A Semantics of the Separation of

Interface and Implementation in C++

Eun-Sun Cho

Department of
Computer Science
Seoul National University
Seoul, Korea 151-742

Sang-Yong Han

Department of
Computer Science
Seoul National University
Seoul, Korea 151-742

Hyoung-Joo Kim

Department of
Computer Engineering
Seoul National University
Seoul, Korea 151-742

e-mail:{eschough@candy, syhan@pandora, hjk@papaya}.snu.ac.kr

Abstract

C++ wuses ‘class’ as the basis of ‘subtype-
polymorphism’ and ‘inheritance’, but it has been
pointed out that the overloading of ‘class’ limits the ex-
pressiveness and makes its type system inflexible. This
made C++ and some other object-oriented languages
to separate a class into two modules — an interface and
an implementation.

But, there seems to be no leading C++ model for
separating interface lattice from implementation lat-
tice. Moreover none of proposed models describe the
result of the separation in a formal way. As a result
it is hard to understand what the type space would be
like after the separation.

This paper' presents a formal model for the separa-
tion of interface and implementation in C++, which
explains the properties of the resulting type space after
the separation.

1 Introduction

C++ uses ‘public’, ‘private’ or ‘protected’ to
control access to members or member functions of a
class. When a member or a member function of a
class is specified as public, its name is allowed to be
used by any functions. But with private, the name is
allowed to be accessed directly only by member func-
tions of the class in which it is being declared?.

IThis work is supported in part by KOSEF under grant
KOSEF94-2180, “Research on Object-Oriented Database Pro-
gramming Language Based on C++ and ODMG Standard Ob-
ject Model”.

2friend and protected in C++ are not considered in this
paper.

It, however, is natural to divide members and mem-
ber functions into two groups, according to whether
it has the public keyword or not. The declarations
of members or member functions which are specified
as public are called an ‘interface’. Note that only
through the interface of a class, users can be informed
of all about what the class provides, while the other
members or member functions of a class cannot be
accessed by the users of the class. Instead, they are
responsible for implementing the class. So, we call all
definitions of members and member functions includ-
ing non-public ones ‘émplementation’ of the class.

The concept of interface and implementation is
melted into a ‘class’ in C++. It is noticeable that
their corresponding hierarchies yield some problems.
For example, as aggregation types such as class ‘Set’
and class ‘Bag’ have common properties, they may
have same declarations of public member functions -
insert, delete etc. Thus, such declarations may be re-
trieved into an abstract class ‘Collection’, and all ag-
gregation classes may be derived from it. However, it
is likely that class ‘Bag’ would be derived from class
‘Bptree’ or something, and class ‘Set’ would be derived
again from the class ‘Bag’. So, the inheritance hierar-
chy in C++ should imply two independent hierarchies
as figure 1 shows.

Moreover, class ‘Set’ also can be made an abstract
class, and drive class ‘Bptree’, class ‘Hash’, and class
‘BitString’ from it, since a set can be implemented
in several ways including B+tree or Hash. But such
schema may increase complexity of class hierarchies
or may be impossible to be described because of the
complexity.

Py
g2 @
83 =
=0 4
3 8
S
3
B
o
o

Lo (0D

Figure 1: Two hierarchies including class Set

2 Related Works

Many object-oriented language designers, pointing
out these problems, have concentrated on the sepa-
ration of interface and implementation, and tried to
provide users with the separated hierarchies - one for
subtyping and the other for reuse. From now on, we’ll
call the separation of interface and implementation,
‘SII’, in abbreviation.

However each existing mechanism for SII is ac-
companied by its own semantics of the type system,
and there are a lot of different approaches to pro-
cessing SII[2, 3, 8, 10, 11, 12, 13, 14]. In some
languages|[2, 10, 12, 13], an interface is allowed to be
bound to more than one implementation, while only
one implementation is allowed in some languages. In
some language definitions, there is no concept of the

hierarchy of either types or implementations[13, 14].

Some languages provides users with the features
for specifying the type hierarchies explicitly[9, 14, 16],
while in others, the compiler finds the dependency of
the conformance among the types to define a hierar-
chy by comparing the structures of their interfaces[13].
Like subtyping, bindings of an interface and im-
plementations are to be done explicitly[12, 14], or
implicitly[2, 10, 13].

As for C++, it already supports implementation
inheritance hierarchies which are specified explicitly
by user. And in most suggestions for SII in C++, one
interface can have more than one implementation.

