
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 18(3), 169-203 (MARCH 1988)

PICASSO : A Graphical Query Language

HYOUNG-JOO K I M t , HENRY F. KORTHt AND AVI SILBERSCHATZf
Department of Computer Sciences, The University of Texas at Austin,

Austin, Texas 78712, U S A .

SUMMARY
PICASSO (PICture Aided Sophisticated Sketch Of database queries) is a graphics-based database
query language designed for use with a universal relation database system. The primary
objective of PICASSO is ease of use. Graphics are used to provide a simple method of expressing
queries and to provide visual feedback to the user about the system's interpretation of the query.
Inexperienced users can use the graphical feedback to aid them in formulating queries whereas
experienced users can ignore the feedback. Inexperienced users can pose queries without know-
ing the details of underlying database schema and without learning the formal syntax of SQL-
like query language. This paper presents the syntax of PICASSO queries and compares PICASSO
queries with similar queries in standard relational query languages. Comparisons are also made
with SystemAJ, a non-graphical universal relation system on which PICASSO is based. The
hypergraph semantics of the universal relation are used as the foundation for PICASSO and
their integration with a graphical workstation enhances the usability of database systems.

KEY WORDS Graphical query languages Graphical interfaces Universal relation data model Hypergraphs
Database management

INTRODUCTION

Recent research on database systems has concentrated on making database systems
easier to use. Among the major data models, network, relational and hierarchical, the
relational data model, and in particular the universal relation model,' is considered to
be the most user-friendly. This is due mainly to the following reasons:

1. In a relational database system, users do not have to know about the physical
structure of the database (physical data independence).

2. Most query languages €or database systems based on the relational data model
are non-procedural. In general, non-procedural query languages are easier to use
and learn than procedural query languages.

3. In a universal relation database system, users have to be cqncerned neither about
the physical structure of the database, nor about the logical structure of the
database (logical data independence).

t Research partially supported by NSF Grant DCR-8507724 and IBM Faculty Development Award.
1 Research partially supported by NSF Grant DCR-8507724 and ONR grant N0001+80-K-0987.

0038-0644/88/030 169-3596 17.50
0 1988 by John Wiley & Sons, Ltd.

Received 21 November 1985
Revised 3 November 1986

170 H . - J . KIM, H . F . KORTH A N D A . SILBERSCHATZ

Thus, a universal relational database system can be thought of as taking a step
beyond conventional relational database systems towards user friendliness. Since users
see only one relation (the universal relation), they do not have to be concerned about
which attributes are in which relations. T h e database management system determines
which relations of the underlying database need to be accessed in order to respond to
a given query (i.e. the universal relation provides a convenient abstraction, a virtual
universal view). Since tuple variables are assumed to be bound to the universal relation,
it is not necessary to declare relations to which tuple variables are bound. More
specifically, since the system determines which relations of the underlying database
need to be joined in order to respond to a given query, many join operations can be
hidden by a universal relation. Thus, the syntactic improvement of a universal relational
query language comes from eliminating the clause for binding tuple variables to relations
such as the range-of clause in QUEL' and the froin clause in SQL3 and also the
elimination of the need to specify the jozn predicates.

Recently, workstations and intelligent terminals have become prevalent. Workstations
with bit-mapped displays, pointing devices (such as a mouse or a light pen), icons,
multiple windows, pop-up menus and electronic forms allow users to point directly to
objects on the screen and manipulate them in a two-dimensional graphical manner (we
call screen-oriented interactions between a user and a computer 'two-dimensional').
The availability of advanced graphics facilities has stimulated research on graphical
interfaces for various computer applications.

T h e motivation behind research on graphical interfaces for database systems is as
follows. Existing high level query languages (e.g. SQL, QUEI,, etc.) are difficult for
naive users to use and understand."' Furthermore, naive end users and non-expert
users usually have a long learning period with conventional query languages. They also
have to remember many details, such as the names of relations and attributes in a
database schema. Further, they are not familiar with mathematical concepts such as
predicate calculus, relational algebra and set theory. Nai've users find it difficult to
understand the notions of multiple tuple variables, join operations, and nested-type
queries. T h e above problems become worse if the database has a large and complex
schema.

Many new graphical interfaces and query languages have been invented to bridge
the gap between naive users and database systems. T h e first successful example was
IBM's QBE (Query By E ~ a m p l e) . ~ QBE displays table skeletons that are the column
headings of relations. QBE users express queries by inserting 'examples' in these
skeletons. T h e resulting language is considered more user friendly than most other
relational query languages, including SQL and QUEL. In Reference 8, we surveyed
several graphical query languages and interfaces: QBE,' OBE," PBE,"' DBE," ABE, ''
CUPID,I3 GQL/ER,'+ IQL,4 SDhIS," GUIDE," HPS.'"

In that survey, we made several important observations. T h e first observation is that
many existing graphical interfaces work only for relatively simple queries and simple
database schemas. When the underlying database schema is complex and consists of
many attributes, most existing systems could not suggest reasonable solutions. Since
the size of the screen is limited, the above problem is common to most interfaces. T h e
second observation is the lack of a user-friendly relational join operator to connect
relations in most systems. Typically, it is the join operator that leads to most of the
complexity in a query language. T h e third observation is that naive users find it difficult
to understand the notions of multiple tuple variables and nested-type queries. In most

PICASSO: A GRAPHICAL QUERY LANGUAGE 171

graphical interfaces, such queries are avoided or allowed only in a restricted form. T h e
fourth observation is that since there is no graphical feedback during the query process,
it is very difficult for nai’ve and non-expert users to formulate a complex query correctly
on the first try.

The above observations suggest several essential features for the graphical interfaces
of database systems. Other researchers have suggested similar ideas.“”, l 4

1. The graphical interface should be able to provide information to the user about
the schema of the underlying database.

2. There should be a facility in which the user can formulate queries incrementally.
Building a complex query incrementally means that users can pose complicated
queries by exploiting the result of previous queries for building predicates of a
new query.

3 . There should be a facility that allows the user to browse the database freely.
4. Graphical feedback should be provided during query processing to guide the user

In accordance with the above guidelines from prior graphical interfaces, we designed
and implemented a new graphical query language, PICASSO, on top of System/U, a
universal relation database system. Since the System/U query language itself is a QUEL
derivative, knowledge about a substantial amount of the formal syntax of QUEL is
required in System/U. Using graphics, we can solve many generic problems with
relational query languages, including System/U. We investigated how the graphical
definitions of the semantics of the universal relation and the availability of a graphical
workstation can be combined to enhance the usability of database systems.

The remainder of this paper describes our approach to the design and implementation
of PICASSO.

in the formulation of correct queries.

UNIVERSAL RELATION THEORY AND System/U

The System/U database management system” is based on the universal relation data
model and theory. Universal relation theory has a rigorous mathematical foundation.
Because of space limitations, we omit the details of the formal theory and give only
some intuitive ideas here. Interested readers can refer to References 1 and 18-21.

