
A Semantics of the Separation ofInterface and Implementation in C++Eun-Sun Cho Sang-Yong Han Hyoung-Joo KimDepartment of Department of Department ofComputer Science Computer Science Computer EngineeringSeoul National University Seoul National University Seoul National UniversitySeoul, Korea 151-742 Seoul, Korea 151-742 Seoul, Korea 151-742e-mail:feschough@candy, syhan@pandora, hjk@papayag.snu.ac.krAbstractC++ uses `class' as the basis of `subtype-polymorphism' and `inheritance', but it has beenpointed out that the overloading of `class' limits the ex-pressiveness and makes its type system inexible. Thismade C++ and some other object-oriented languagesto separate a class into two modules { an interface andan implementation.But, there seems to be no leading C++ model forseparating interface lattice from implementation lat-tice. Moreover none of proposed models describe theresult of the separation in a formal way. As a resultit is hard to understand what the type space would belike after the separation.This paper1 presents a formal model for the separa-tion of interface and implementation in C++, whichexplains the properties of the resulting type space afterthe separation.1 IntroductionC++ uses `public', `private' or `protected' tocontrol access to members or member functions of aclass. When a member or a member function of aclass is speci�ed as public, its name is allowed to beused by any functions. But with private, the name isallowed to be accessed directly only by member func-tions of the class in which it is being declared2.1This work is supported in part by KOSEF under grantKOSEF94-2180, \Research on Object-Oriented Database Pro-gramming Language Based on C++ and ODMG Standard Ob-ject Model".2friend and protected in C++ are not considered in thispaper.

It, however, is natural to divide members and mem-ber functions into two groups, according to whetherit has the public keyword or not. The declarationsof members or member functions which are speci�edas public are called an `interface'. Note that onlythrough the interface of a class, users can be informedof all about what the class provides, while the othermembers or member functions of a class cannot beaccessed by the users of the class. Instead, they areresponsible for implementing the class. So, we call allde�nitions of members and member functions includ-ing non-public ones `implementation' of the class.The concept of interface and implementation ismelted into a `class' in C++. It is noticeable thattheir corresponding hierarchies yield some problems.For example, as aggregation types such as class `Set'and class `Bag' have common properties, they mayhave same declarations of public member functions -insert, delete etc. Thus, such declarations may be re-trieved into an abstract class `Collection', and all ag-gregation classes may be derived from it. However, itis likely that class `Bag' would be derived from class`Bptree' or something, and class `Set' would be derivedagain from the class `Bag'. So, the inheritance hierar-chy in C++ should imply two independent hierarchiesas �gure 1 shows.Moreover, class `Set' also can be made an abstractclass, and drive class `Bptree', class `Hash', and class`BitString' from it, since a set can be implementedin several ways including B+tree or Hash. But suchschema may increase complexity of class hierarchiesor may be impossible to be described because of thecomplexity.

B
PlusT

ree

B
ag

Set

A
rray

C
ollection

Subtype
R

euse of im
plem

entation

Figure 1: Two hierarchies including class Set2 Related WorksMany object-oriented language designers, pointingout these problems, have concentrated on the sepa-ration of interface and implementation, and tried toprovide users with the separated hierarchies - one forsubtyping and the other for reuse. From now on, we'llcall the separation of interface and implementation,`SII', in abbreviation.However each existing mechanism for SII is ac-companied by its own semantics of the type system,and there are a lot of di�erent approaches to pro-cessing SII[2, 3, 8, 10, 11, 12, 13, 14]. In somelanguages[2, 10, 12, 13], an interface is allowed to bebound to more than one implementation, while onlyone implementation is allowed in some languages. Insome language de�nitions, there is no concept of thehierarchy of either types or implementations[13, 14].Some languages provides users with the featuresfor specifying the type hierarchies explicitly[9, 14, 16],while in others, the compiler �nds the dependency ofthe conformance among the types to de�ne a hierar-chy by comparing the structures of their interfaces[13].Like subtyping, bindings of an interface and im-plementations are to be done explicitly[12, 14], orimplicitly[2, 10, 13].As for C++, it already supports implementationinheritance hierarchies which are speci�ed explicitlyby user. And in most suggestions for SII in C++, oneinterface can have more than one implementation.

