Available online at www.sciencedirect.com

SCIENCE@DIRECT® Informa.tlon

Processing
Letters
ELSEVIER Information Processing Letters 91 (2004) 69—75

www.elsevier.com/locatefipl

Efficient structural joins with clustered extents

Jongik Kim?*, Sang Ho Leé&, Hyoung-Joo Kint

@ School of Computer Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
b sthool of Computing, Soongsil University, Seoul 156-743, Republic of Korea

Received 3 December 2003; received in revised form 19 March 2004
Available online 6 May 2004
Communicated by F.Y.L. Chin

Keywords: Databases; XML; Path query; Structural join

1. Introduction (i) retrieval of an extent, which is a list of nodes, for
each selection predicate,
Tree-structured models are widely used to represent (ii) finding occurrences of structural matches be-

XML data. Queries on a data tree consist of the tween tree nodes in extents, and
two parts, selection predicates on tree nodes and(iii) “stitching” together structural matches generated
structural relationships lbeeen selection predicates. in step (ii).

For example, the path query:
In order to retrieve an extent in the first step, an

inverted index built on selection predicates is used.
matches restaurant elements that are descendant ofor each selection predicate, an extent can be easily

street elements that have a chilchme element whose retrieved by looking up the inverted index.

street[name = ‘Tehran’]//restaurant

content is the string valugTehran’. There are four Finding occurrences of théractural matches in the
selection predicatesstteet, name, ‘Tehran’, restau- second step is a core operation in XML query process-
rant) and three structural relationshipstréet/name, ing. To solve this sub-problem, Zhang et al. [6] pro-
name/Tehran’, street//restaurant) in this path query. posed the multi-predicate merge join (MPMGJN) al-
Processing such a path query goes through the gorithm, which is an extension of the traditional merge
following three steps: join algorithm. Al-Khalifa et al. [1] generalized the

MPMGJN algorithm to the tree-merge join algorithms
° This work was supported in part by the Brain Korea 21 project. that consider the order of join .results.. Furthermore,
™ This work was supported in part by the Ministry of Information ~ they proposed the stack-tree join algorithms that can
and Communications, Korea, under the Information Technology improve the tree-merge join algorithms. Those algo-
Ref‘ec"’“‘:h Cemg_r ('TRa Support Program. rithms are dependent on the representation of posi-
orresponding author. . . _
E-mail addresses: jikim@oopsla.snu.ac.kr (J. Kim), thns of XML elemepts (qnd string values) to deter
shlee@comp.ssu.ac.kr (S.H. Lee), hik@oopsla.snu.ac.kr mine structural relationships between tree nodes. Re-

(H.-J. Kim). cently, Chien et al. [3] proposed a structural join algo-

0020-0190/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
d0i:10.1016/;.ipl.2004.03.016

70 J. Kimet al. / Information Processing Letters 91 (2004) 6975

rithm that uses B+ tree to skip unnecessary elements (ii) StartPos represents the number of words from

in the extents for descendant nodes without scanning. the beginning of the document to the start of the

However, the B+ tree technique cannot effectively skip element, andEndPos represents the number of

elements in the extent for ancestor nodes. words from the beginning of the document to the
Stitching together structural matches in the final end of the element, and

step poses the problem of selecting a good join order- (jii) LevelNum denotes the nesting depth of the ele-

ing. Wu et al. [5] proposed a cost-based join order se- ment.

lection of structural joins. Bruno et al. [2] developed a
holistic structural join algorithm that can evaluate the A string value in an XML document has the same
second and third step simultaneously. value asStartPos andEndPos.