The user of a universal relation database system sees the database as a one relation
database. This relation is defined as the set of all tuples such that some predicate, P,
is true: {tlP(t)}. T h e predicate P must pertain to individual tuples if the database is to
be a relation. For example, we could have a bank database of banks, accounts and
customers represented by a universal relation where the scheme is (bank,account,
customer). Then P (t) would be ‘t.customer has t.account’ and ?.account is with t.bank’.
Let us write P (t) in conjunctive normal form:

P (t) = P,(t.ut,. . ., t.uf,,) A . . . AP/?(t .u t , . . ., t.al,)

where t.uj denotes an attribute of t . Further, we treat each set of attributes
{t.a<, . . ., t.&} as a fundamental relationship, called an object. The predicate P may
now be written as

172 H . - J . KIM, H . F . KORTH AND A. SILBERSCHATZ

where the 0,s are the objects.
The above appears to be a highly intuitive definition of the semantics of the universal

relation. However, the definition turns out to have significant theoretical implications.?
Fagin, Mendelzon and Ullman18 showed that for any universal relation U defined as
we have defined it above, the J D (join dependency) *(0,, . . ., 0,) holds. Furthermore,
they characterized the MVDs (multivalued dependencies) that the above JDs imply.
The characterization is best understood by considering the database to be a hypergraph
whose nodes are attributes CT and whose hypergraphs are the objects. An MVD of the
form X ++ Y (where X and Y are disjoint) holds on U if and only if Y is the union
of connected components of the hypergraph with nodes in A- deleted.

With the above fundamental assumptions, the semantics of the database are expressed
using a hypergraph in which nodes are the attributes of the universal relation, and the
hyperedges are fundamental relationships (objects). A second hypergraph is then formed
whose nodes are the objects, and whose hyperedges, called maximal objects, represent
maximal sets of objects in which queries ‘make sense’.’, ” The intuitive notion of a
maximal object is a group of related attributes in which the user can pose SystemlU
queries in a straightforward manner. The approach is to bind each tuple variable over
a set of semantically strongly connected objects. This approach avoids cyclic database
schemes. Reference 19 describes cyclic and acyclic databases and their consequences.
Thus, each maximal object has an acyclic structure and, according to universal database
theory, has a join dependency (i.e. the objects in each maximal object have the lossless
join property). Given the specification of objects and dependency information of a
database, the system is responsible for determining maximal objects. There are several
algorithms for creating maximal objects, 1 9 , which are incorporated into the universal
relational database system.

System/U consists of two parts: the D D L (Data Definition Language) step and the
D M L (Data Manipulation Language) step. T h e database administrator (DBA) or user
prepares input for the System/U DDL. The input for the DDL step is a specification
of the attributes and their data types, the relation schemes and the names of relations,
the objects and any functional dependencies that hold. Given a D D L input, the system
creates the list of maximal objects and the set of objects that belong to each maximal
object. The database designer can change the contents of a maximal object to impose
different semantics on the maximal object. With the list of maximal objects, the System/
U DML processor determines which relations of the underlying database need to be
accessed in order to respond to a given query and processes the query. A complete
description of the System/U query interpretation is given in Reference 17. Using the
notion of maximal objects, the intuitive version of System/U query interpretation is as
follows: Run the query in each maximal object that contains all attributes mentioned
in the query, then take the union of the results.

SYSTEM STRUCTURE OF PICASSO ENVIRONMENT

PICASSO is a graphical database manipulation language which is being used in a
graphical user interface for System/U, called ROGUE (ROsi’s Graphical User Environ-
ment). PICASSO and ROGUE have been implemented within the ROSI (Relational

t We assume that the reader has the fundamental concepts of the relational database theory such as functional
dependency, multivalued dependency, join dependency, etc. Reference 22 is a good introduction to those concepts.

PICASSO: A GRAPHICAL QUERY LANGUAGE 173

Operating System Interface) project at the University of Texas at Austin.*'
Figure 1 shows the PICASSO/ROGUE environment. ERIS is an experimental

database system that was implemented at Brown University. ERIS is used as an
underlying database system for System/U. ERIS and SystemlU are written in C under
UNIX. We implemented ROGUE and ANSWERTOOL in C, using the Sun Window
graphics system on the Sun workstation under UNIX. The major function of ROGUE
is translation of a PICASSO query to a System/U query. Also, ROGUE supports
facilities to assist the user in formulating graphical queries. The details of ROGUE
are presented in Reference 24. ANSWERTOOL is a browser for the results of previous
queries. The user can browse the result of a query using ANSWERTOOL and use
the constant values of a previous query result for formulating the predicates of another
query. Thus, the user can build complex queries incrementally.

In the PICASSOiROGUE environment, maximal objects are represented as
hyperedges in a hypergraph. We believe that the graphical representation of a database
schema using hypergraphs provides the user with valuable information regarding the
semantics of the database. As an example, consider a bank database consisting of four
relations: rofficer(lofficer, Bank), rteller(Teller, Bank), rloan(Customer, Bank, Loan-no,
Amount), racct(Customer, Bank, Accountno, Balance). Using the definition of maximal
objects of Reference 1, the bank database consists of two maximal objects: MaxObjl =
(Bank, Loan-no, Amount, Loff icer, Customer), MaxObj2 = (Bank, Account-No, Balance,
Teller, Customer). The system draws a hypergraph representing the maximal objects on
the screen as shown in Figure 2.

Query formulation is done directly on hypergraphs using the mouse. This is
accomplished by clicking mouse buttons and choosing from a pop-up menu. ROGUE

USER

Result

System/U

Query

t

6 Bank DB b Company

Figure I . The system diagram of the PICASSOIROGC'E enviiviinient

174 H . - J . K I M , H . F . KORTH AND A. SILBERSCHATZ

Figure 2 . Hypergraph representation of bank database schema

provides HELP messages and other facilities for assisting users. Even though the
underlying DBMS is SystemiU, the user does not have to learn the formal syntax of
the SystemlU query language.

A query session of the PICASSO environment goes roughly as follows. First, the
user specifies a database of interest, and the system draws the hypergraphs of that
database. Upon the hypergraphs, the user formulates a query using mouse and pop-
up menus. After the user formulates a PICASSO query, the user asks the system to
run the query by selecting the ‘run’ command from a pop-up menu. Then ROGUE
translates the graphical query into a System/U query, and sends it to System/U. After
executing the query, System/U sends the result of the query to ANSWERTOOL. The
user can browse the result relation and use the constant values of the result relation
for formulating predicates in future queries. Several result relations can be maintained
within ANSWERTOOL at one time. T h e user can even move into another database
and pose queries using the result relations of the previous database.

We show the expressibility of PICASSO queries through various examples in the
next sections. The example queries of PICASSO queries demonstrate the power of
graphics to provide a simple method of stating what would be a complex query if a
traditional query language were used.

OVERALL STRUCTURE O F ROGUE

ROGUE translates PICASSO queries to the SystemlU query language and provides
facilities to help users in posing PICASSO queries. ROGUE is implemented as a
graphic tool in the SunWindow system. Figure 3 shows a ROGUE window that consists

PICASSO: A GRAPHICAL QUERY LANGUAGE 175

176 H . - J . KIM, H . F . KORTH A N D A. SILBERSCHATZ

of three subwindows: a message subwindow, an option subwindow and a graphic
subwindow.

