
l

or
Information Processing Letters 91 (2004) 69–75

www.elsevier.com/locate/ip

Efficient structural joins with clustered extents✩ ,✩✩

Jongik Kima,∗, Sang Ho Leeb, Hyoung-Joo Kima

a School of Computer Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
b School of Computing, Soongsil University, Seoul 156-743, Republic of Korea

Received 3 December 2003; received in revised form 19 March 2004

Available online 6 May 2004

Communicated by F.Y.L. Chin

Keywords: Databases; XML; Path query; Structural join

1. Introduction (i) retrieval of an extent, which is a list of nodes, f
sent
the
and
s.

nt o

the

ct.
n

ogy

each selection predicate,
e-

ted

an
ed.
asily

e
ss-

ro-
al-
ge
e
s

re,
can
go-
osi-
er-
Re-
o-

erved
Tree-structured models are widely used to repre
XML data. Queries on a data tree consist of
two parts, selection predicates on tree nodes
structural relationships between selection predicate
For example, the path query:

street[name = ‘Tehran’]//restaurant

matches restaurant elements that are descenda
street elements that have a childname element whose
content is the string value‘Tehran’. There are four
selection predicates (street, name, ‘Tehran’, restau-
rant) and three structural relationships (street/name,
name/‘Tehran’, street//restaurant) in this path query.

Processing such a path query goes through
following three steps:

✩ This work was supported in part by the Brain Korea 21 proje
✩✩ This work was supported in part by the Ministry of Informatio

and Communications, Korea, under the Information Technol
Research Center (ITRC) Support Program.

* Corresponding author.
E-mail addresses: jikim@oopsla.snu.ac.kr (J. Kim),

shlee@comp.ssu.ac.kr (S.H. Lee), hjk@oopsla.snu.ac.kr
(H.-J. Kim).

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.03.016
f

(ii) finding occurrences of structural matches b
tween tree nodes in extents, and

(iii) “stitching” together structural matches genera
in step (ii).

In order to retrieve an extent in the first step,
inverted index built on selection predicates is us
For each selection predicate, an extent can be e
retrieved by looking up the inverted index.

Finding occurrences of the structural matches in th
second step is a core operation in XML query proce
ing. To solve this sub-problem, Zhang et al. [6] p
posed the multi-predicate merge join (MPMGJN)
gorithm, which is an extension of the traditional mer
join algorithm. Al-Khalifa et al. [1] generalized th
MPMGJN algorithm to the tree-merge join algorithm
that consider the order of join results. Furthermo
they proposed the stack-tree join algorithms that
improve the tree-merge join algorithms. Those al
rithms are dependent on the representation of p
tions of XML elements (and string values) to det
mine structural relationships between tree nodes.
cently, Chien et al. [3] proposed a structural join alg

.



70 J. Kim et al. / Information Processing Letters 91 (2004) 69–75

rithm that uses B+ tree to skip unnecessary elements
in the extents for descendant nodes without scanning.

kip

nal
der-
se-
a

he

join
ural
s
s to
ces-
lso
s of
we
in

u-

(ii) StartPos represents the number of words from
the beginning of the document to the start of the

of
he

le-

e

re-
re-
ter-
ela-
e

nt
nts
ant
be

only
t

However, the B+ tree technique cannot effectively s
elements in the extent for ancestor nodes.

Stitching together structural matches in the fi
step poses the problem of selecting a good join or
ing. Wu et al. [5] proposed a cost-based join order
lection of structural joins. Bruno et al. [2] developed
holistic structural join algorithm that can evaluate t
second and third step simultaneously.

In this paper, we discuss issues of the structural
in the second step, and propose an efficient struct
join technique. Our technique partitions all the node
in an extent into several clusters. Given two extent
be joined, the proposed technique filters out unne
sary clusters in both extents before joining. We a
take advantage of the representation of position
XML elements. Unlike other techniques, however,
use the position information only to cluster nodes
the extents.

