementation of the MapRe-
duce framework, to improve the join performance. We only
consider join operations for two datasets. The idea is to con-
struct Bloom filters [6] on one of the two input datasets and
to filter out redundant records in the other dataset with the
constructed filters in the map phase. By using this method,
we can avoid processing redundant records and reduce com-
munication overhead. However, it is not trivial to apply
Bloom filters in MapReduce for following two reasons. First,
the processing order of the input datasets in a MapReduce
job cannot be controlled because MapReduce schedules the
map tasks regardless of the dataset from which their cor-
responding input splits were read [19, 9]. Second, Bloom
filters should be constructed in distributed fashion since an
input dataset is divided into multiple splits and distributed
to all nodes in the cluster.

In order to apply Bloom filters, we modify Hadoop as
follows. First, we modify the map task scheduling policy so
that input datasets for joins are processed sequentially in the
map phase. In our approach, the processing cost is affected
by the processing order of the input datasets. Therefore, we
propose a method to choose the processing order based on
the estimated cost. Second, we design and implement the
execution flow to construct Bloom filters dynamically within
a single MapReduce job. The execution flow consists of two
phases: local filter construction and global filter merging.

100

���

�����	

����

�����	�
�����	�
�

���

���

���

����

�����

�����

�����

���

����	

����

����	�

�	������	���
�	�����	���

��� � !!�� ����� �����

Figure 1: Execution overview of MapReduce.

The rest of the paper is organized as follows: Section 2
introduces the background and related work to this paper.
Section 3 describes our system architecture and implemen-
tation. In Section 4, we address the issues of cost estimation
and fault tolerance. Then we present our experimental re-
sults in Section 5. Finally, we conclude and discuss future
work in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we first review the MapReduce frame-

work and join processing techniques in MapReduce. Then,
we describe the Bloom filter and previous work improving
join performance using the Bloom filter in different environ-
ments.

2.1 MapReduce
MapReduce [7] is a programming model for large-scale

data processing run on a shared-nothing cluster. Since the
MapReduce framework provides automatic parallel execu-
tion on a large cluster of commodity machines, users only
need to specify their program logic without thought of par-
allel and distributed processing.

A MapReduce program consists of two functions: map and
reduce. The map function takes a set of records from input
files as simple key/value pairs and produces a set of interme-
diate key/value pairs. The values in these intermediate pairs
are automatically grouped by key and passed to the reduce

function. For this grouping, sort and merge processes are
conducted. The reduce function takes an intermediate key
and a set of values corresponding to the key, and then it pro-
duces final output key/value pairs. An execution overview
of MapReduce is shown in Figure 1.

A MapReduce cluster is composed of one master node
and a number of worker nodes. The master periodically
communicates with every worker using a heartbeat proto-
col to check their status and control their actions. When
a MapReduce job is submitted, the master splits the input
data and creates map tasks for the input splits, and reduce
tasks. The master assigns each task to idle workers. A
map worker reads the input split and executes map function
specified by the user. A reduce worker should read the in-
termediate pairs from all map workers and execute reduce

function. When all tasks are complete, the MapReduce job
is finished.

2.2 Joins in MapReduce
Join algorithms in MapReduce are roughly classified into

two categories: map-side joins and reduce-side joins [12].
Map-side join algorithms are more efficient than reduce-side

��������
������	�
������
�

�

�

��������
������	�
�������

��������
���������

��������
��������� ��������

��������
������
�
��������
��	�����

��������
������
�
������
�
��	�����

������
���
�

��������

Figure 2: Basic join processing in MapReduce.

joins, because they only produce the final result of the join
in map phase. However, they can be used only in particular
circumstances. For Map-Merge join [12], two input datasets
should be partitioned and sorted on the join keys in advance,
or an additional MapReduce job is required to meet the
condition. Broadcast join [5] is effective when the size of
one dataset is small.