In this paper, we discuss issues of the structural join Once each node of an XML data tree is repre-
in the second step, and propose an efficient structuralsented in the aforementioned way, the structural re-
join technique. Our techque partitions all the nodes |ationship between tree nodes can be easily deter-
in an extent into several clusters. Given two extents t0 mined as follows. For the ancestor-descendant rela-
be joined, the proposed technique filters out unneces-tionship, a tree node; is an ancestor of a tree node
sary clusters in both extents before joining. We also no if and only if n1.Docld = n2.Docld, n1.StartPos
take advantage of the representation of positions of _ n,.StartPos, andny.EndPos > n».EndPos. For the
XML elements. Unlike other techniques, however, we parent—child relationship, a tree node is a parent
use the position information only to cluster nodes in

of a tree noder, if and only if n1.Docld = n2.Docld,
the extents.

ni.StartPos < na.StartPos, n1.EndPos > n».EndPos,
andnj.LevelNum + 1 = ny.LevelNum.

2. Our approach For simplicity we deal with a single document
) . in this paper. An extension to multiple documents
2.1. Therepresentation of element positions is trivial. We only consider the ancestor-descendant

relationships. The parent—child relationships can be
easily verified by comparing.evelNum values of
ancestor-descendant relationships. Hence, we use only
two numbers,StartPos and EndPos, to represent

(i) Docld is an identifier of the document, positions of the tree nodes.

The position of each element in an XML docu-
ment is represented by a 3-tuple val®¢ld, Start-
Pos:EndPos, LevelNum), where

Group A (id:0)
” foodDB
\\(\1,1:52,1)/

' J£ Group I:‘Qd 0)

" Street” ~

o / ‘U 28105, 2 TN T
< i P Group G (|d 2) T

P (1,2:22,2) ?r P i : o street AN

7 /~ ; / -
/7 i L restaurant\ name | e ¢ (138512 7y y
1 L
!
i

/ (1.24:31.3) “{1.32:34.3}) 7 restaurant name

\
/_ restaurant restaurant name \ &‘ N : (1 37:47 3) (148:503) |
// (1,8:10,8) (1,11:18,3) \ (1,19:21, 3)\‘ \\\\ N i
i \\\ name \ [!
i W (1,25:27, 4)(manager [name owner :

i

! owner owner AN (\1 0.4y \,\ (1,38:40,4) (1,39:46,4)

! AN 04, v

! (704 ¥ (1,15:17.4) VN o N A~

i name name ‘Tehran® 1 S— e \ name phone

_\(1,4:6,4) (1.12:14,4) (1,20:20,4) /! Group C (id:2) N (1,40:42,5) (1,43:45.5) |
.) N ,
~. e _\‘\ /_

Group B (id:1) Group D (id:3)

Fig. 1. An XML data tree.

J. Kimet al. / Information Processing Letters 91 (2004) 69-75 71

2.2. Proposed technique node,n, denotes a tree that is rooted at a child of
the nodepn. The Groupld of the subtree that is rooted
In this section, we present a new structural join at theith child of the root isi. It is obvious that
technique. Our basic idea is that we can reduce the each group is disjoint. Fig. 1 shows a data tree that
number of nodes to be scanned for the join by (i) is grouped accordingly. Each subtree of the root node
partitioning the data tree into several groups and (ii) is partitioned recursively. For exampl€roup C is
performing the join operation between tree nodes that recursively partitioned into the three groups (E, F, G)
belong to the same group. First, we describe how to in Fig. 1. When a subtree of a node is partitioned into
group the nodes in the data tree and how to cluster groups, Groupld of each group is assigned starting at
the nodes in the extent. Second, we present our join 0. For example, In Fig. 1Groupld of Group A that
algorithms that take advantage of the cluster of notes contains a nod@®odDB is 0. Groupld of Group E that

in the extent. contains a nodetreet is also 0. Note thaGroupld is
We partition a data tree into several groups. Each assigned to a group, and not to a tree node.

group of tree nodes has a unique identif@mupld. Utilizing the groups in the data tree, we also

Each group is constructed as follows. (i) Thaot partition nodes in an extenttio a number of clusters,

node is a group, whoseroupld is 0. (ii) Each subtree which are lists of tree nodes. Essentially, tree nodes
of the root node is a group, where a subtree of a that belong to the same group in the data tree are