2. Our approach

2.1. The representation of element positions

The position of each element in an XML doc
ment is represented by a 3-tuple value (DocId, Start-
Pos:EndPos, LevelNum), where

(i) DocId is an identifier of the document,
element, andEndPos represents the number
words from the beginning of the document to t
end of the element, and

(iii) LevelNum denotes the nesting depth of the e
ment.

A string value in an XML document has the sam
value asStartPos andEndPos.

Once each node of an XML data tree is rep
sented in the aforementioned way, the structural
lationship between tree nodes can be easily de
mined as follows. For the ancestor-descendant r
tionship, a tree noden1 is an ancestor of a tree nod
n2 if and only if n1.DocId = n2.DocId, n1.StartPos
< n2.StartPos, andn1.EndPos > n2.EndPos. For the
parent–child relationship, a tree noden1 is a parent
of a tree noden2 if and only if n1.DocId = n2.DocId,
n1.StartPos < n2.StartPos, n1.EndPos > n2.EndPos,
andn1.LevelNum + 1 = n2.LevelNum.

For simplicity we deal with a single docume
in this paper. An extension to multiple docume
is trivial. We only consider the ancestor-descend
relationships. The parent–child relationships can
easily verified by comparingLevelNum values of
ancestor-descendant relationships. Hence, we use
two numbers,StartPos and EndPos, to represen
positions of the tree nodes.
Fig. 1. An XML data tree.



J. Kim et al. / Information Processing Letters 91 (2004) 69–75 71

2.2. Proposed technique

in
the
(i)
(ii)
that

to
ster
join
tes

ach

f a

node,n, denotes a tree that is rooted at a child of
the node,n. TheGroupId of the subtree that is rooted

that
ode

G)
nto
g at

so
,
des
are

, ext
In this section, we present a new structural jo
technique. Our basic idea is that we can reduce
number of nodes to be scanned for the join by
partitioning the data tree into several groups and
performing the join operation between tree nodes
belong to the same group. First, we describe how
group the nodes in the data tree and how to clu
the nodes in the extent. Second, we present our
algorithms that take advantage of the cluster of no
in the extent.

We partition a data tree into several groups. E
group of tree nodes has a unique identifier,GroupId.
Each group is constructed as follows. (i) Theroot
node is a group, whoseGroupId is 0. (ii) Each subtree
of the root node is a group, where a subtree o

1: Algorithm ClusterExtent(root

2: {
at the ith child of the root isi. It is obvious that
each group is disjoint. Fig. 1 shows a data tree
is grouped accordingly. Each subtree of the root n
is partitioned recursively. For example,Group C is
recursively partitioned into the three groups (E, F,
in Fig. 1. When a subtree of a node is partitioned i
groups, GroupId of each group is assigned startin
0. For example, In Fig. 1,GroupId of Group A that
contains a nodefoodDB is 0.GroupId of Group E that
contains a nodestreet is also 0. Note thatGroupId is
assigned to a group, and not to a tree node.

Utilizing the groups in the data tree, we al
partition nodes in an extent into a number of clusters
which are lists of tree nodes. Essentially, tree no
that belong to the same group in the data tree

ent)
3: // root is the root node of the subtree currently processed.
4: // extent is a list of tree nodes, in sorted order ofStartPos
5:
6: CList= an empty list of clusters;
7: desc= extent→ firstNode;
8:
9: if(desc= root){

10: // the groupId of the root is 0
11: CList→ append(new Cluster(0, desc));
12: desc:= desc→ nextnode;
13: }
14: if(desc= NULL) return CList;
15:
16: for(id := 1; id < root→ numberOfChildren; id++){
17: newcluster:= an empty list of tree nodes;
18: // append descendant nodes that belong toidth subtree
19: for(anc:= root→ child(id);
20: ancis an ancestor of desc; desc:= desc→ nextNode)
21: newcluster→ append(desc);
22:
23: if(newcluster is not empty){
24: Cluster c:= ClusterExtent(anc, newcluster);
25: // the groupId of the nodes that belong toidth subtreeroot is id
26: CList→ append(new Cluster(id, c));
27: }
28: }
29: return CList;
30: }

Algorithm 1. Clustering tree nodes in an extent.