Reduce-side join algorithms is more general, but they are
not efficient because the whole input records have to be sent
from map workers to reduce workers. Figure 2 shows an
example of a join between R(a,b) and S(a,c) with a basic
reduce-side join algorithm, which is called repartition join
in [5]. All of input records are collected by reduce workers
to join the records with the same key. During this pro-
cess, redundant records (marked with strikethrough in Fig-
ure 2) are also collected. Semijoin described in [5] requires
three MapReduce jobs in general, so it has to process input
datasets multiple times.

Map-Reduce-Merge [19] adds merge phase after the re-
duce phase to support operations with multiple heteroge-
neous datasets, but it has the same drawback as reduce-side
join algorithms. There are some attempts to optimize multi-
way joins in MapReduce [3, 9]. They discuss the same idea
to minimize the size of the records replicated to reduce pro-
cesses. In this paper, we address only two-way joins. How-
ever, our approach can be extended to multi-way joins by
combining these work.

2.3 Bloom Filter
A Bloom filter [6] is a probabilistic data structure used to

test whether an element is a member of a set. It consists of
an array of m bits and k independent hash functions. All
bits in the array are initially set to 0. When an element is
inserted into the array, the element is hashed k times with
k hash functions, and the positions in the array correspond-
ing to the hash values are set to 1. To test membership of
an element, if all bits of its k hash positions of the array
are 1, we can conclude that the element is in the set. Bloom
filter may yield false positives, but false negatives are not
generated.

The merit of Bloom filter is space efficiency. The size
of the Bloom filter is fixed regardless of the number of the
elements n, but there is a tradeoff between m and the false
positive probability p. The probability of a false positive
after inserting n elements can be calculated as follows [6]:

p =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e

kn
m

)k

(1)

Bloomjoin [13] is a join algorithm which uses the Bloom

101

filter to filter out tuples not matched in a join. Suppose
relations R(a,b) and S(a,c) that reside in site 1 and site 2
respectively. In order to join these two relations, Bloomjoin
algorithm generates a Bloom filter with the join key a of a
relation, say R. Then, it sends the filter to site 2 where R re-
sides. At the site 2, the algorithm scans R and sends the only
tuples which are set in the received Bloom filter to site 1.
Finally, a join of the filtered R and S is performed at site 1.
We adopt this algorithm to the MapReduce framework.

The bloomjoin algorithm is combined with a group-by
operation and extended to multi-way joins in [10]. More
recent studies [14, 18] optimizes complex distributed multi-
way joins using this algorithm. However, while all these
work assumes the join relations are not partitioned, in MapRe-
duce environment, a dataset are split and distributed in
many nodes. Therefore, it is not trivial to construct Bloom
filters in MapReduce environment. Although reduce-side
join with Bloom filter is proposed in [16], it requires three
MapReduce jobs like semijoin in [5]. The work described
in [11] is closely connected with our paper. This work con-
ducts the theoretical investigation to apply the bloomjoin
algorithm within a single MapReduce job, but it does not
provide concrete technical details. We implement a working
system and present performance evaluation results of our
approach.

3. PROPOSED ARCHITECTURE
This section describes the overall architecture of our im-

plementation and the major changes we have made. We have
implemented our approach into Hadoop [1], an open-source
implementation of the MapReduce framework. In Hadoop,
the master node is called jobtracker and the worker node is
called tasktracker. We will use the terms of Hadoop in the
remaining of this paper.

3.1 Execution Overview
Figure 3 shows the overall execution flow of a join opera-

tion on the datasets R and S in our implementation. In this
example, we suppose that R is chosen to be processed first;
that is, Bloom filters are built on R. We use the term “build
input” for an input dataset processed first and“probe input”
for the other dataset. When the user program is submitted,
the following sequence of actions is performed.

1. Job submission. If a job is submitted, m1 map tasks
for R, m2 map tasks for S, and r reduce tasks are cre-
ated. A task includes all necessary information to be
run on a tasktracker such as the job configuration and
the location of the corresponding input/output files.