3

2.1 SIIin C++4

If the features for SII are supported in an C++ ex-
tension, users may bind an interface and implemen-
tations when declaring implementation classes and
declaring and using their objects.

First, when an implementation class is being de-
clared, the declaration of an implementation class can
include its corresponding interface in either an explicit
or implicit way. As in figure 3, binding is done explic-
itly with the keyword ‘implements’.

When an object is created by the operator ‘new’
with the name of an implementation, it may be as-
signed to a pointer of an interface to which the im-
plementation was bound in the declaration time. For
example, ‘Set * p = new _BptreeSet;’ generates an
object whose implementation is class _BptreeSet and
assigns it to a pointer of interface Set. Through the
pointers of an interface, like ‘p’, all members and mem-
ber functions are able to be accessed without concern-
ing about the representation and implementation of
the actual object.

2.1.1 SII suggested by Martin et al.[23]

A model was presented for C++ extensions to support
SIT in Martin et al.[12]. Each interface and implemen-
tation is transformed into a C++ class by the prepro-
cessor. The C++ class which represents an implemen-
tation is combined with an interface by inheriting the
C++ abstract class transformed from the interface.
Thus, an implementation class is transformed to be a
C++ class derived from its interface and base classes
at once.

Figure 2 shows an example of hierarchies. Class A
B-C'represent a hierarchy of interfaces, and class D is
an interface that is not in the hierarchy. Implementa-
tions M1, M2 are derived from M0, and M3 from M1,
M2. M1, M2 and M3 are explicitly bound to A4, C and
D respectively. User-defined separated hierarchies are
in (a), and the resulting class hierarchy after trans-
formation is in (b). The solid lines in (b) are same
as those in (a), while the dotted lines represent the
bindings of interfaces and implementations. Though
this mechanism is simple and intuitive, it has some
limitations — for example, in figure 2, it is not clear
if M3 conforms to the interface A and C. This kind
of binding is not specified by users, but introduced by
the side-effects produced by the derivation of imple-
mentations.

Q2 d
d
\4

TN

Buipuiq pue say eIy om] (e)
EN
O

A4’

Ayoresoly pebe N ()
~0
d
Y

Figure 2: hierarchies of interfaces, implementations
and the resulting type space

2.1.2 SII suggested by Granston et al.[17] and
Baumgartner et al.[1]

At Purdue University, C++ extension for SII has been
investigated from 1991[2, 10].

In [2, 10], interfaces are denoted by ‘signature’.
And bindings of a signature and implementations are
not specified explicitly. Instead, the complier com-
putes their relationships by comparing the structural
definitions of signatures and implementations, which
is called ‘structural conformance checking[6]’. More-
over, the subtype relationships for signatures are also
inferred in a similar way.

However, from these properties, some problems
may exist in its recursive types and covariance rules
in signature inheritance which are not allowed in
C++[1, 4, 7]. And unrecognized relationships among
interfaces are likely to be made, since meaningful in-
terface hierarchies by users are jumbled with other
compiler-generated relationships among interfaces[15].

As described in above, mechanisms to separate and
combine interfaces and implementations in C++ are
based on different models. And each of them has no
uniform semantics, because SII was introduced in a
feature-to-feature way. In this paper, we present a
new model for SIT in C++ which provides a uniform
semantics without any problems described in the pre-
vious sections.

3 The Proposed Model

3.1 Introduction

[4

Like others, our model also has two axes in-
terface’ and ‘(implementation) class’. Member dec-
larations are allowed to be in an interface, for the
users who want to access data directly. An implemen-
tation is bound explicitly to an interface, using the
‘implements’ keyword which is illustrated in figure 3.

The declarations of members or member functions
are omitted in the declaration of an implementation
class if they are already in the declaration of its cor-
responding interface. In an interface definition, only
interface names are allowed to be used to declare mem-
bers and member functions, so the world of interfaces
is self-contained.

A members or member functions in the declaration
of an interface can be redefined with an implementa-
tion type in a declaration of corresponding implemen-
tations. For example, suppose ‘A’ is an interface and

interface Setq{
int insert(); };

class _BptreeSet{
implements Set; // ’int insert()’ included
int tree_depth; I};

// Use the interface and implementation
Set * a = new _BptreeSet;
a->insert(); b.insert();

Figure 3: An example of declarations and uses of an
interface and an implementation

‘M7 is one of its implementations. If ‘A’ has a mem-
ber declaration, say, ‘B x;’ and ‘B’ is the interface of
‘M2, then ‘x’ can be redefined in ‘M1’ with type ‘M2’
A class ‘€ conforms to an interface ‘S’ when (1) the
interface bound to ‘(" is a subtype of the interface ‘S,
or (2) the smallest super class of ‘C’ which is bound to
an interface explicitly, conforms to the interface ‘S’

3.2 Formal Definitions

As we described above, the semantics of SIT in Mar-
tin et al.[12] can be explained only by the resulting
multiple inheritance hierarchies[12]. And though the
models in Gnu C++][2, 10] takes a few of the exist-
ing object-oriented semantics from various sources, the
absence of uniform semantics causes conflicts as de-
scribed in the previous section.