2.1 SII in C++If the features for SII are supported in an C++ ex-tension, users may bind an interface and implemen-tations when declaring implementation classes anddeclaring and using their objects.First, when an implementation class is being de-clared, the declaration of an implementation class caninclude its corresponding interface in either an explicitor implicit way. As in �gure 3, binding is done explic-itly with the keyword `implements'.When an object is created by the operator `new'with the name of an implementation, it may be as-signed to a pointer of an interface to which the im-plementation was bound in the declaration time. Forexample, `Set * p = new BptreeSet;' generates anobject whose implementation is class BptreeSet andassigns it to a pointer of interface Set. Through thepointers of an interface, like `p', all members and mem-ber functions are able to be accessed without concern-ing about the representation and implementation ofthe actual object.2.1.1 SII suggested by Martin et al.[23]A model was presented for C++ extensions to supportSII in Martin et al.[12]. Each interface and implemen-tation is transformed into a C++ class by the prepro-cessor. The C++ class which represents an implemen-tation is combined with an interface by inheriting theC++ abstract class transformed from the interface.Thus, an implementation class is transformed to be aC++ class derived from its interface and base classesat once.Figure 2 shows an example of hierarchies. Class A{B{C represent a hierarchy of interfaces, and class D isan interface that is not in the hierarchy. Implementa-tions M1, M2 are derived from M0, and M3 from M1,M2. M1, M2 andM3 are explicitly bound to A, C andD respectively. User-de�ned separated hierarchies arein (a), and the resulting class hierarchy after trans-formation is in (b). The solid lines in (b) are sameas those in (a), while the dotted lines represent thebindings of interfaces and implementations. Thoughthis mechanism is simple and intuitive, it has somelimitations { for example, in �gure 2, it is not clearif M3 conforms to the interface A and C. This kindof binding is not speci�ed by users, but introduced bythe side-e�ects produced by the derivation of imple-mentations.

D

C B A
M

1

M
0

M
2

M
3

C
D

B A

M
1

M
2

M
0

M
3

(a) T
w

o hierarhcies and binding
(b) M

erged hierarchy

Figure 2: hierarchies of interfaces, implementationsand the resulting type space

2.1.2 SII suggested by Granston et al.[17] andBaumgartner et al.[1]At Purdue University, C++ extension for SII has beeninvestigated from 1991[2, 10].In [2, 10], interfaces are denoted by `signature'.And bindings of a signature and implementations arenot speci�ed explicitly. Instead, the complier com-putes their relationships by comparing the structuralde�nitions of signatures and implementations, whichis called `structural conformance checking[6]'. More-over, the subtype relationships for signatures are alsoinferred in a similar way.However, from these properties, some problemsmay exist in its recursive types and covariance rulesin signature inheritance which are not allowed inC++[1, 4, 7]. And unrecognized relationships amonginterfaces are likely to be made, since meaningful in-terface hierarchies by users are jumbled with othercompiler-generated relationships among interfaces[15].As described in above, mechanisms to separate andcombine interfaces and implementations in C++ arebased on di�erent models. And each of them has nouniform semantics, because SII was introduced in afeature-to-feature way. In this paper, we present anew model for SII in C++ which provides a uniformsemantics without any problems described in the pre-vious sections.3 The Proposed Model3.1 IntroductionLike others, our model also has two axes { `in-terface' and `(implementation) class'. Member dec-larations are allowed to be in an interface, for theusers who want to access data directly. An implemen-tation is bound explicitly to an interface, using the`implements' keyword which is illustrated in �gure 3.The declarations of members or member functionsare omitted in the declaration of an implementationclass if they are already in the declaration of its cor-responding interface. In an interface de�nition, onlyinterface names are allowed to be used to declare mem-bers and member functions, so the world of interfacesis self-contained.A members or member functions in the declarationof an interface can be rede�ned with an implementa-tion type in a declaration of corresponding implemen-tations. For example, suppose `A' is an interface and