Message subwindow

The message subwindow indicates the current mode (there are several modes in
query processing such as select-attribute mode, predicate-formulation mode, undo
mode, formal-query mode, etc). A series of messages appear according to the various
modes of query processing. Each message is a warningierror message or a guidance to
the user to formulate correct queries.

Option subwindow

There are two types of commands in a graphic tool of the Sunwindow system:
options in the option window and menu items of pop-up menus. Options usually
handle changes of context (mode). A pop-up menu displays a set of commands that
are available in a given context. T h e contents of pop-up menus can differ based on
selection options. ROGUE supports eight option items in the option subwindow:

1. Initialize reads a database schema and constructs the hypergraph representation.
2. Tutorial provides the user with a brief introduction to ROGUE, some examples

of PICASSO queries, and explains the functions of mouse buttons, pop-up
menus, and options.

3. Screendump prints a copy of the screen contents on a laser printer.
4. Screenmove allows the user to navigate through a database schema. If the database

schema has so many attributes that the hypergraphs for the database schema do
not fit on the screen, the user can move the hypergraphs on the screen using the
SCREENMOVE command.

5. AnswertooLon invokes ANSWERTOOL (creates ANSWERTOOL as a child
process). The communication channel between ANSWERTOOL and ROGUE
is set up.

6. Answertool-off kills the child process ANSWERTOOL. The ANSWERTOOL
window disappears.

The system supports two query modes:

1. Graphical query: is the default mode when the user starts the session. Queries
are expressed using PICASSO.

2. Formal query : allows the user to pose queries using the SystemIU query language.
Inexperienced users would prefer the graphical query mode, whereas experienced
users might want to pose formal (System/U) queries. T h e speed of data retrieval
in the formal query mode is faster than that in the graphical mode.

Graphic subwindow

and the graphical representation of a PICASSO query.
The graphic subwindow is for the hypergraph representation of a database schema

PICASSO: A GRAPHICAL QUERY LANGUAGE

QUERY FACILITIES

When users formulate queries, they must specify the attributes in which they are
interested, and must give the predicates for the selected attributes. The select clause
contains the attributes and the where clause contains the predicates. We assume a
three-button mouse for our graphic interface. The left button of the mouse is used for
the select clause, the middle button is used for the where clause and the nkht button
is for the basic menu of query processing. No constraints are imposed on the order in
which parts of the query are entered.

We believe that the human thought process about query formulation consists basically
of the following three steps:

Step 1: select on or more attributes in which the user is interested.
Step 2: describe the predicates for the selected attributes.
Step 3: if one wishes to know about other attributes then go to step 1; else return;

These steps are emulated with the three mouse buttons. Selection attributes may be
added after some predicates have been specified, etc. PICASSO supports an undo
mechanism for modifying a query. Using the undo mechanism, predicates can be
removed and selected attributes unselected. The undo mechanism for modifying graphi-
cal queries is explained below.

Consider our bank database scheme, and a query 'Display all bank names'. The user
clicks the left button of the mouse on the bank attribute. Then the question mark I ? '

is postfixed after the selected attribute. Figure 4(a) is the graphical query for the above
query. The equivalent QBE query is shown in Figure 4(b), and Figure 4(c) shows the
equivalent SQL query.

177

Figure 4(a). PICASSO representation of the query 'Display all bank names'

178 H . - J . KIM, H . F . KORTH AND A . SILBERSCHATZ

rloan Customer Bank Loan-No h o u n t t
Figure 4(b). QBE representation of the y u e q ‘Display all bunk names’

(SELECT T.Bank
FROM r l o a n T
WHERE *)

UNION

(SELECT S . Bank
FROM racct S

WHERE *)

Figure 4(c). SQL representation of the q u e q ‘Display all hank ?zanies’

If the user wants to prefix some aggregate operators, or perform set operations
between subqueries, then this can be achieved by a second mouse click on the selected
attribute using the left button. The menu for aggregate operators and set operators
will pop up. We have chosen to embed the pop-up menu for aggregate operators and
set operators in this manner because these operators should be applied to already
selected attributes. The menu for aggregate operators and set operators will pop up as
in Figure 5 . PICASSO offers the following aggregate operators: AVG (average), MIN
(minimum), MAX (maximum), CNT (count) and SUM (summation) as System/U does.
PICASSO allows set operators such as DIFFERENCE, INTERSECTION and UNION, which
are covered below. The user may choose the IGNORE option to make the pop-up menu
go away.

After selecting attributes for the select clause, the user presses the middle button of
the mouse for describing predicates on desired attributes. Following Fagin et a1.,18 we
treat the predicate P of the where clause as a conjunction of predicates P I , P2, . . .,
P,. Each P, is expressed separately by the user. We assume that each P, is one of two
forms :

(i) (attribute) (comparison operator) (vukte)
(ii) (attribute) (comparison operator) (attribute)

The user formulates predicates by selecting an attribute using the middle button.
This attribute is the left operand of the operator. The menu of comparison operators
as shown in Figure 6 will pop up. T h e first six items are comparison operators. T h e
seventh item is for the group by operator and the eighth and ninth items are for set
operations. The seventh, eighth and ninth items are explained below. After the user

PICASSO: A GRAPHICAL QUERY LANGUAGE 179

X : rnaximun F CNT: count

Figure 5. Pop-up menu for aggregate operators aiid set operators

-> ; G.E.

:sot op. P G I
Figure 6. Menu for predicate formulation

selects the comparison operator, a template like the example in Figure 7 pops up. At
this point, the right operand could be a constant value or an attribute. If the user
clicks an attribute, it indicates comparison with that attribute. If the user types, it
indicates that he wants to enter a constant value.

First, consider the case where the right operand is a constant value. The query ‘Find
the minimum amount on loans at the BOA bank’ can be presented in PICASSO as
depicted in Figure 8. The select clause MIN: AMOUNT? is formed in the manner
described above. In order to formulate the predicate for the where clause, BANK =
BOA, the user needs to type the constant value, BOA. In the next section, we show
how constant values can be selected from the ANSWERTOOL window, using the
mouse rather than the keyboard.

Next, consider the case in which the right operand is an attribute. The middle
button is used for selecting this attribute. T o illustrate this, consider the query ‘Find
customers having a loan for an amount greater than that of one of HFK’s loans’. As
shown in Figure 9, the PICASSO query involves an arrow connection between two
AMOUNT attributes. Arrows are used to indicate which attribute is the left or right
operand in a predicate. This is necessary for asymmetric comparison operators such as
< or >. Intuitively the right part of Figure 9 means ‘HFK’s loan amount’ and the left
part is ‘Find customers having a loan such that . . . I . The arrow connection asserts

L OFFICER 6 4

Figure 7. Template foi- keyboard typing

180 H . - J . KIM, H . F . KORTH AND A . SILBERSCHATZ

MIN: AMOUNT ?