Algorithm ClusterExtent(root, extent)
{

. Il'root is the root node of the subtree currently processed.
. Il extent s a list of tree nodes, in sorted ordestH#tPos

1
2
3
4:
5:
6: CList=an empty list of clusters;
7. desc= extent— firstNode;

8:

9: if(desc= root){
10: / the groupld of the root is 0

11: CList— append(new Cluster(0, desc));

12: desc= desc— nextnode;

13: 1}

14: if(desc= NULL) return CList;

15:

16: for(id:= 1; id < root— numberOfChildren; id++){

17: newcluster= an empty list of tree nodes;

18: /I append descendant nodes that belordttosubtree
19: for(anc:= root — child(id);

20: ancis an ancestor of desc; desc= desc— nextNode)
21: newcluster~ append(desc);

22:

23: if(newcluster is not empty){

24 Cluster c= ClusterExtent(anc, newcluster);

25: // the groupld of the nodes that belongdth subtreeroot is id
26: CList— append(new Cluster(id, c));

27: }

28: }

29: return CList;

30:}

Algorithm 1. Clustering tree nodes in an extent.

72 J. Kimet al. / Information Processing Letters 91 (2004) 6975

mapped into the same cluster in an extent. Tree nodes[(11:18)], whereGrouplds are 1 and 2, respectively.
in the cluster in the extent are partitioned recursively, [(24:31)] and[(37:47)] are partitioned intq(24:31)]
similarly in the way that the data tree is grouped and[(37:47)], respectively, wher&rouplds are 1 and
recursively. 1. Finally,[(3:10)], [(11:18)], [(24:31)], and[(37:47)]
Algorithm 1 clusters an extent on a basis of the are partitioned into(3:10), (11:18), (24:31), and
groups of a data tree. In the algorithm, a cluster is (37:47), where allGrouplds are 0. Fig. 2 shows the
represented as a pair ofGoupld and a pointer. The extent tree.
pointer in a cluster refers either a tree node or a
list of tree nodes that are clustered recursivalw Now, we describe our join algorithm that takes
Cluster(id, pointer) in line 11 and line 26 makes a advantage of clustered exts. Consider an ancestor-
cluster with id and pointer. From line 9 to line 13, the descendant structural relationshép,(e2), for example
algorithm identifies whethesxtent contains the root (restaurant, owner). Let AList = [a1,a2,...] and
node of a data tree or not. ¢ktent contains the root DList = [d1, do,...] be root nodes of extent trees,
node, the algorithm makes the root node a separatewhere the leaf nodes of AList correspond the predicate
cluster. In thdor loop in line 16, the algorithm clusters ¢; and the leaf nodes of DList correspond the predicate
tree nodes irextent that belong to the same groupina e». Both AList and DList are sorted bgrouplds of
data tree. In line 24, the tree nodes in each cluster aretheir elements. For example, AList for the selection
clustered recursively. predicaterestaurant, is [1, 2, 3] as depicted in Fig. 2.
When nodes in an extent for a selection predicate Basically our algorithm performs either (i) AList
are clustered, the extent can be represented as a treex DList or (ii) (AList — [a1]) X DList, using the tra-
which we callextent tree. An intermediate node in ditional merge join algorithm where the join condi-
an extent tree is a list of clusters (Grouplds) in a tion is the equality betwee@rouplds of clusters. If
sorted order ofsroupld. Leaf nodes in an extent tree Groupld of a1 is 0, then the child node af; should
are the nodes in the data tree that satisfy the selectionbe the root node of the data tree (or the subtree that
predicate. Interestingly, the leaf nodes of an extent tree is being processed). Since the root node is an ancestor
are sorted bystartPos. In the extent tree, a leaf node of every node in the data tree, our algorithm outputs
of an intermediate node, denotes a leaf node of the (a3 — child, n;) for each leaf node; of DList and

subtree that is rooted at then performgAList — [a1]) X DList. Otherwise (i.e.,
Groupld of a; is not 0), our technique performs AL-
Example 1. The list L = [(3:10), (11:18), (24:31), ist M DList. For each(a;, d;) of AList X DList, our
(837:47)] contains the tree nodes that match the selec- algorithm repeats the same procedure recursively.
tion predicaterestaurant, in Fig. 1. The tree nodes Algorithm 2 shows our join algorithm. From line
in L are partitioned into the three clustefg3:10), 7 to line 12, the algorithm outputs partial results of