72 J. Kim et al. / Information Processing Letters 91 (2004) 69–75

mapped into the same cluster in an extent. Tree nodes
in the cluster in the extent are partitioned recursively,

ed

he
r is

r a

a
he
t
t
rate
s
a
are

ate
tree

e
tion

tree
e
e

lec-
s

[(11:18)], whereGroupIds are 1 and 2, respectively.
[(24:31)] and[(37:47)] are partitioned into[(24:31)]

e

es
r-

s,
ate
ate

ion
.
t

i-

that
estor
uts

-

e
of
r-
ity
l-
similarly in the way that the data tree is group
recursively.

Algorithm 1 clusters an extent on a basis of t
groups of a data tree. In the algorithm, a cluste
represented as a pair of aGroupId and a pointer. The
pointer in a cluster refers either a tree node o
list of tree nodes that are clustered recursively.new
Cluster(id, pointer) in line 11 and line 26 makes
cluster with id and pointer. From line 9 to line 13, t
algorithm identifies whetherextent contains the roo
node of a data tree or not. Ifextent contains the roo
node, the algorithm makes the root node a sepa
cluster. In thefor loop in line 16, the algorithm cluster
tree nodes inextent that belong to the same group in
data tree. In line 24, the tree nodes in each cluster
clustered recursively.

When nodes in an extent for a selection predic
are clustered, the extent can be represented as a
which we call extent tree. An intermediate node in
an extent tree is a list of clusters (orGroupIds) in a
sorted order ofGroupId. Leaf nodes in an extent tre
are the nodes in the data tree that satisfy the selec
predicate. Interestingly, the leaf nodes of an extent
are sorted byStartPos. In the extent tree, a leaf nod
of an intermediate node,n, denotes a leaf node of th
subtree that is rooted atn.

Example 1. The list L = [(3:10), (11:18), (24:31),
(37:47)] contains the tree nodes that match the se
tion predicate,restaurant, in Fig. 1. The tree node
in L are partitioned into the three clusters,[(3:10),
(11:18)], [(24:31)], and[(37:47)], whereGroupIds are
1, 2, and 3, respectively. The cluster[(3:10), (11:18)]
is partitioned into the two clusters,[(3:10)] and
,

and[(37:47)], respectively, whereGroupIds are 1 and
1. Finally,[(3:10)], [(11:18)], [(24:31)], and[(37:47)]
are partitioned into(3:10), (11:18), (24:31), and
(37:47), where allGroupIds are 0. Fig. 2 shows th
extent tree.

Now, we describe our join algorithm that tak
advantage of clustered extents. Consider an ancesto
descendant structural relationship (e1, e2), for example
(restaurant, owner). Let AList = [a1, a2, . . .] and
DList = [d1, d2, . . .] be root nodes of extent tree
where the leaf nodes of AList correspond the predic
e1 and the leaf nodes of DList correspond the predic
e2. Both AList and DList are sorted byGroupIds of
their elements. For example, AList for the select
predicate,restaurant, is [1,2,3] as depicted in Fig. 2

Basically our algorithm performs either (i) ALis� DList or (ii) (AList − [a1]) � DList, using the tra-
ditional merge join algorithm where the join cond
tion is the equality betweenGroupIds of clusters. If
GroupId of a1 is 0, then the child node ofa1 should
be the root node of the data tree (or the subtree
is being processed). Since the root node is an anc
of every node in the data tree, our algorithm outp
(a1 → child, ni ) for each leaf nodeni of DList and
then performs(AList − [a1]) � DList. Otherwise (i.e.,
GroupId of a1 is not 0), our technique performs AL
ist � DList. For each(ai, dj ) of AList � DList, our
algorithm repeats the same procedure recursively.