In this section, we concentrate on the formal se-
mantics of the proposed model.

3.2.1 Algebraic definitions

Basic Sets

Both interfaces and implementations are considered
as the lists of member and member function declara-
tions. The definition of lists and basic set theories are
thought to be well-known.

Definition 1 ‘B’ is a set of system defined types such
as int, float, char and etc.

Definition 2 ‘POINTER’, ‘ARRAY’ and ‘FUNC-
TION’ are system defined symbols, and included in
a special set ‘S’.

Definition 3 ‘ST’ is a set of strings.

Definition 4 For all list x, y, let ‘pointer(z)’ re-
turn {POINTER,z)’, ‘array(z)’ return {ARRAY,z)

" Yd(x)’ return (x)’, and ‘function({z,y))’ return

(FUNCTION, z, y). Then, a set Ty is defined to be a
set of functions generated by applying the association
operator ‘o’ repeatedly to the elements of a set @ =

{pointer(), array(), function(), id() }.

The association operator has some limitations for
example, pointers of function are not allowed - but
currently, we ignore them.

Definition 5 For a given list | = (l1,... Ly,) s.tly &
S, tz; is a set of lists defined as followings :

1. aTy(l) € tz, when aTy € Q and ¥V aTy € (Q —
{function()}) or

2. aTy is a ‘function()’ and aTy(ly, k) € tz, when
I =tz, Uty,.

And, ‘ty’ is defined as the function from | to tz.

tz represents the set of types which are constructed
using the types in [and the type constructors in Q.

Definition 6 (Set of interfaces) Let id and
member-name be elements of ST. ‘I’ is the set of all in-
terfaces each of which is defined as (id, ILIST) where
ILIST is {m, ag, .. ap) s.t. for all i(1 < i< mn), a; =
(ty(j), member-name) with j = (b1,.. by) and b;(1 <
i<m)elUB.

Thus ILIST is a list of declarations of members and
member functions of types in I

Definition 7 (Set of implementations)

Let id, member-namey, and member-name,, be in the
set ST. ‘M’ is the set of all implementations each of
which is defined as (id, PUBLIST, PRLIST) where
PUBLIST = (a1, a3, .. ay,,,) and PRLIST = (b,
ba, .. bn,,.) for ap = (ty(i), member-namey) and by,
= (ty(j), member-namey,). In there, i = (c1,.. ¢p) and
Jj = (di,.. dy), and both c, and dy, are in [U M U B
where (1 < k< npyp and 1 < m < nyp,) and (1 <2<
pand 1 < w< g)3.

Thus, a PUBLIST and a PRLIST are lists of decla-
rations of members and member functions with types
in Tor M. A PUBLIST represents the public part of a
class, while a PRLIST stands for the private part.

Hierarchies Defined by Users

The hierarchies of interfaces and implementations
are constructed by explicit specification of inheritance
by users. Binding of an interface and an implementa-
tion is also defined by users.

3In C++, there are some other keywords such as virtual,
inline, const, and typedef which are not important in this
paper.

Definition 8 ‘IH’, ‘IM’, and ‘I’ are defined as fol-
lowings:

1. IH = { (ix,3;) | for i, i; € I, there is a user de-
fined inheritance relationship (i, i;) }

2. IM ={ (my,m;) | for my, m;€ M, there is a user
defined inheritance relationship (my,, m;) }

3. II ={ (ix,m;) | for ir€ I, m;e M, there is a user
defined binding (i, m;) }

IH and IM represents the hierarchy of interfaces and
implementations, respectively. IT denotes the relation-
ships between implementation classes and interfaces.
All of them are specified by users explicitly.

Wellformedness of ITH and IM

The user-defined hierarchies of interfaces or imple-
mentations are meaningful only when they have ‘well-
formedness’ property described in the following defi-
nitions.