interface Set{int insert(); };class _BptreeSet{implements Set; // 'int insert()' includedint tree_depth; };// Use the interface and implementationSet * a = new _BptreeSet;a->insert(); b.insert();Figure 3: An example of declarations and uses of aninterface and an implementation`M1' is one of its implementations. If `A' has a mem-ber declaration, say, `B x;' and `B' is the interface of`M2', then `x' can be rede�ned in `M1' with type `M2'.A class `C' conforms to an interface `S' when (1) theinterface bound to `C' is a subtype of the interface `S',or (2) the smallest super class of `C' which is bound toan interface explicitly, conforms to the interface `S'.3.2 Formal De�nitionsAs we described above, the semantics of SII in Mar-tin et al.[12] can be explained only by the resultingmultiple inheritance hierarchies[12]. And though themodels in Gnu C++[2, 10] takes a few of the exist-ing object-oriented semantics from various sources, theabsence of uniform semantics causes conicts as de-scribed in the previous section.In this section, we concentrate on the formal se-mantics of the proposed model.3.2.1 Algebraic de�nitionsBasic SetsBoth interfaces and implementations are consideredas the lists of member and member function declara-tions. The de�nition of lists and basic set theories arethought to be well-known.De�nition 1 `B' is a set of system de�ned types suchas int, oat, char and etc.De�nition 2 `POINTER', `ARRAY' and `FUNC-TION' are system de�ned symbols, and included ina special set `S'.De�nition 3 `ST' is a set of strings.De�nition 4 For all list x, y, let `pointer(x)' re-turn `hPOINTER,xi', `array(x)' return `hARRAY,xi', `id(x)' return `hxi', and `function(hx,yi)' return

hFUNCTION, x, yi. Then, a set Ty is de�ned to be aset of functions generated by applying the associationoperator `�' repeatedly to the elements of a set Q =fpointer(), array(), function(), id() g.The association operator has some limitations { forexample, pointers of function are not allowed - butcurrently, we ignore them.De�nition 5 For a given list l = hl1,... lmi s.t l1 62S, tzl is a set of lists de�ned as followings :1. aTy(l) 2 tzl, when aTy 2 Q and 8 aTy 2 (Q �ffunction()g) or2. aTy is a `function()' and aTy(l1, l2) 2 tzl, whenl = tzl1 [tzl2 .And, `ty' is de�ned as the function from l to tzl.tzl represents the set of types which are constructedusing the types in l and the type constructors in Q.De�nition 6 (Set of interfaces) Let id andmember-name be elements of ST. `I' is the set of all in-terfaces each of which is de�ned as (id, ILIST) whereILIST is ha1, a2, .. ani s.t. for all i(1 � i � n), ai =(ty(j), member-name) with j = hb1,.. bmi and bi(1 �i � m) 2 I [B.Thus ILIST is a list of declarations of members andmember functions of types in I.De�nition 7 (Set of implementations)Let id, member-namek and member-namem be in theset ST. `M' is the set of all implementations each ofwhich is de�ned as (id, PUBLIST, PRLIST) wherePUBLIST = ha1, a2, .. anpubi and PRLIST = hb1,b2, .. bnpri for ak = (ty(i), member-namek) and bm= (ty(j), member-namek). In there, i = hc1,.. cpi andj = hd1,.. dpi, and both cz and dw are in I [M [Bwhere (1 � k � npub and 1 � m � npr) and (1 � z �p and 1 � w � q)3.Thus, a PUBLIST and a PRLIST are lists of decla-rations of members and member functions with typesin I or M. A PUBLIST represents the public part of aclass, while a PRLIST stands for the private part.Hierarchies De�ned by UsersThe hierarchies of interfaces and implementationsare constructed by explicit speci�cation of inheritanceby users. Binding of an interface and an implementa-tion is also de�ned by users.3In C++, there are some other keywords such as virtual,inline, const, and typedef which are not important in thispaper.

De�nition 8 `IH', `IM', and `II' are de�ned as fol-lowings:1. IH = f (ik,ij) j for ik, ij 2 I, there is a user de-�ned inheritance relationship hik, iji g2. IM = f (mk,mj) j for mk, mj2 M, there is a userde�ned inheritance relationship hmk, mji g3. II = f (ik,mj) j for ik2 I, mj2 M, there is a userde�ned binding hik, mji gIH and IM represents the hierarchy of interfaces andimplementations, respectively. II denotes the relation-ships between implementation classes and interfaces.All of them are speci�ed by users explicitly.Wellformedness of IH and IMThe user-de�ned hierarchies of interfaces or imple-mentations are meaningful only when they have `well-formedness' property described in the following de�-nitions.De�nition 9 For two lists ha1; a2; :::ani andhb1; b2; ::bmi, `strict sublist' relationship or`strict sublist(a, b)' denotes the case in which n < mand, for all ai(i <= n), ai = bi.De�nition 10 (Wellformedness of IH)IH is wellformed if for all (i1, i2) in IH,strict sublist(ILIST(i1), ILIST(i2)) is true.De�nition 11 (Wellformedness of IM) IM iswellformed if, for all (m1, m2) 2 IM,1. (PUBLIST(m1) = PUBLIST(m2) or,strict sublist(PUBLIST(m1), PUBLIST(m2))),2. (PRLIST(m1) = PRLIST(m2) or, strict sublist(PRLIST(m1), PRLIST(m2)) is true) and,3. not both PUBLIST(m1) = PUBLIST(m2) andPRLIST(m1) = PRLIST(m2) are true.The wellformedness of IM and IH is automaticallysatis�ed, because of the grammar of an interface dec-laration. From now on, IH and IM are consideredto be wellformed by default, unless there are specialmentions on it.Extensions from IH and IMIH and IM are extended to IH* and IM* with re-exivity and transitivity.De�nition 12 Two extended relationships are de-�ned as followings.