Figure 8. PICASSO representation of the query ‘Find the minimum amount on loans at BOA bank’

‘the left part is greater than the right part’. Combining the three parts we have the
desired query. This query requires the use of two tuple variables as explained below.

Basic menu for query processing
Besides the previously mentioned pop-up menus, there is a basic pop-up menu for

query processing as shown in Figure 10. The menu is triggered by clicking the right
button of the mouse. The following menu items are available in the basic pop-up
menu :

1. LET’S GET STARTED draws hypergraphs that represent the underlying universal
relation scheme for a database named by the user. Internally, the system executes a
hypergraph layout procedure with a given database schema and draws hypergraphs
properly. (There are many theoretical problems in representing hypergraphs
graphically. Reference 25 illustrates efficient algorithms and heuristics for hyper-
graph representation problems.)

2. RUN your QUERY means that the user wants to see the result relation after
processing a capital query. ROGUE translates the PICASSO query into a System/
U query. After System/U processes the query, ROGUE pops up the message in
Figure 11. When the user is ready to look at the query result, ANSWERTOOL
is invoked.

3. UNDO LASTACTION undoes the last action. This undo is idempotent.
4. UNDO FORMULATION can be used when the user wants to edit the query being

formulated. As the left button is used for the select clause and the middle button

PICASSO : A GRAPHICAL QUERY LANGUAGE 181

CUSTOMER HFK

Figure 9. PICASSO representation of the q u e y 'Find customer having
than that of one of HFKs loans'

loan for an amount greater

FOR4UIA ION
CONTINUE FOiFIUATION

UPOATE MODE
QUIT

Figure 10. Pop-up menu for basic que?y processing

is used for the where clause, so the left button is again used for removing the
selected attribute and the middle button is used for erasing the formulated
predicates in UNDO mode.

5. CONTINUE FORMULATION resumes formulation of queries after partial modifi-
cation in the UNDO mode. The user can add more attributes or predicates into
an existing query.

6. UPDATE MODE: the current implementation of System/U does not allow the user
to update a database. Therefore, this part has been left as future work.

7. CONNECTION BOX is used for building up complex predicates (see below).
8. QUIT is for quitting a query session.

182 H.-J . KIM, H . F . KORTH AND A. SILBERSCHATZ

The answer for your query is ready.

If you want to look at the answer,

Figure II. The message that infomis the user that the p e g result is watly

Groupxy operation

A relation can be partitioned into groups according to the values of some attributes
and then predicates can be applied to select only certain groups. This built-in function
is called Group-By. Since the Group-By operation returns tuples, not true or false, the
function of Group-By operation is different form that of predicates. Despite this, we
have chosen to embed Group-Byin the pop-up menu for the middle mouse button.
Consider the PICASSO query for ‘What is the average balance of each bank?’ in Figure
12.

A Group-By operator may be followed by a Having clause in SQL. We also allow use
of a Having clause. T h e Having clause expresses constraints that apply to partitions,
rather than tuples. We need a syntax to distinguish a Having clause from a where
clause. This is done by a simple dialogue. The dialogue is necessary only in cases in
which the query includes a Group-By operator. T o illustrate this, consider the query:
‘Find the average loan in each bank having the customer HFK’. When the user specifies
the Having clause, the dialogue in Figure 13(a) for distinguishing a Having clause pops
up. If the user specifies that the predicate is for a Having clause, the predicate is marked
as such. The finalized formulation of the query is in figure 13(b).

Multiple constraints upon a single attribute
There are circumstances in which multiple constraints on a single attribute need to

be specified. For instance, the predicate ‘LOAN-NO between L 100 and L10020’ requires

PICASSO : A GRAPHICAL QUERY LANGUAGE 183

Figure 12. PICASSO representation of the queq: TVhat is the aaerage balance of each bank?’

Is this a ‘having’ clause?

If YES =+ click left button

Figure 13(a). A simple dialogue for distinguishir~g n Having clause

184 H . - J . KIM, H . F . KORTH AND A . SILBERSCHATZ

Figure 13(b). PICASSO representation of the quen’ <Find the aeerage loan in each bank hazing the
customer HFK’

the two constraints ‘LOAN-NO > L100’ and ’LOAN-NO < L10020’. In PICASSO this
predicate is expressed as LOAN-NO = (>LIOO) (<L10020) as shown in Figure 14. After
formulating the first constraint LOAN-NO > t100, the user can click the LOAN-NO
attribute again using the middle button and just type the second constraint. T h e system
displays this as shown in Figure 14.

Implicit conjunctive form of predicates
We give preference to conjunctive normal form in our definition of the query

language. By default, the specified predicates in the screen are assumed to be connected
by AND. If users want to pose disjunctive type queries, they must specify which
predicates are connected by OR using the CONNECTION BOX option in the basic menu.
The idea of the CONNECTION BOX is from the ‘condition box’ of QBE. As soon as the
user clicks CONNECTION BOX from the basic menu, predicate numbers (p,, p , , . . .)
appear beside the box of the comparison operator. CONNECTION BOX pops up as
shown in Figure 15. Negation of predicates can be entered using the CONNECTION
BOX as shown in Figure 16.

Tuple variable creation
In PICASSO, each hyperedge represents a tuple variable. A new tuple variable can

be created by opening the diamond box, which is located at the centre of each original

PICASSO: A GRAPHICAL QUERY LANGUAGE

P1 or P2

185

Figure 14. Multiple constraints upon a single attribute

AMOUNT

p2 L OFFICER H

gs

Figure 15, Disjunctive type predicates and the CONNECTION BOX

186 H . - J . KIM, H . F . KORTH AND A. SILBERSCHATZ

-(Pl or P2)

Figure 16. .Yegation of predicates

hyperedge. This is done by clicking with the middle button of the mouse (clicking the
diamond box using the left button results in the selection of all attributes in the
hyperedge). Figure 17 shows an example of the creation of a maximal object.

Character-type tuple variables as required in System/U, SQL and QUEL tend to
be meaningless from the user’s point of view. In general, queries involving multiple
tuple variables are difficult to formulate and understand. Notice that this approach
(i.e. drawing another hyperedge) eliminates character-type tuple variables completely.
System/U accomplished only a partial elimination of tuple variables.

Consider the query in Figure 9 again: ‘Find those customers having a loan for an
amount greater than that of one of HFK’s loans’. Figure 9 demonstrates how PICASSO
handles the join-like operator involving two tuple variables. By representing tuple
variables as hyperedges, the concept of a tuple variable is reduced to a more intuitive
graphical notion.

Figure 17. Creating miother tuple imiable

PICASSO: A GRAPHICAL QUERY LANGUAGE 187

Set operations
PICASSO includes the set operators such as IN, CONTAINS, SET DIFFERENCE, SET

INTERSECTION and SET UNION. Because the operators IN and CONTAINS return a
boolean, they are embedded in the pop-up menu for predicate formulation. The three
operators, SET DIFFERENCE, SET INTERSECTION and SET UNION, return a set of tuples.
They are embedded in the pop-up menu for the select clause. They are represented
by a box containing the operator (-, U or n) and lines connecting the box to the
operands.