2. First map phase. The jobtracker assigns the m1

map tasks or the reduce tasks to idle tasktrackers. A
map tasktracker reads the input split for the task, con-
verts it to key/value pairs, and then executes the map

function for the input pairs.

3. Local filter construction. The intermediate pairs
produced from the map function are divided into r par-
titions, which are sent to r tasktrackers respectively.
Additionally, r Bloom filters are constructed on the
keys in each partition. These filters are called local fil-
ters because they are built for only the intermediate
results in a single tasktracker. If a tasktracker runs

�

��������

��������

�	
������
�����	
�
��
�����	�

�������
�������
�������

��

�

�
�������
�������
�������
�

�	
�������

����������
�������

�����

!�����

�"��#�	
��$������
���%��%

��

��
�'�����	��
�������

�/�������������

�����

�:��;	���$������
�	��������	�

Figure 3: Execution overview.

multiple map tasks, it merges the local filters of each
task and maintains only r filters.

4. Global filter merging. When all m1 map tasks
are complete, the jobtracker signals all tasktrackers to
send the local filters via heartbeat responses. Then, all
tasktrackers send their local filters to the jobtracker,
and the jobtracker constructs the global filters for the
dataset R. Next, the jobtracker sends the global fil-
ters to all tasktrackers. Until building and tranmitting
the global filters are complete, the map tasks for the
dataset S are not assigned.

5. Second map phase. The jobtracker assigns the m2

map tasks or the remaining reduce tasks to the task-
trackers. Tasktrackers run the assigned task with the
received global filters. The input key/value pairs which
are not set in the global filters are filtered out.

6. Reduce phase. This step is the same as the reduce
phase in Hadoop. A reduce tasktracker reads the corre-
sponding intermediate pairs from all map tasktrackers
using remote procedure calls. It sorts the all interme-
diate pairs and runs the reduce function. Final output
results are written in the given output path.

We have made two modifications to the design of Hadoop.
First, we schedule map tasks in the order of the dataset.
Second, we construct Bloom filters on the build input in dis-
tributed fashion to filter out the probe input. The following
subsections describe more details on these points.

3.2 Map Task Scheduling
Hadoop basically assigns map tasks in the order of the

input split size, considering the locality of the input split.
Consequently, map tasks on different input datasets are in-
termingled by the task scheduler. In our approach, map
tasks are assigned according to a certain order of input
datasets. That is, after processing one dataset is finished,
the other dataset is began to be assigned for map tasks.
In one dataset, map tasks are assigned as in the original
Hadoop.

In order to schedule map tasks by the datasets, each map
task needs to contain the dataset ID of the corresponding
input split, so we implement a DataSetInputFormat and a
DataSetSplit class by extending a FileInputFormat and a

102

FileSplit classes, respectively. In addition, we modify the
JobQueueTaskScheduler class to schedule map tasks with
the dataset ID. The task scheduler assigns the m1 map tasks
only for the build input among all map tasks. If no more map
task for the build input is left, the task scheduler defers the
assignment of the m2 map tasks for the probe input until
the jobtracker constructs the global filters and broadcasts
them to all tasktrackers.

This policy gives us the opportunity to apply database
techniques such as tuple filtering and join ordering. How-
ever, in this policy, all tasktrackers cannot run the map tasks
for the probe input until the global filter construction is fin-
ished (of course, they can run the copy operations of reduce
tasks or the tasks of other MapReduce jobs). The waiting
time could be long if there exist straggler nodes. In this
case, Hadoop runs multiple copies of the same task on dif-
ferent tasktrackers when the job is close to completion. This
feature is called the speculative execution. We can reduce
the waiting time using the speculative execution during the
global filter construction phase.