� For i and j in I, a relationship IH* is de�ned on(i,j) if (1) i is equal to j, or (2) (i,j) is in IH,or (3) there exists k 2 I s.t (i,k) and (k,j) are inIH*.� For m and l in M, a relationship IM* is de�nedon (m,l) if (1) m is equal to l, or (2) (m,l) is inIM, or (3) if there exists n 2 M s.t. (m,n) and(n,l) are in IM*.Next, we will extend I and M with ?I and ?M .De�nition 13 (Extended Relationship)Ipo = hI+, IH*+i is de�ned by I+ = I [f ?I , >Ig and IH*+ = IH* [f (?I , i) j 8 i 2 I+ g s.t. ?I62 I. Similarly, Mpo = hM+, IM*+i is de�ned by M+= M [f?Mg and IM*+ = IM* [f (?M , i) j 8 i 2M+ g s.t. ?M 62 M4.Conformance of Interface and ImplementationThe type space for SII in C++ is constructed bycombination of interfaces in I and implementationclasses in M. But, as explained above, I and M haveindependent hierarchies and all the elements in both Iand M are be recognized as type units in the resultingtype system in C++.De�nition 14 For Mpo and for all m in M, the setof gate nodes for m, in other words `gate(m)', exists,and x 2 gate(m) if and only if :1. there is j s.t. (j,x) 2 II and2. there is no y s.t there exists k and (k, y) 2 II and(x,y) 2 II.Each element of `gate(m)' is the smallest super classin one of the paths from (but not including) m to theroot, which has explicit speci�cation of its interface.De�nition 15 (Conformance) For an interface iand an implementation m, we de�ne (i,m) 2 cf and`m conforms to i', if (1) (i,m) 2 II, or (2) (i,j) 2 IHand (j,m) 2 II, or (3) (i,gate(m)) 2 cf.Since the wellformedness of II is de�ned based onthe type conformance it is a little more complex thanthat of IH or IM.De�nition 16 (Wellformedness of II) II is well-formed, if, for all (i,m) 2 II s.t. ILIST(i) = (a1, a2,..., az) and PUBLIST(m) = (b1, b2, ..., bz), eitherfollowing two conditions is satis�ed : (1) for all k (1� k � w), ak = bk, or (2) for all k (1 � k � w), and4We found that IH*+ and IM*+ are the partial order sets[5].