Consider the query ‘Find customers of BOA who are not customers of FCU’. Figure
18 illustrates how this query is expressed in PICASSO and QBE. We believe the
PICASSO query in Figure 18(a) is more intuitive than the QBE query in Figure 18(b).

Consider the nested type query ‘Find those banks with customers whose balance is
more than $1000’. There is no tuple variable (blank tuple variable only) in the System/
U-like query for the above query. The nested query is as follows:

SELECT Bank
WHERE Customer IN (SELECT Customer

WHERE Balance > 1000)

However, there are really two tuple variables in the above query, since the inner
and outer sub-queries have distinct instances of the ‘blank’ tuple variables. As shown

\ CUSToMERm
.
. ;;;;:xi;:;;\ /

Figure 18(a). PICASSO represeiztatm of the query ‘Find customers of BOA who ale not ciistoiiieis of
F(’C“

188 H.-J . KIM, H . F . KORTH A N D

r loan I Customer] Bank I Loan-No lhount
1

Ip.= I I I

A . SILBERSCHATZ

1 CONDITIONS I

Figure 18(b). QBE representation of the y u e v <Find customers of BOA who at? not custoniers of FC‘C;’

in Figure 19, the PICASSO query involves a new hyperedge in order to distinguish
the inner and outer subqueries.

Generally, most queries involving set operations and nested type queries must have
single tuple variables in traditional relational query la yuages and extra hyperedges in
PICASSO. However, as shown in the next section, ANSWERTOOL can be success-
fully used for building queries involving set operations and nested type queries without
the use of extra hyperedges.

\ LOAN-NO

gs
MOUNT

Figure 19. PICASSO rep?-esentation of the queq’ Y’irid the bank containing custortiers whose brihice is
niwe thnn $1000’

PICASSO: A GRAPHICAL QUERY LANGUAGE 189

Cartesian product type queries
If the user clicks the diamond box with the left button of mouse, this selects all

attributes in that maximal object. The ? icon is postfixed after all attributes in the
maximal object. Clicking two or more diamond boxes indicates interest in the content
of all attributes that come from the Cartesian product of selected maximal objects. If
the selected maximal objects have one or more attributes in common, the system
generates the natural join of the maximal objects. Consider the query ‘Show the entire
Bank universal relation’. The graphical query in Figure 20 is entered by clicking the
diamond box in each hyperedge. A straightforward translation of this query to the
SystemlU query language is not possible since no maximal object contains the mention
set (the union of the attributes appearing in a select and a where clause). However,
ROGUE regards the Cartesian product of maximal objects as a special case. ROGUE
generates the correct System/U expression (which requires one tuple variable for each
maximal object.

ANSWERTOOL

In previous sections, we introduced the expression of nested queries and queries
involving joins and set operations. Even though our approach works well for simple
queries, there are some problems in expressing complexing queries involving joins and
nested queries graphically (e.g. sometimes the screen becomes cluttered). In this
section, we introduce a tool to assist with complex queries, called ANSWERTOOL.

Figure 20. PICASSO representation of the q u e y ‘Show all attiibutes iii Rank databuse’

190 H . - J . KIM, H . F . KORTH AND A. SILBERSCHATZ

T h e answer to a query is a relation. T h e answer relation is displayed in a new
window, the ANSWERTOOL window. ANSWERTOOL allows the user to browse
result of a query.

Overall structure
The ANSWERTOOL window consists of four subwindows, as shown in Figure 21.

The top subwindow is an option window. T h e next subwindow is a message window
for delivering simple information to the user. The third one is a window for browsing
the query result. T h e bottom one is a directory window for showing the list of
temporary relations.

ANSWERTOOL supports several options:

1. Store and Load: we can create temporary relations through ANSWERTOOL. T h e
Store option is used to save the result of a query in a temporary relation.
Temporary relations can be accessed using Load option.

2. Scroll up, Scroll down, Scroll left and Scroll right: are for screen rolling. Scroll left
and Scroll right are necessary if a relation has tuples too wide to fit in the window.
Whenever the user clicks the scroll up (down) option, the next ten tuples are to
scrolled up (down). Whenever the user clicks the scroll left (right) option, the
window is shifted to the left (right) by one attribute.

3. Open (Closed)-bracket: sends the open (closed) bracket to ROGUE for formulation
of a predicate in case that the right hand side of a predicate is a set.

4. Sort by a certain attribute: sorts all tuples in a temporary relation on the specified
attribute.

5 . Jump to a certain tuple-id: jumps to the part of the relation that starts with the
tuple-id entered by the user.

<uw)) (STORE) blatlm or A t t r l b u t a : : Inn-r re1

answer. re1 q l . re1 q2. re1 I

PICASSO: A GRAPHICAL QUERY LANGUAGE 191

ANSWERTOOL does not support any relational operators and is simply a relational
browser. The bottom window of ANSWERTOOL is used for showing names of
temporary relations. Several answer relations may be maintained at one time as shown
in Figure 21.

Towards a joinless, tuple-variableless, nestingless query language
It is difficult to represent queries involving join or set expressions or nested type

queries graphically. For example, if there is not enough space for drawing another
hyperedge in Figure 18(a), a new hypergraph may be overlapped with original hyper-
graphs. Thus, if there are several join expressions involving several tuple variables, the
screen would be cluttered. Also, nested type queries like Figure 19 lead to complicated
graphical queries.

ANSWERTOOL permits the construction of complex queries involving join or set
expressions without the user having to understand the notion of new tuple variables,
and allows the user to pose the complex queries incrementally.

The idea of ANSWERTOOL originated from the following simple example. Assume
there are two relations FACULTY(NAME, OFFICE HOUR, CLASS) and REGISTER(CLASS,
NO-STUDENT). Suppose there is a query ‘Find faculty members who teach classes in
which more than 30 students are registered’. There are two ways of writing an SQL
query for this. The normal SQL query is

SELECT F.NAME
FROM FACULTY F, REGISTER R
WHERE F.CLASS = R.ClASS and R.NO-STUDENT > 30.

However, suppose we already have a constant set C whose elements are the classes in
which more than 30 students registered. The SQL query would be as follows:

SELECT F.NAME
FROM FACULTY F
WHERE F.CLASS IN C

Note that only the FACULTY relation is used making predicates in the above query.
Since we have the constant set C, we do not have to join the FACULTY and REGISTER
relations.

This above approach can be applied in a universal relational database. Since the
univeral reiation has ail attributes in a database, if a right operand of a join is a constant
value or set, the query can be formulated without the direct use of join expressions.
The function of ANSWERTOOL is similar to that of the constant set C in the above
example.

Suppose the user asks ‘Among the customers of BOA bank, who has saved more
money than the average balance of the WELL FARGO bank’. This query can divided
into two local (sometimes called ‘partial’) queries q l , q2 and the session for the query
goes as follows: (I) pose q1 : ‘Find all customer’s balances of the WELL FARGO bank’,
(2) keep the query result in the temporary relation answer.re1, (3) look at the query
result using ANSWERTOOL and (4) pose q2: ‘Find the customers, at BOA bank,
whose balance is more than the average balance of the answer.rel relation’. Since we

192 H . - J . KIM, H . F . KORTH AND A. SILBERSCHATZ

already have the data of the WELL FARGO bank using ANSWERTOOL, the
PICASSO query is simple, as illustrated in Figure 22. The step-by-step formulation
of this query can be found in Reference 24.