3.3 Bloom Filter Construction
While a tasktracker runs a map task of the build input,

it creates the Bloom filters on the intermediate records pro-
duced from the task. A Bloom filter is created for each map
output partition assigned for each reduce task, and therefore
the total number of the Bloom filters is the number of re-
duce tasks. We use the MurmurHash implemented in Hadoop
as the hash function and set the number of hash function
k is 2, which can be changed by the users. When multiple
map tasks are run on a tasktracker, the tasktracker merges
each Bloom filters from the tasks and maintains only one
set of Bloom filters. We call this set of Bloom filters as local
filters.

When all map tasks for the build input are complete,
The jobtracker has to gather all local filters to construct
the global filters. We add two TaskTrackerAction classes,
called SendLocalFilterAction and ReceiveGlobalFilter-

Action, for the global filter construction. The jobtracker
sends the SendLocalFilterAction as the heartbeat response
to all tasktrackers, and they send the jobtracker their local
filters. The jobtracker merges all the local filters to build
the global filters using bitwise OR operations, and sends the
ReceiveGlobalFilterAction with the global filters in the
heartbeat response to all tasktrackers.

The communication cost for the global filter construction
Cf is

Cf = 2ct ·m · r · t (2)

where ct is the cost to transfer data from one node to an-
other, m is the size of a Bloom filter, r is the number of
reduce tasks, and t is the number of tasktrackers. The co-
efficient 2 is multiplied since the local filters and the global
filters are transmitted between the jobtracker and the task-
trackers.

If r or t is large, Cf can be large, then the global filter
construction could be a bottleneck. We can distribute the
overhead for merging the local filters by merging them hi-
erarchically, which is not implemented yet. We leave this
issue for future work.

4. COST ANALYSIS
We adjust the cost model for Hadoop described in [15] to

consider the cost for the construction of Bloom filters. We
use the same assumption of the cost model that the execu-
tion time is dominated by I/O operations. The query opti-
mizer can use this cost model to determine the processing
order of input datasets and whether to use Bloom filters.

4.1 A Cost Model
Assume that we have a MapReduce job that read the input

dataset R and S. Let |R| be the size of R, |S| be the size of
S, and |D| the size of the intermediate data of the job. We
also assume that cl is the cost to read or write data locally,
ct is the cost to transfer data from one node to another, and
the size of the sort buffer is B + 1.
The total cost for a join operation between R and S is the

sum of the cost Cs to perform the sorting and merging at
the map and reduce nodes, the cost Cf to transfer Bloom
filters among the nodes as shown in Equation 2, and the
cost Ct to transfer intermediate data among the nodes. We
omit the cost to read the input and to write the final output
because they are the same regardless of using Bloom filters.
Then, the total cost C is as follows:

C = Cs + Cf + Ct (3)

where

Cs = cl|D| · 2(�logB |D| − logB (m1 +m2)�+ �logB (m1 +m2)�)
Ct = ct · |D|

as in [15].
We add the cost Cf to the cost model described in [15].

Cf is constant since the Hadoop parameters and the size of a
Bloom filter are set. If Bloom filters are not used, Cf is zero.
Another difference in our model is the size of intermediate
results |D| is changed according to the performance of Bloom
filters, and this is discussed in the following section.

4.2 Determining the Processing Order
The processing order of input datasets is important in

our approach, because the total cost of a join depends on
the processing order. We define the best processing order as
the order which minimizes the total cost.

The important factor that determines the total cost is the
size of intermediate results |D|. In order to estimate |D|, we
need to know the number of distinct join keys and the ratio
of joined records in each dataset, and we assume that the
information is already given (e.g. using metadata for input
datasets). Let σR is the ratio of the joined records of S with
R, and σS is the ratio of the joined records of R with S. Then
we can estimate |D| with the probability of a false positive
p from Equation 1 as follows:

|D| =

⎧⎨⎩ |R|+ σR|S|+ p(1− σR)|S| if R is the build input
|S|+ σS |R|+ p(1− σS)|R| if S is the build input
|R|+ |S| if Bloom filter is not used

We compute the total cost for above three cases with
Equation 3 and choose the best order among them. How-
ever, the total cost does not include the global filter merging
time because we could not expect the time which map tasks
take to be complete and it cannot be measured consistently.
Accordingly, we approximate the cost as the time that all
tasktrackers execute one map task though this is a very sim-
ple approximation. We compare the total cost for the three
cases after adding the approximate cost to the cost for the
two cases using Bloom filters.