(11:18)], [(24:31)], and[(37:47)], whereGrouplds are the join. From line 15 to line 22, the algorithm per-
1, 2, and 3, respectively. The clus{€B:10), (11:18)] forms the traditional join procedure with the equality
is partitioned into the two clusterd,(3:10)] and condition of Grouplds. For each matched pair, the al-

(3:10) —— (11:18) > (24:31) ———— (37:47) —> NULL

Fig. 2. An extent tree for the saition predicate, restaurant.

J. Kimet al. / Information Processing Letters 91 (2004) 69-75 73

Algorithm ExtentJoinAnc(AList, DList)
{

1

2:

3: // AListis a list of node clusters, in sorted order@bupld
4: [/ DListis a list of node clusters, in sorted orderGrbupld
5
6
7
8

a:= AList — 1stCluster;
if(a— groupid= 0){
subtreeroot= a— child;

9: foreach leaf node, desc, of DList
10: append (subtreeroot, desc) to OutputList;
11: a:= AList — 2ndCluster;
12: }
13: d:= DList — 1stCluster;
14:
15: while(both of the input lists are not empty){
16: while(a— groupid> d — groupid) d:= d — nextCluster;
17: if(a— groupid= d — groupid){
18: ExtentJoinAnc(a> child, d— child);
19: d:= d — nextCluster;
20: }
21: a:= a— nextCluster;
22: '}
23:}

Algorithm 2. ExtentJoinAnc \th output in an ancestor order.

List1 _ - Alist
List2 — — DList _—— = -

(a) filter out U part (b) the worst case

Fig. 3. Example extents.

gorithm calls theExtentJoinAnc procedure recursively DList with the nodes in the stack. For tree nodes

in line 18. in DList that have at least an ancestor in AList,
Algorithm 2 outputs results by traversing an extent we do not output them at this point, but resort to
tree of Alist in atop-down and left-to-right fashion. the next recursion to get join results. Using a stack,

Consequently join resultsagenerated in an ancestor Algorithm 3 outputs join results in a descendant order.
order. To get join results in a descendant order, we From line 5 to line 8 in Algorithm 3, the algorithm
need to modify Algorithm 2 slightly as follows: pushes the root node of the current subtree to the
Instead of outputting aubtreeroot in line 10 of stack, if it exists in AList. In line 14 and line 25, the
Algorithm 2, we push thesubtreeroot into a stack. algorithm outputs the tree nodes in DList that have no
Note that the stack contains all the ancestor nodesancestor in AList.
of a subtree currently being processed, and that the Our algorithms efficiently filter out unnecessary
top of the stack could be the root node of the current clusters (or subtrees) in both AList and DList in each
subtree. Therefore, all possible combinations of every recursion, so that they can reduce the number of nodes
leaf node of DList and every node in the stack should that participate in the join. For example, thiepart of
be outputted. For tree nodes in DList that have no Fig. 3(a) is filtered out by comparing a fe®rouplds
ancestor in AList, we can output the tree nodes in in our algorithms, while the existing algorithms should

74 J. Kimet al. / Information Processing Letters 91 (2004) 6975

: Algorithm ExtentJoinDesc(AList, DList)
|

1

2

3: /I node-stack is a global stack
4: a:= AList — 1stCluster;

5: if(a— groupid= 0){

6 node-stack> push(a— child);
7 a:= AlList — 2ndCluster;