We can fill in the value and right operand of a predicate using the mouse as shown
in Figure 22. Normally, it is easier to click, rather than type, a constant value for the
value field or a variable for the attribute field of a predicate. However, we cannot use
a pop-up menu for this purpose. The number of choices for the value field is generally
too large for a single pop-up menu to be able to show all choices at once. Instead,
ANSWERTOOL shows a small subset of the choices. This window (ANSWERTOOL)
is conceptually a window on the entire set of choices. The user can scroll up or
down the window as we described above. Thus, we allow the user click values in
ANSWERTOOL, and the selected value or attribute appears as the right operand of
the predicate.

Similarly, some nested type queries can be simplified using ANSWERTOOL. The
user first formulates the innermost part of the query and uses the ANSWERTOOL
for building predicates piecemeal. Consider the query in Figure 19 again: ‘Find the
banks containing customers whose balance is more than $1000’. Using ANSWER-
TOOL, the query is as shown in Figure 23. Most of the query is formulated with only
mouse clicking.

As shown in previous sections, we allow the user to create new hyperedges and draw
join expressions graphically. Thus, in PICASSO, the user can either draw a complex
graphical query or resort to ANSWERTOOL. We believe that, in general, using
ANSWERTOOL is more natural. We believe that, at first naive users would decompose
the complex queries into several simple subqueries and glue them together later.
ANSWERTOOL accommodates those needs.

GRAPHICAL FEEDBACK

In the case of ambiguous queries, if the system uses a lengthy dialogue for disambigu-
ation, the user would become impatient or may not understand what is required. In
the case of incorrect queries, if they are simply rejected and the user gets only error
messages, the user might feel frustrated and may not want to try again. Through
graphical feedback, ambiguous queries can be disambiguated and erroneous queries
can be corrected easily.26

Ambiguous queries
At any point during the specification of a query, the user has mentioned a set of

attributes (the union of those attributes appearing in the select clause and those
attributes appearing in the predicates of where clauses). It is this mention set that is
used to determine the maximal objects to be used in answering the query. Thus, if
the user clicks the attributes that are shared by more than two maximal objects, the
system (query processor) cannot decide which maximal objects should be used for the
selected attributes. The reason for the semantic problems is that the underlying
hypergraph of objects is cyclic. There are several possible interpretations of a query
on a cyclic scheme.

In System/U, the union of all possible answers is given as the answer to an ambiguous
query. Consider the query in Figure 24(a), ‘Find the customers of BOA bank’. The

I
Sl
OR
E)
 R
el

rt
lo

n
o

r
At
tr
ib
ut
es
::
 1

an
sw
er
.r
el

.

.
.

,

fln
dc

w
 S
cr
ol
li
ng
 D

ir
e

c
ti

o
n

 :
 (

U
p
)

(

D
am

)
(

LE
FT

)
(

R
I

M
)

(
1)
 (S

O
RT

)
C

Jl
lr
R

)
Ty

pe
 a
 t

w
l
e
 I
d

->:

W
X

Y

of
 a
tt
ri
bu
te
s:

2

No
,

of
 t

up
le
s:
 1

0

l-
td

CU

ST
OM

ER

4
1

Jl
m

1e
ee

2

K
lm

28

88

3
ZV

I
iie

e
4

Mo
hr

n
1 i

ee
e

5
HF

K
I 2

88
8

0
K

o
rt

h

I 3
88

8
7

Je
ff

12

89

ie

A
V

I
iee

ee
e

e
b
i
e
r

18
88

Q

Je
an
y

11
28

7
. rn
sw
er
,r
ol

qi
.r
el

92
. r
e1

q3
. r
e1

F
ig

ur
e

22
. P

re
di

ca
te

 f
or

m
ul

at
io

n
us
in
g
AN
Sl
VE
RT
OO
L

..

i x

) ()) (S
an

s
((IL

P
)

Type
8
 tuple Id ->:

xxx
. of rttrlbutcs: 2

No,
of tuples: 10

8
I Jeany

I
1128

1
18

I A
vi

I ieeeee
a

n
w

e
r.re

1

q
l.re

l
q

2. re1
9

3
. re1

PICASSO : A GRAPHICAL QUERY LANGUAGE 195

Figure 24(a). PICASSO representation of the quety <Find the rustonier- a t BOA batik’

System/U interpretation is ‘Find all customers who have either an account or a loan
at BOA bank’. If the user desires this interpretation of the query, he would formulate
the PICASSO query as shown in Figure 24(a). However, this is not the only reasonable
interpretation. For example, if a loan officer asks this query, it is highly possible that
he is only interested in all borrowers.

In order to resolve this kind of semantic problem, the PICASSO/ROGUE system
provides graphical feedback that requests users to clarify their intentions. After formu-
lating the PICASSO query in Figure 24(a), if the user asks the system ‘RUN your
Query’ using the basic menu, the graphical feedback as shown in Figure 24(b) pops
up and the system waits for the user’s response. The cyclic structure (which consists
of four objects: each hyperedge is one object) among CUSTOMER, BANK, LOAN-NO
and ACCOUNT is displayed and the system asks the user to choose the desired path. A
path is selected by clicking attributes that must appear in the path.

The loan officer simply clicks the loan attribute (thereby adding it to the mention
set). Then a preposition Through is prefixed at the clicked attribute as shown in Figure
24(c). Now, the meaning of the query in the screen is ‘Find customers who have a
loan at the BOA bank’. In the translated version of the System/U query for the
PICASSO query in Figure 24(c), the tautology Loan = Loan is attached automatically.
The function of this tautology predicate is to disambiguate the System/U query. This
idea is called name dropping.2o

196 H . - J . KIM, H . F . KORTH AND A. SILBERSCHATZ

L-OFFICER /--7

I I

Figure 24(bj. A graphical feedback for the ambiguous q u e n

Figure 24(c). Same dropping technique in PICASSO

PICASSO: A GRAPHICAL QUERY LANGUAGE 197

Erroneous queries
There are circumstances when it is difficult to formulate SystemlU queries correctly.

In conventional database systems as well as SystemiU, the erroneous queries are simply
rejected and the textual error messages (which may be too technical to understand) are
shown to the user.

Suppose the user wants to pose the query: ‘Find the customers who have saved more
money than they have borrowed’. It is quite possible that if the naive user does not
understand the notion of tuple variable and join operation, he would formulate a
System/U query such as retrieve CUSTOMER where BALANCE > AMOUNT. The diffi-
culty is that SystemiU requires that the user be aware of the attributes’ membership
in maximal objects. The SystemlU response to the erroneous query is ‘No maximal
object contains all the attributes you mentioned in the query’ and the query is rejected.
The correct SystemiU query is retrieve CUSTOMER where CUSTOMER = T.CUSTOMER
and BALANCE > T.AMOUNT. With only the error message as assistance, the nahe user
is unlikely to be able to correct the SystemiU query.