103

(a) Execution Time

(b) The number of intermediate results

Figure 4: Join Performance.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results of our im-

plementation. All experiments were run on a cluster of 11
machines that consists of 1 jobtracker and 10 tasktrackers.
Each machine has 3.1GHz quad-core CPU, 4GB memory,
and 2TB hard disk. The operating system is 32-bit Ubuntu
10.10, and the java version we used is 1.6.0 26.

We implement the proposed architecture on Hadoop 0.20.2.
We set the HDFS block size to 128MB and the replication
factor to 3. Each tasktracker can simultaneously run 3 map
tasks and 3 reduce tasks. The I/O buffer is set to 128KB,
and the memory for sorting data is set to 200MB.

5.1 Datasets
We use TPC-H benchmark [2] 100GB dataset to evaluate

our implementation against the original Hadoop. We join
the two tables of lineitem and orders which have 600M
records and 150M records respectively. The orderkey col-
umn of lineitem table is a foreign key to orderkey column
of orders table. Also, we add some selection predicates in
brought from TPC-H Q4 query to control the join selectivi-
ties. The following join query is performed on the dataset.

SELECT *

FROM lineitem l, orders o

WHERE l.orderkey = o.orderkey

AND l.commitdate < l.receiptdate

AND o.orderdate >= 1992-01-01

AND o.orderdate < 1992-01-01 + interval ‘?’ months

Table 1: The number of intermediate/output records

interval map output map output reduce output
months from |orders| from |lineitem| |orders�lineitem|

3 5.7M 14.3M
12 22.8M 57.7M
24 45.6M 379M 115.2M
36 68.3M 172.8M
48 91.1M 230.3M

(a) Hadoop

(b) Join with Bloom Filter 4Mb

Figure 5: Task timelines.

We run the query, changing the interval ‘?’ months to 3,
12, 24, 36, and 48 months. Hadoop programs for the join
queries are hand-coded, and the summary of the datasets
for each query is given in Table 1. We choose orders as the
build input and lineitem as the probe input based on the
estimated cost.

5.2 Evaluation
We perform each test query on the proposed architecture

with a Bloom filter size of 4Mb. Figure 4(a) shows the
execution time of the test queries using Hadoop and our
implementation. We can observe that our implementation
shows better performance than Hadoop when the number of
records in the build input and joined records is small. The
more records in the build input, the less redundant records
we can filter out. As the interval on orders table is large,
the number of intermediate results is increased as shown in
Figure 4(b). In addition, we observe the number of false pos-
itives, the gap between ‘Join w/ BF 4Mb’ line and ‘Reduce
output’, is gradually increased.

Figure 5(a) and 5(b) shows the task timelines of Hadoop
and our implementation during the execution of the test
query with the interval of 12 months. A key observation is
that the number of running map tasks is sharply decreased
for a while in Figure 5(b). It means that tasktrackers do not
run the map tasks for the second input dataset during the
global filter construction phase. In spite of the overhead of
this period, the execution time of all map tasks and reduce
tasks is considerably reduced. Map phase is finished early
because the intermediate results are reduced by Bloom fil-
ters, and as a result, the local I/O and sorting cost are also
reduced. Reduce phase is also finished early because the
number of intermediate records to be copied from remote
map processes is reduced, so the number of input records to
process in reduce function is decreased.

Next, we perform the test query with the interval of 12
months, changing the size of a Bloom filter from 512Kb to
4Mb. Figure 6 shows the execution time for the experiments.