Definition 9 For two lists (a1, as,...a,) and

(b1, b2, ..bym), ‘strict sublist’ relationship or
‘strict_sublist(a, b)’ denotes the case in which n < m
and, for all a;(i <=n), a; = b;.

Definition 10 (Wellformedness of TH)
IH is wellformed if for all (i, i) in IH,
strict_sublist(ILIST (i,), ILIST(iz)) is true.

Definition 11 (Wellformedness of IM) IM is
wellformed if, for all (my, my) € IM,

1. (PUBLIST(m,) = PUBLIST(my) or,
strict_sublist(PUBLIST(my), PUBLIST(m2))),

2. (PRLIST(my) = PRLIST(m2) or, strict_sublist(
PRLIST(my), PRLIST(ms)) is true) and,

3. not both PUBLIST(my) = PUBLIST(my) and
PRLIST(my) = PRLIST(my) are true.

The wellformedness of IM and IH is automatically
satisfied, because of the grammar of an interface dec-
laration. From now on, IH and IM are considered
to be wellformed by default, unless there are special
mentions on it.

Extensions from IH and IM
IH and IM are extended to IH* and IM* with re-
flexivity and transitivity.

Definition 12 Two extended relationships are de-
fined as followings.

e For i and j in I, a relationship IH* is defined on
(i,3) if (1) i is equal to j§, or (2) (i,j) is in IH,
or (8) there exists k € I s.t (i,k) and (k,j) are in
IH*,

e For m and l in M, a relationship IM* is defined
on (m,l) if (1) m is equal to I, or (2) (m,) is in
IM, or (8) if there exists n € M s.t. (m,n) and
(n,l) are in IM*.

Next, we will extend I and M with —; and — ;.

Definition 13 (Extended Relationship)

Iro = (IT, IH*T) is defined by I = TU { —, T
Y and TH* = IH*U { (=1, i) |Vie It } st —;
¢ I Similarly, MPo = (M*, IM*%) is defined by M+
— MU {—n) and IM¥ = IM*U { (—p1,)| Vi€
]M+ } s.t. —M € M4.

Conformance of Interface and Implementation

The type space for SIT in C++ is constructed by
combination of interfaces in I and implementation
classes in M. But, as explained above, I and M have
independent hierarchies and all the elements in both T
and M are be recognized as type units in the resulting
type system in C++.

Definition 14 For MPrO and for all m in M, the set
of gate nodes for m, in other words ‘gate(m)’, exists,
and z € gate(m) if and only if :

1. there is j s.t. (j,x) € II and

2. there is no y s.t there exists k and (k, y) € II and
(z,y) € IL.

Each element of ‘gate(m)’ is the smallest super class
in one of the paths from (but not including) m to the
root, which has explicit specification of its interface.

Definition 15 (Conformance) For an interface i
and an implementation m, we define (i,m) € cf and
‘m conforms to i’, if (1) (i,m) € II, or (2) (i,j) € IH
and (j,m) € II, or (3) (i,gate(m)) € cf.

Since the wellformedness of IT is defined based on
the type conformance it is a little more complex than
that of IH or IM.

Definition 16 (Wellformedness of II) II is well-
formed, if, for all (i,m) € II s.t. ILIST(i) = (a1, a2,
.oy Gz) and PUBLIST(m) = (b, by, ..., by), either
following two conditions is satisfied : (1) for all k (1
<k<w)), ap =bg, or (2) forallk (1 <k<w), and

4We found that TH** and IM** are the partial order sets[5].

for ax, = (tyr (j1.), mn), by = (tyr (I), mn), there exist
a list of I, named ji, and a list of [U M, named Iy,
and (I 2, Jr.2) is in I, where g » € I = (g1, dk 20),

and jra € i = (Jr1s--Jk,20)-

The second condition in definition 16 explains that
the interfaces used to the types of members or mem-
ber functions in an interface definition can be over-
ridden by corresponding implementation classes. A
‘wellformed gate()’ is a gate function which is defined
by ‘wellformed II instead of II. And wellformed con-
formance is defined using wellformed gate() and well-
formed II[5]. We will name this ‘wcf’.

The Algebra of Type Space

We are going to describe the resulting type space
through the definitions and theorems above. The the
type space corresponds to a system which has in-
terfaces, implementations, ordinary classes and inte-
grated classes in its domain and their relationships in
its operator.