for ak = (tyk(jk), mn), bk = (tyk(lk), mn), there exista list of I, named jk, and a list of I [M, named lk,and (lk;x; jk;x) is in II, where lk;x 2 lk = hlk;1; :::lk;zk i,and jk;x 2 jk = hjk;1; :::jk;zki.The second condition in de�nition 16 explains thatthe interfaces used to the types of members or mem-ber functions in an interface de�nition can be over-ridden by corresponding implementation classes. A`wellformed gate()' is a gate function which is de�nedby `wellformed II' instead of II. And wellformed con-formance is de�ned using wellformed gate() and well-formed II[5]. We will name this `wcf'.The Algebra of Type SpaceWe are going to describe the resulting type spacethrough the de�nitions and theorems above. The thetype space corresponds to a system which has in-terfaces, implementations, ordinary classes and inte-grated classes in its domain and their relationships inits operator.De�nition 17 (The Proposed Model) Tpo =hhI [f>Ig � M [f>Mg i, �i is de�ned by the de�-nition of �, where h hi1;m1i hi2;m2i i 2 � if and onlyif the four conditions, such as (1) hi1, m1i 2 wcf, (2)hi2, m2i 2 wcf, (3) hi1, i2i 2 IH�+, (4) hm1, m2i 2IM�+ are satis�ed(where, i1, i2 2 (I [f>Ig) andm1, m2 2 (M [f>Mg)).We showed that Tpo preserves IH�+, IM�+ in [5].Another ApproachAs seen earlier, the SII model in Martin et al.[12]produces side e�ects which introduce redundant oreven wrong binding of interfaces and implementations,so users are open to misuse types. In the next de�ni-tion, `Thp' represents this model.De�nition 18 Thp hI+ � M+, �i is de�ned where,for i1, i2 2 I+ and m1, m2 2 M+, � is de�ned as1. h(i1, ?M),(i2, ?M)i 2 � when (i1, i2) 2 IH2. h(?I , m1), (?I , m2)i 2 � when (m1, m2) 2 IM3. h(i1, ?M), (i1, m1)i 2 � when (i1, m1) 2 II4. h(i1,m1), (?M ,M)i 2 � and h(?M ,M), (i1,m1)i2 � when (i1, m1) 2 II5. h(i1,m1), (i3,m3)i 2 �, when h(i1,m1), (i2,m2)i2 � and, h(i2,m2), (i3,m3)i 2 �� stands for the resulting class hierarchy in [12].Formula 3 describes the semantics that a resultingclass(a pair of an interface and an implementation)

M
<

B
,

>

<
C

,
>M

I
<

, M
1>

I , M
0>

<

M >
<

D
,

I
<

, M
2>

I
<

, M
3>

M
<

A
,

>

<
D

.M
3>

<
C

, M
2>

<
A

,M
1>

Figure 4: The type spaces of our modelshould inherit from the class representing its interface.Formula 4 means that the resulting class is consideredto be equal to the implementation class.The next theorem explains that, in such a modelbindings which are not intended by users can be gen-erated. Due to the limited space, detailed proof is notprovided here[5].Theorem 1 For (i1,m1), (i2,m2) 2 I � M, (m1, m2)2 IM, h(i1,m1), (i2,m2)i 2 � of Thp.Proof) Omitted. 2Thus, whether or not i1 and i2 are related eachother by IH�+, if (m1, m2) is in IM�+, the resultingpair (i1, m1) and (i2, m2) are related in �. It resultsfrom the fact that there is no distinction between animplementation and a pair of the implementation andits interface.Now, the next theorem is on the properties of ourmodel, Tpo. Due to the limited space, detailed proofis not provided here[5].Theorem 2 For (i1,m1), (i2,m2) 2 I � M, (m1, m2)2 IM, if i1 6= i2 and i1, i2 are not related to each otherin IH*+, h(i1,m1), (i2,m2)i 62 � of Tpo.Proof) Omitted. 2From the theorem 2, we can see that the side-e�ectsproduced in Martin et al.[12] does not occur in ourmodel.3.2.2 ExampleIn our model, such an anomaly is solved, as illustratedin �gure 4. The hierarchy in �gure 4 is correspondingto that of Martin et. al[12] in �gure 1. hD;M3i doesnot directly conform to hC;>M i because C and Dare not related each other. However hD;M3i is still

|||||||||||||||||||||||||{Tb basic typesTbi basic intf-typesTbm basic impl-typesti 2 Tyi = Tb + Tbi+ farrayg � N� Tyi+ fPointerg � Tyi intf-typestm 2 Tym = Tb + Tbm+ farrayg � N � Tym+ fPointerg � Tym impl-typest 2 Ty = Tyi � Tym + Tb typesent 2 Ent = Ide ! [ftag1g � Tyi+ ftag2g � Tym + Ty] environmentsacc 2 Acc = fprivate, public g access speci�ers|||||||||||||||||||||||||{Table 1: Semantic domainsrelated to M0, M1 and M2 because M3 is a subclassof those classes. Thus, the result relationships in ourmodel are exactly what users originally intended to.3.2.3 Denotational semanticsThe formal model presented in the previous sectionmay be used to analyze the concrete semantics of C++with SII. In this section, we propose a denotationalsemantics based on the above algebraic de�nition.The semantic domains are described in table 1. Tbcorresponds to the basic types like int and floatin C++, while Tbi and Tbm represents user de-�ned interfaces and implementations(i.e. I and M)respectively. Tyi and Tym represents the types con-structed from interfaces and from implementations, re-spectively. Both Tyi and Tym include Tb. A typecan be described by one ofTyi, Tym or a pair of typesfrom Tyi and Tym. Ent is an environment for sym-bols. In Ent, the symbols related to Tyi and Tymare di�erentiated by `tag's from those which representde�nitions of normal variables. The semantic rules forSII are presented in [5]4 ComparisonsIn table 2, we compare our model with two previ-ous approaches by Martin et al.[12] and Baumgartneret al.[2]. The comparison criteria consists of (1) thenumber of implementation allowed to be bound to aninterface, (2) existence of the concept of hierarchy ofinterface and implementation, (3) the way of subtyp-ing, (4) the ways of binding of interfaces and imple-mentations and (5) contents of an interface.