104

Figure 6: Performance in different Bloom filter size.

If the size of Bloom filters is too small, redundant records
cannot be filtered out. On the other hand, if the size of the
filters is too large, the overhead to construct and communi-
cate the filters may be large. It is important to determine
the appropriate size of the Bloom filter, and we leave this
for future work.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented an architecture to im-

prove the join performance using Bloom filters in the MapRe-
duce framework. We have made two design changes to
Hadoop. First, we assign map tasks in the order of the
dataset. Second, we construct Bloom filters in distributed
fashion. We have evaluated our architecture by running the
join queries to TPC-H dataset on our commodity cluster.
The results show that our architecture significantly improves
the execution time of join queries, especially in the case
that join selectivity and the number of distinct join keys
are small.

In future work, we will extend our architecture to sup-
port multi-way joins, and implement the optimizer module
to decide the size of Bloom filters and the processing order of
input datasets automatically. Also, we plan to apply some
other filtering techniques to our architecture.

7. ACKNOWLEDGMENTS
This work was supported by the National Research Foun-

dation of Korea(NRF) grant funded by the Korea govern-
ment(MEST)(No. 20110017480).

8. REFERENCES
[1] http://hadoop.apache.org/.

[2] http://www.tpc.org/tpch/.

[3] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In Proceedings of the 13th
International Conference on Extending Database
Technology (EDBT ’10), pages 99–110, 2010.

[4] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins
to solve relational queries. Journal of the ACM
(JACM), 28(1):25–40, 1981.

[5] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A comparison of join algorithms
for log processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
Data (SIGMOD ’10), pages 975–986, 2010.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM
(CACM), 13(7):422–426, 1970.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of the
6th USENIX Symposium on Opearting Systems Design
& Implementation (OSDI), pages 137–150, 2004.

[8] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys (CSUR),
25(2):73–169, 1993.

[9] D. Jiang, A. K. H. Tung, and G. Chen.
Map-join-reduce: Toward scalable and efficient data
analysis on large clusters. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
23(9):1299–1311, 2011.

[10] A. Kemper, D. Kossmann, and C. Wiesner.
Generalized hash teams for join and group-by. In
Proceedings of the 25th International Conference on
Very Large Data Bases (VLDB), pages 30–41, 1999.

[11] P. Koutris. Bloom filters in distributed query
execution. http://www.cs.washington.edu/education/
courses/cse544/11wi/projects/koutris.pdf, 2011.

[12] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and
B. Moon. Parallel data processing with mapreduce: A
survey. ACM SIGMOD Record, 40(4):11–20, 2011.

[13] L. F. Mackert and G. M. Lohman. R* optimizer
validation and performance evaluation for distributed
queries. In Proceedings of the 12th International
Conference on Very Large Data Bases (VLDB), pages
149–159, 1986.

[14] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski.
Improving distributed join efficiency with extended
bloom filter operations. In Proceedings of the 21st
International Conference on Advanced Networking and
Applications (AINA), pages 187–194, 2007.

[15] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: Sharing across multiple queries
in mapreduce. Proceedings of the VLDB Endowment,
3(1-2):494–505, 2010.

[16] K. Palla. A comparative analysis of join algorithms
using the hadoop map/reduce framework. Master’s
thesis, University of Edinburgh, 2009.

[17] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
Dewitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data
(SIGMOD ’09), pages 165–178, 2009.

[18] S. Ramesh, O. Papapetrou, and W. Siberski.
Optimizing distributed joins with bloom filters. In
Proceedings of the 5th International Conference on
Distributed Computing and Internet Technology
(ICDCIT), pages 145–156, 2008.

[19] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: Simplified relational data
processing on large clusters. In Proceedings of the 2007
ACM SIGMOD International Conference on
Management of Data (SIGMOD ’07), pages
1029–1040, 2007.

105