Definition 17 (The Proposed Model) Tpo =
({(TU{Tr} x MU {Tup}), X) is defined by the defi-
nition of ¥, where ((i1, m1) (ia,m2)) € X if and only
if the four conditions, such as (1) (i1, m1) € wcf, (2)
<i2, m2> € 'wa, (f))) <i], Zz) €]H*+, (4) (m1, m2> €
IM** are satisfied(where, i1, is € (I U {T}) and
mi, My € (MU {TM}))

We showed that TPO preserves I H** IM*" in [5].

Another Approach

As seen earlier, the SII model in Martin et al.[12]
produces side effects which introduce redundant or
even wrong binding of interfaces and implementations,
so users are open to misuse types. In the next defini-
tion, ‘THP’ represents this model.

Definition 18 THP (IT x M*, T) is defined where,
for iy, is € It and my, mas € MT, Y is defined as

1. {(in, —m),(i2, —m)) € T when (i1, in) € IH

2. {(=r1, m1), (—1, ma)) € Y when (m1, my) € IM

3. {(n, —m), (0, m1)) € T when (i, m) € II

4. <(7:17m1)7 (7M7M)> €Y and <(*M,M), (iliml))
€ Y when (i, my) € II

5 {(ih,m), (i3,m3)) € X, when ((ir,m), (iz,m2))
€ YT and, {(ia,mz), (i3,m3)) € T

T stands for the resulting class hierarchy in [12].
Formula 3 describes the semantics that a resulting
class(a pair of an interface and an implementation)

N
N N N
O O0-@m-2
E .z 2 %
‘ Vv ’ Vv V.,
5 8. 8
= *Zé————?/ A
W . < S
V. \V; N =
N N VvV Z
\\ \\ [N
\\ \\\/V\:{
\\ AN Z
AN R ﬁ/o
NI - Vv
\z\z
o N
v v

Figure 4: The type spaces of our model

should inherit from the class representing its interface.
Formula 4 means that the resulting class is considered
to be equal to the implementation class.

The next theorem explains that, in such a model
bindings which are not intended by users can be gen-
erated. Due to the limited space, detailed proof is not
provided herel[5].

Theorem 1 For (iy,m1), (ia,m2) € I X M, (my, my)
€ IM, {(ir,m1), (i2,m2)) € T of THP.
Proof) Omitted. O

Thus, whether or not 4 and 4> are related each
other by TH*" if (my, my) is in IM**, the resulting
pair (i, my) and (i, ms) are related in Y. It results
from the fact that there is no distinction between an
implementation and a pair of the implementation and
its interface.

Now, the next theorem is on the properties of our
model, TPo. Due to the limited space, detailed proof
is not provided here[5].

Theorem 2 For (iy,my), (ia,m2) € I x M, (my, my)
€ IM, if iy # 1o and iy, iy are not related to each other
mn IH*+, ((2'1,m1), (T;Q,mg)) g by Of Tro.

Proof) Omitted. O

From the theorem 2, we can see that the side-effects
produced in Martin et al.[12] does not occur in our
model.

3.2.2 Example

In our model, such an anomaly is solved, as illustrated
in figure 4. The hierarchy in figure 4 is corresponding
to that of Martin et. al[12] in figure 1. (D, M3) does
not directly conform to (C, Tas) because C and D
are not related each other. However (D, M3) is still

Tb basic types
Thbi basic intf-types
Tbhm basic impl-types

ti € Tyi = Tb + Tbi
+ {array} x Nx Tyi

+ {Pointer} x Tyi intf-types
tme€ Tym =Tb + Tbm

+ {array} x N x Tym

+ {Pointer} x Tym impl-types

te Ty = Tyi x Tym + Tb types
ent € Ent = Ide — [{tagl} x Tyi

+ {tag2} x Tym + Ty] environments
acc € Acc = {private, public } access specifiers

Table 1: Semantic domains

related to M0, M1 and M2 because M3 is a subclass
of those classes. Thus, the result relationships in our
model are exactly what users originally intended to.

3.2.3 Denotational semantics

The formal model presented in the previous section
may be used to analyze the concrete semantics of C++
with SII. In this section, we propose a denotational
semantics based on the above algebraic definition.