5 ConclusionThis paper introduces the mechanism for the sepa-ration of interface and implementation which extendsC++, and makes the semantics of the separation ofinterface and implementation clearer with a formalmodel { algebraic de�nitions and denotational seman-tics. In this proposed model, the problems which oc-curred in the other existing models are solved.The separation of interface and implementation inobject-oriented languages becomes important moreand more, especially for the applications such asdatabase systems and distributed systems. Now, weare working on the other object oriented languages be-sides C++ in order to �nd some general properties ofthe separation of interface and implementation. Thesemantics of function calls and virtual base classes inC++ also needs further investigation.References[1] Francois Bancilhon, Claude Delobel, and ParisKanellakis. \Object-Oriented Database System -The Story of O2". Morgan Kanfmann Publishers,Inc., 1991.[2] G. Baumgartner and V. F. Russo. \ Signatures:A C++ Extension for Type Abstraction and Sub-type Polymorphism". Technical Report CSD-TR-93-059, Purdue University, September 1993.[3] Peter S. Canning, William R. Cook, Walter L.Hill, and Walter G. Oltho�. \Interfaces forStrongly-Typed Object-Oriented Programming".In Proc. of the ACM OOPSLA Conf., pages 457{467, October 1989.[4] Giuseppe Castagna. \Covariance and Contravari-ance : Conict without a Cause". ACM Trans-actions on Programming Languages and Systems,17(3):431{447, 1995.[5] E.S. Cho. \On the Extension of Strongly-TypedObject Oriented Language ". Technical report,Seoul National University, 1996.[6] R.C.H Connor, A.L. Brown, Q.I Cutts, andA. Dearle. \Type Equivalence Checking in Per-sistent Object Systems". In The Fourth Inter-national Workshop on Persistent Object Systems,pages 154{167, 1990.[7] William R. Cook. \Interfaces and Speci�cationsfor the Smalltalk-80 Collection Classes". In Proc.of the ACM OOPSLA Conf., pages 1{15, 1992.[8] David Gelernter and Suresh Jagannathan. Pro-gramming Linguistics. MIT Press, 1990.

Table 2: Comparison with the approaches to SII for C++Items In Martin et al.[12] In Baumgartner et al.[2, 10] Our ModelImplementaions/interface more than one more than one more than oneConcept of hierarchy for both interface for both interface for both interfaceand implementation and implementation and implementationSubtyping explicit speci�cation by structural equation explicit speci�cationBinding of interface explicit in class by strucutral equation explicit in classand implementation declarations declarationsContents of interface member function only member function, etc. member, member function[9] A. Goldberg and D. Robson. Smalltalk-80 :The Language and Its Implementation. Addison-Wesley Publishing Company, Inc., 1983.[10] Elana D. Granston and V. F. Russo. \Signature-Based Polymorphism for C++". In Proceeding ofUsenix C++ conference, pages 65{79, 1991.[11] Wilf R. LaLonde, Dave A. Thomas, and John R.Pugh. \An Exemplar Based Smalltalk". In Proc.of the ACM OOPSLA Conf., 1986.[12] Bruce Martin. \The Separation of Interfaceand Implementation in C++". In Proceeding ofUsenix C++ conference, pages 51{63, 1991.[13] R. K. Raj and et al. \The Emerald Approach toprogramming". Technical Report 88-11-01, Uni-versity of Washington, November 1989.[14] Craig Scha�ert and et al. \An Introduction toTrellis/Owl". In Proc. of the ACM OOPSLAConf., pages 9{16, September 1986.[15] P. Schwarz and et al. \Extensibility in the Start-burst Database System". In Proc. of the Conf.on VLDB, pages 85{92, 1986.[16] Bjarne Stroustrup, editor. The C++ program-ming language second edition. Addison-WesleyPublishing Company, Inc., April 1991.