Consider the query ‘Find a teller whose customer’s loan-no is L100’. Suppose the
user poses the PICASSO query in Figure %(a). The PICASSO query is rejected
under universal relation semantics, because the SystemiU query for this PICASSO
query is retrieve TELLER where T.LOAN-No = “LIOO”. The mention set for this query,
{TELLER, LOAN-NO}, is not contained in a single maximal object. If the user is skilful
enough to pose the query retrieve TELLER where CUSTOMER = T. CUSTOMER and
T.LOAN-NO = ’LIOO‘, the SystemlU would accept the query since the mention set of
each tuple variable is contained in a maximal object. If the goal of a universal relation

L-OFFICER

LDAN NO L1ee -
Figure 25(a). An erroneous query

198 H.-J. KIM, H . F . KORTH AND A. SILBERSCHATZ

system is to allow the user to pose queries with knowledge of attributes' names only,
then the system should find the connection paths and inform the user of the possible
ways of connecting the attributes that are located in different maximal objects, rather
than rejecting the query in Figure 25(a). In our system, ROGUE gives graphical
feedback for this query and explains there are two ways of connecting TELLER and
LOAN-NO, as illustrated in Figure 25(b). The user would choose one or more possible
paths. If the user clicks the CUSTOMER attribute, the preposition Through is prefixed.
However, the representation of this Through construct is not a tautology like CUSTOMER
= CUSTOMER as in the example in the beginning of this section. Its internal represen-
tation of Through in this situation is CUSTOMER = T.CUSTOMER because the objective
of this predicate is connecting two different maximal objects. The details of System/
U query formulation from a PICASSO query are described in Reference 24. Figure
25(c) shows a corrected query.

Consider the query 'Find the customers who have an account and a loan at BOA
bank'. The two possible ways to express this query in System/U query are complicated,
as shown in the following:

retrieve CUSTOMER
where BANK = "BOA" and

ACCOUNT-NO = ACCOUNT-NO and
T.CUSTOMER = CUSTOMER and
T.BANK = "BOA" and
T.LOAN-NO = T.LOAN-NO

\

There is an error in your query.

The error causes some ambiguity.

Please click attributes through

which you want to pass, using

middle button. Thank you.

Figure 25(b). A graphical feedback for the erroneous y u e q

H.-J . KIM, H. F . KORTH A N D A. SILBERSCHATZ 199

LOAN NO Lice -
Figure 25(c). PICASSO representation of the quety F ind a teller whose custonier's loaii-no i s LIOO'

or

(retrieve CUSTOMER
where BANK = "BOA" and

ACCOUNT-NO = ACCOUNT-NO)
intersect
(retrieve CUSTOMER

where BANK = "BOA" and
LOAN-NO = LOAN-NO)

However, the user can build the PICASSO query with help of ANSWERTOOL and
graphical feedback.

Help messages
There are two types of help messages in ROGUE. One is from the message

subwindow, which is located in the upper part of the ROGUE window as shown in
Figure 3 and the other type is the pop-up message that emerges around the current
location of the mouse. Our strategy for using the above two types of help message is
as follows: if the message is routine and unimportant, such as the information of system
status, greetings, etc., we use the message subwindow for the message. Whereas, if
the message is urgent in query formulation, we use the popiup type of help messages.

200 H . - J . KIM, H . F . KORTH A N D A. SILBERSCHATZ

The reason for selecting the above strategy is due to the position of the user’s eyes.
Since the message subwindow may be located far from the part of a hypergraph on
which the PICASSO query is formulated, the user might not see the help message
from the message subwindow. However, the user usually concentrates on the position
of mouse cursor. T h e pop-up type messages can be used to make sure the user is
alerted.

SUMMARY and DISCUSSION

We defined and implemented a graphical query language PICASSO that is integrated
into our graphical interface ROGUE. Through various examples queries, we showed
the natural aspects of the hypergraph data model and the expressiveness of PICASSO
queries.

The major contribution of PICASSO and ROGUE is that the user can pose complex
queries using a mouse without knowing the details of the underlying database schema
and the details of first-order predicate calculus or algebra. Eliminating join expressions
and tuple variables in queries using ANSWERTOOL eases the task of the user
posing graphical queries. Nested type queries can be formulated easily with help of
ANSWERTOOL.

At the moment, the semantics of PICASSO are based on the SystemiU query
language. It is possible to extend the features of PICASSO for other database query
languages such as SQL. Furthermore, we believe that PICASSO can be extended to
accommodate non-first normal form relational database languages such as those
described in References 31 and 32.

Completeness
PICASSO is relationally complete because the five basic operations of relational

algebra, selection, projection, Cartesian product, set union and set difference are all
provided.

What’s new?
In general, the relational model attempts to free the user from concern about the

physical organization of the data. The universal relational model goes one step further
than the relational model because the user does not have to be concerned about some
of the logical organization. Using PICASSO, we remove some artificial constraints in
query formulation and help users to represent their thought processes naturally :

1. Showing the hypergraph representation of the database schema to users helps
them to formulate correct queries and pose complex queries in a natural way.

2. Eliminating character-type tuple variables is another notable feature in PICASSO.
Naive users do not have to learn the concept of tuple variables. PICASSO can
support multiple tuple variables for complex queries by drawing hyperedges.

3 . A small, but useful tool, ANSWERTOOL helps formulate queries involving joins
or nesting. ANSWERTOOL can be used as a facility for constructing a complex
query incrementally.

4. In PICASSO, the semantics of Point and Click change depending on the context.
However we avoid nested pop-up menus which can confuse users. No pop-up

PICASSO : A GRAPHICAL QUERY LANGUAGE 20 1

menu has a nested menu in PICASSO.
5. As for dealing with large database schemas, refer to Reference 24. The basic idea

is that the user can organize the screen freely in the SCREEN MOVE mode,
supported by ROGUE. By scrolling the cursor, the user can look at only the
relevant part of a database schema. The user can make empty space for creating
a new tuple variable or turn off the visibility of irrelevant maximal objects.

What’s wrong?
There are several difficulties in the design and implementation of PICASSO. Most

of them are due to the hypergraph data model and the characteristics of the System/
U DBMS. The rest are generic problems of graphical interfaces.

1. There has been a substantial discussion about difficulties concerning the universal
relation and its hypergraph data m ~ d e l . ~ ~ - ’ ~ I n fact,some assumptions behind the
universal relation data model, such as the lossless join assumption and the relation-
ship uniqueness assumption , are still controversial. The lossless join assumption
means that for any universal relation U, the join dependency over the objects in
U holds. The relationship uniqueness assumption is that at most one relationship
can hold among any set of attributes (i.e. one relationship for one object). A
consensus has not been reached as to whether the universal relation is a practical
approach for real world databases.