The semantic domains are described in table 1. Tb
corresponds to the basic types like int and float
in C++, while Tbi and Thm represents user de-
fined interfaces and implementations(i.e. [and M)
respectively. Tyi and Tym represents the types con-
structed from interfaces and from implementations, re-
spectively. Both Tyi and Tym include Tbh. A type
can be described by one of Tyi, Tym or a pair of types
from Tyi and Tym. Ent is an environment for sym-
bols. In Ent, the symbols related to Tyi and Tym
are differentiated by ‘tag’s from those which represent
definitions of normal variables. The semantic rules for
SIT are presented in [5]

4 Comparisons

In table 2, we compare our model with two previ-
ous approaches by Martin et al.[12] and Baumgartner
et al.[2]. The comparison criteria consists of (1) the
number of implementation allowed to be bound to an
interface, (2) existence of the concept of hierarchy of
interface and implementation, (3) the way of subtyp-
ing, (4) the ways of binding of interfaces and imple-
mentations and (5) contents of an interface.

5 Conclusion

This paper introduces the mechanism for the sepa-
ration of interface and implementation which extends
C++, and makes the semantics of the separation of
interface and implementation clearer with a formal
model algebraic definitions and denotational seman-
tics. In this proposed model, the problems which oc-
curred in the other existing models are solved.

The separation of interface and implementation in
object-oriented languages becomes important more
and more, especially for the applications such as
database systems and distributed systems. Now, we
are working on the other object oriented languages be-
sides C++ in order to find some general properties of
the separation of interface and implementation. The
semantics of function calls and virtual base classes in
C++ also needs further investigation.

References

[1] Francois Bancilhon, Claude Delobel, and Paris
Kanellakis. “Object-Oriented Database System -
The Story of O2”. Morgan Kanfmann Publishers,
Inc., 1991.

[2] G. Baumgartner and V. F. Russo. “ Signatures:
A C++ Extension for Type Abstraction and Sub-
type Polymorphism”. Technical Report CSD-TR-
93-059, Purdue University, September 1993.

[3] Peter S. Canning, William R. Cook, Walter L.
Hill, and Walter G. Olthoff. “Interfaces for
Strongly-Typed Object-Oriented Programming”.
In Proc. of the ACM OOPSLA Conf., pages 457
467, October 1989.

[4] Giuseppe Castagna. “Covariance and Contravari-
ance : Conflict without a Cause”. ACM Trans-
actions on Programming Languages and Systems,
17(3):431 447, 1995.

[5] E.S. Cho. “On the Extension of Strongly-Typed
Object Oriented Language ”. Technical report,
Seoul National University, 1996.

[6] R.C.H Connor, A.L. Brown, Q.I Cutts, and
A. Dearle. “Type Equivalence Checking in Per-
sistent Object Systems”. In The Fourth Inter-
national Workshop on Persistent Object Systems,
pages 154-167, 1990.

[7] William R. Cook. “Interfaces and Specifications
for the Smalltalk-80 Collection Classes”. In Proc.
of the ACM OOPSLA Conf., pages 1-15, 1992.

[8] David Gelernter and Suresh Jagannathan. Pro-
gramming Linguistics. MIT Press, 1990.

Table 2: Comparison with the approaches to SII for C++

Items

In Martin et al.[12]

In Baumgartner et al.[2, 10] |

Our Model

Implementaions/interface

more than one

more than one

more than one

Concept of hierarchy

for both interface
and implementation

for both interface
and implementation

for both interface
and implementation

Subtyping

explicit specification

by structural equation

explicit specification

Binding of interface
and implementation

explicit in class
declarations

by strucutral equation

explicit in class
declarations

Contents of interface

member function only

member function, etc.

member, member function

[9]

[10]

[12]

[13]

A. Goldberg and D. Robson. Smalltalk-80 :
The Language and Its Implementation. Addison-
Wesley Publishing Company, Inc., 1983.

Elana D. Granston and V. F. Russo. “Signature-
Based Polymorphism for C++”. In Proceeding of
Useniz C++ conference, pages 65-79, 1991.

Wilf R. LaLonde, Dave A. Thomas, and John R.
Pugh. “An Exemplar Based Smalltalk”. In Proc.
of the ACM OOPSLA Conf., 1986.

Bruce Martin. “The Separation of Interface
and Implementation in C++". In Proceeding of
Useniz C++ conference, pages 51 63, 1991.

R. K. Raj and et al. “The Emerald Approach to
programming”. Technical Report 88-11-01, Uni-
versity of Washington, November 1989.

Craig Schaffert and et al. “An Introduction to
Trellis/Owl”. In Proc. of the ACM OOPSLA
Conf., pages 9-16, September 1986.

P. Schwarz and et al. “Extensibility in the Start-
burst Database System”. In Proc. of the Conf.
on VLDB, pages 85 92, 1986.

Bjarne Stroustrup, editor. The C++ program-
ming language second edition. Addison-Wesley
Publishing Company, Inc., April 1991.