Algorithm 2 shows our join algorithm. From lin
7 to line 12, the algorithm outputs partial results
the join. From line 15 to line 22, the algorithm pe
forms the traditional join procedure with the equal
condition ofGroupIds. For each matched pair, the a
Fig. 2. An extent tree for the selection predicate, restaurant.



J. Kim et al. / Information Processing Letters 91 (2004) 69–75 73

1: Algorithm ExtentJoinAnc(AList, DList)
2: {

es
3: // AList is a list of node clusters, in sorted order ofGroupId
4: // DList is a list of node clusters, in sorted order ofGroupId
5:
6: a := AList → 1stCluster;
7: if(a → groupid= 0){
8: subtreeroot:= a→ child;
9: foreach leaf node, desc, of DList

10: append (subtreeroot, desc) to OutputList;
11: a:= AList → 2ndCluster;
12: }
13: d := DList → 1stCluster;
14:
15: while(both of the input lists are not empty){
16: while(a→ groupid> d → groupid) d:= d → nextCluster;
17: if(a→ groupid= d → groupid){
18: ExtentJoinAnc(a→ child, d→ child);
19: d := d → nextCluster;
20: }
21: a:= a→ nextCluster;
22: }
23: }

Algorithm 2. ExtentJoinAnc with output in an ancestor order.

Fig. 3. Example extents.

gorithm calls theExtentJoinAnc procedure recursively DList with the nodes in the stack. For tree nod

in line 18.

nt

or
we

des
the

ent
ery
uld
no
in

in DList that have at least an ancestor in AList,
to
ck,
er.

the
e
no

ry
ch
des

ld
Algorithm 2 outputs results by traversing an exte
tree of Alist in a top-down and left-to-right fashion.
Consequently join results are generated in an ancest
order. To get join results in a descendant order,
need to modify Algorithm 2 slightly as follows:

Instead of outputting asubtreeroot in line 10 of
Algorithm 2, we push thesubtreeroot into a stack.
Note that the stack contains all the ancestor no
of a subtree currently being processed, and that
top of the stack could be the root node of the curr
subtree. Therefore, all possible combinations of ev
leaf node of DList and every node in the stack sho
be outputted. For tree nodes in DList that have
ancestor in AList, we can output the tree nodes
we do not output them at this point, but resort
the next recursion to get join results. Using a sta
Algorithm 3 outputs join results in a descendant ord
From line 5 to line 8 in Algorithm 3, the algorithm
pushes the root node of the current subtree to
stack, if it exists in AList. In line 14 and line 25, th
algorithm outputs the tree nodes in DList that have
ancestor in AList.

Our algorithms efficiently filter out unnecessa
clusters (or subtrees) in both AList and DList in ea
recursion, so that they can reduce the number of no
that participate in the join. For example, theU part of
Fig. 3(a) is filtered out by comparing a fewGroupIds
in our algorithms, while the existing algorithms shou



74 J. Kim et al. / Information Processing Letters 91 (2004) 69–75

1: Algorithm ExtentJoinDesc(AList, DList)
2: {

ory
3: // node-stack is a global stack
4: a := AList → 1stCluster;
5: if(a → groupid= 0){
6: node-stack→ push(a→ child);
7: a := AList → 2ndCluster;
8: }
9: d := DList → 1stCluster;

10:
11: while(both of the input lists are not empty){
12: while(a→ groupid> d → groupid){
13: if(node-stack is not empty)
14: doOutput(d→ 1stLeaf, d→ lastLeaf);
15: d:= d → nextCluster;
16: }
17: if(a→ groupid= d → groupid){
18: ExtentJoinDesc(a→ child, d→ child);
19: d:= d → nextCluster;
20: }
21: a:= a→ nextCluster;
22: }
23:
24: if(node-stack is not empty and d is not NULL)
25: doOutput(d→ 1stLeaf, DList→ lastLeaf)
26:
27: if((AList → 1stCluster)→ groupid= 0) node-stack→ pop()
28: }
29:
30: Procedure doOutput(firstLeaf, lastLeaf)
31: {
32: for(desc= firstLeaf; desc!= lastLeaf; desc:= desc→ nextLeaf)
33: for each element, anc, in node-stack, output (anc,desc)
34: }