2. The application area of the universal relation appears to be restricted to conven-
tional business data processing type databases. New application areas, such as
design databases, user interface modelling and multimedia databases, require
augmentation of the universal relation framework. PICASSO depends on System/
U to a large extent. Thus, PICASSO inherits the limitations of SystemlU.

3. The System/U query language is a retrieval-only language. Consequently,
PICASSO cannot support update operations.

4. The graphical representation is difficult to implement because it involves a splining
and a polygon filling algorithm. As we mentioned, if the structures of maximal
objects are complicated, figuring our proper graphical representation is a difficult
task that must be accomplished in real time.

Despite the technical difficulties, however, we believe that many features of
PICASSO are useful enough to be applied to future graphical interfaces for database
systems.

Feature analysis
McDonald and McNally3’ suggest a taxonomy of features and environments that

influence the usability of query languages. In their paper, they did a comparative
analysis of eighteen query languages using the taxonomy. Their analysis methodology
involves seven broad categories: data models, functions (available to a user), expression
complexity (expressive power of a query language), language form (syntactic forms of
query language constructs), language environment (query language’s procedurality and
interaction mode), user expertise (user skill level) and interface facilities (various
services for the user). Following their taxonomy, we analyse PICASSO as follows:

(a) data model: universal relation data model

202 H.-J. KIM, H. F . KORTH A N D A . SILBERSCHATZ

(b) functions: retrieval (query) only
(c) expression complexity : relationally complete
(d) language form : pictorial (two dimensional)
(e) language environment : non-procedural
(f) user expertise: casual (naive end users)
(g) interface facilities: ANSWERTOOL (scratch paper-like tool), graphical feed-

back, various HELP functions.

ACKNOWLEDGEMENTS

We gratefully acknowledge the referees’ helpful suggestions and thank Mark Roth for
his comments on an earlier draft. We also thank Dave Hanson for numerous editorial
revisions on this paper.

REFEREKCES

1. D. Maier and J . D. Ullman, ‘hlaximal objects and the semantics of universal relational databases’,

2. M . Stonebraker, E. Wong, P. Kreps and G . Held, ‘The design and implementation of INGRES’,

3. M. M . Astrahan and D. D. Chamberlin, ‘Implementation of a structured English query language’,

4. F. H. Lochovsky and D. C. Tsichritzis, ‘An interactive query language for external databases’,

5. G. A. Wilson and C. F. Herot, ‘SEMANTICS vs. GRAPHICS - to show or not show’, Proceechgs

6. H. K. T. U‘ong and I . Kuo, ‘GUIDE: graphical user interface for database exploration’, Proceedings

7. M. M . Zloof, ‘Query-by-example: a data base language’, IRM Systen? Journal, 16, (4), 324-343

8. H. J. Kim, ‘Graphical interfaces for database systems: a survey’, Proceedings of The 1986 Mountain

9. M. M . Zloof, ‘QBE/OBE: a language for office and business automation’, IEEE Cbmputer, May,

10. N. S. Chang, ‘Picture query language for pictorial database system’, IEEE G~inputei, November,

11. C. M . 0. Moura and hl . A. Casanova, ‘Design-by-example’, Department of Informatics, Pontificia

12. A . Klug, ‘ABE: a query language for constructing aggregates by example’, Proceedings of 12brkshop

13. N . McDonald and h1. Stonebraker, ‘CUPID: the friendly query language’, Technical Report, T h e

14. Z. Zhang and -4. 0. Mendelzon, ‘‘4 graphical query language for entity relationship databases’, in An

15. C. F. Herot, ‘Spatial management of data’, A-lC.\I TODS, 5 , (4), 493-614 (1980).
16. J. A. Larson and J. B. Wallick, interface for novice and infrequent database management system

17. H. F. Korth, G. Kuper, J . Feigenbaum, A. Van Gelder and J . D . Ullman, ‘SystemiU: a database

18. R. Fagin, A. 0. Mendelzon and J . D. Ullman, ‘A simpified universal relation assumption and its

19. J . D. Ullman, Principles of Database Systems, Computer Science Press, Rockville, Maryland, 1982.
20. D. Maier and D. S. LVarren, ‘Specifying connections for a universal relation scheme database’,

ACM TODS, 8, (l) , 1-14 (1983).

ACM TODS, 1, (3), 189-222 (1976).

Comm ACM, 18, (lo), 580-587 (1976).

Proceedings of the International Conjet-ence on \PIT Large Data Rases, 1982.

of the International Conference on lkry Large Data Rases, 1980.

of the International C,’onference on \Pty Large Data Bases, 1982.

(1977).

Regional AC?tI Conference, Santa Fe, New hlexico, April 1986.

13-22 (1981).

22-33 (1981).

Universidade Catolica Rio de Janeiro, Brasil, April 1981.

on Statistical Database .%lanagenzent, 1982.

University of California, Berkeley, October, 1974.

E-R approach to Software Engineering, North Holland, 1983.

users’, Proceedings of ,\htional Computer (‘onjerence, 1984.

system based on the universal relation assumption’, .4(31 TODS, 9 , (3), 331-347 (1984).

properties’, ACM TODS, 7 , (3), 343-360 (1982).

Proceedings of .-1C.21 International (’or$er-ence on .\lanagenzrnt of Data, June 1982.

PICASSO : A GRAPHICAL QUERY LANGUAGE 203

21. D. Maier, D. Rozenstein and D. S. Warren, ‘Windows on the world’, Proceedings ofAC:\/ International

22. H. F. Korth and A. Silberschatz, Database System Cbncepts, McGraw-Hill, New k’ork, 1986.
23. H. F. Korth and A. Silberschatz, ‘A user-friendly operating system interface based on the relational

data model’, Proceedings of Intemationa! S3wnposium on .Yew Directions in Cbniputiq, August 1984.
24. H. J . Kim, ‘Graphical environments for query processing’, Mastei-’s Thesis, The University of Texas

at Austin, August 1985.
25. K. H. Lou, ‘Efficient algorithms for graph-theoretical problems in hypergraph’, Mastet’s Thesis, The

University of Texas at Austin, 1985.
26. H. F. Korth, ‘Graphical query languages for universal relation database systems’, Internal .‘Llemo,

The University of Texas at Austin, 1984.
27. W. Kent, ‘Consequences of assuming a universal relation’, ACM TODS, 6 , (4), 539-556 (1981).
28. W. Kent, ‘The universal relation revisited’, ACM TODS, 8, (4), 562-564 (1983).
29. P. Atzeni and D. S. Parker, ‘Assumptions in relational database theory’, Proceedings of A(’.\l Sym-

30. N. H. McDonald and J. P. McNally, ‘Query language feature analysis by usability’, (’onipuiei-

31. M. Roth, H. F. Korth and A. Silberschatz, ‘Theory of non-1NF relational database’, TR-84-36, The

32. M. Roth, H. F. Korth and D. S. Batory, ‘SQL/NF query language’, The University of Texas at

Conference on Management of Data , May 1983.

posium on Principles of Database Systems, 1982.

Languages, 7 , 103-204 (1982).

University of Texas at Austin, 1984.

Austin, TR-85-26, August 1985 (also to appear in Information Systems, 1987).