Algorithm 3. ExtentJoinDesc with output in a descendant order.

scan every node in theU part. Fig. 3(b) shows the system is 4 Kbyte, and the system has 200 mem

worst case of our technique. Because there is no

all
gid

of
em,
ffer
our

buffers for pages. We ran our experiments on a ma-
r,

n-
ts.
),

pt
ro-
cluster to be filtered out, our algorithms should scan
the lists sequentially. However, such regular and ri
structured data are hardly found in XML.

3. Preliminary results

In this section, we provide preliminary results
our experiments. We used an XML database syst
which includes an object storage manager, a bu
manager and a B+ tree index manager. A page of
chine with a 600 MHz Intel Pentium III processo
192 MB of memory. We used the IBM XML data ge
erator [4] to generate XML data in our experimen
Fig. 4(a) shows our document type definition (DTD
which is actually identical with the one [1] exce
some attributes that are not related with the join p
cedure. We generated XML data of 50 M size.

The queries used for the experiments are:

(Q1) employee//email,
(Q2) manager//department,



J. Kim et al. / Information Processing Letters 91 (2004) 69–75 75

not
Fig. 4. Preliminary results.

(Q3) department//email, and believe that the cases in which our technique is

(Q4) department//employee.

go-

1,
ck-
out
hms

s.
n
ry

here
ce

oin
ev-
en
tree

effi-
ther

ut-
We

as good as the existing algorithms are rare in real ap-

a-
on
nt
is-

uture

s-
y
n

al
D
.
,
n:
002.
/

ion
e

up-
ment
nal
We compared our algorithms with the stack-tree al
rithm family [1].

Fig. 4(b) shows the experimental results. For Q
Q2 and Q3, our algorithms outperform the sta
tree algorithms, because our algorithms can filter
unnecessary clusters of nodes. For Q4, our algorit
perform slightly slower than the stack-tree algorithm
As for Q4, everyemployee element has more tha
one department element as its ancestor, and eve
department element has at least oneemployee element
as its descendant, as is shown in the DTD. Hence, t
is no cluster to be filtered out. However, the differen
of performance is ignorable.

4. Conclusions

In this paper, we propose an efficient structural j
technique. We partition nodes in a data tree into s
eral groups, and perform the join operation betwe
nodes that belong to the same group. Grouping the
nodes allows us to filter out unnecessary groups
ciently without scanning the tree nodes, whereas o
techniques cannot.

Performance results show that our technique o
performs the existing techniques in most cases.
plications.
We are currently exploring a number of optimiz

tion issues in our algorithms. Those include utilizati
of level information of a predicate to prune an exte
tree, use of various context information on queries
sued by users, and so on. Those issues remain as f
work.

References

[1] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Sriva
tava, Y. Wu, Structural joins: a primitive for efficient XML quer
pattern matching, in: Proc. IEEEInternational Conference o
Data Engineering, 2002.

[2] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: Optim
XML pattern matching, in: Proceedings of the ACM SIGMO
International Conference on the Management of Data, 2002

[3] S.-Y. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, C. Zaniolo
Efficient structural joins on indexed XML documents, i
Proceedings of the Conference on Very Large Data Bases, 2

[4] IBM XML Generator, http://www.alphaworks.ibm.com/tech
xmlgenerator.

[5] Y. Wu, J.M. Patel, H.V. Jagadish, Structural join order select
for XML query optimization, in: IEEE International Conferenc
on Data Engineering, 2003.

[6] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman, On s
porting containment queries in relational database manage
systems, in: Proceedings of the ACM SIGMOD Internatio
Conference on the Management of Data, 2001.