8

©od
9: d:= DList — 1stCluster;

11: while(both of the input lists are not empty){
12: while(a— groupid> d — groupid){

13: if(node-stack is not empty)

14: doOutput(d— 1stLeaf, d— lastLeaf);
15: d:= d — nextCluster;

16: }

17: if(a— groupid= d — groupid){

18: ExtentJoinDesc(a child, d— child);
19: d:= d — nextCluster;

20: }

21: a:= a— nextCluster;

22: '}

23:

24: if(node-stack is not empty and d is not NULL)

25: doOutput(d—- 1stLeaf, DList— lastLeaf)

26:

27: if((AList — 1stCluster)}»> groupid= 0) node-stack> pop()
28:}

29:

30: Procedure doOutput(firstLeaf, lastLeaf)

31:{

32. for(desc= firstLeaf; desd= lastLeaf; desc= desc— nextLeaf)
33: for each element, anc, in node-stack, output (anc,desc)
34:}

Algorithm 3. ExtentJoinDesc with output in a descendant order.

scan every node in th& part. Fig. 3(b) shows the system is 4 Kbyte, and the system has 200 memory

worst case of our technique. Because there is no buffers for pages. We ran our experiments on a ma-

cluster to be filtered out, our algorithms should scan all chine with a 600 MHz Intel Pentium Il processor,

the lists sequentially. However, such regular and rigid 192 MB of memory. We used the IBM XML data gen-

structured data are hardly found in XML. erator [4] to generate XML data in our experiments.
Fig. 4(a) shows our document type definition (DTD),
which is actually identical with the one [1] except

3. Preliminary results some attributes that are not related with the join pro-
cedure. We generated XML data of 50 M size.

In this section, we provide preliminary results of The queries used for the experiments are:

our experiments. We used an XML database system,

which includes an object storage manager, a buffer (Q1) employee//email,

manager and a B+ tree index manager. A page of our (Q2) manager//department,

J. Kimet al. / Information Processing Letters 91 (2004) 69-75 75

O cluster-anc O cluster-desc O stack—anc @ stack-desc

<|ELEMENT manager & T

(name, (manager|department)+)>
6 - "l
A, B Bl
: Il Il
o 3 W | |
Qt Q2 Q3 Q4

<IELEMENT department
(name,email?,employee+,departmentx)>
(a) DTD used in our experiments (b) Response time for structural join

<|ELEMENT employee (name+,email?)>
<|ELEMENT name (#PCDATA)>
<IELEMENT email (#PCDATA)>

Elapsed Time (in sec)
[e:]

Fig. 4. Preliminary results.

(Q3) department//email, and believe that the cases in which our technique is not

(Q4) department//employee. as good as the existing algorithms are rare in real ap-
plications.

We compared our algorithms with the stack-tree algo- We are currently exploring a number of optimiza-

rithm family [1]. tion issues in our algorithms. Those include utilization

Fig. 4(b) shows the experimental results. For Q1, of level information of a predicate to prune an extent
Q2 and Q3, our algorithms outperform the stack- tree, use of various context information on queries is-
tree algorithms, because our algorithms can filter out sued by users, and so on. Those issues remain as future
unnecessary clusters of nodes. For Q4, our algorithmswork.
perform slightly slower than the stack-tree algorithms.

As for Q4, everyemployee element has more than

one department element as its ancestor, and every References

department element has at least oamployee element

as its descendant, as is shown in the DTD. Hence, therell] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Srivas-

is no cluster to be filtered out. However, the difference tava, Y. Wu, Structural joins: a primitive for efficient XML query
of performance is ignorable pattern matching, in: Proc. IEEmBternational Conference on

Data Engineering, 2002.
[2] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: Optimal
XML pattern matching, in: Proceedings of the ACM SIGMOD
4. Conclusions International Conference on the Management of Data, 2002.
[3] S.-Y. Chien, Z. Vagena, D. f@ang, V.J. Tsotras, C. Zaniolo,

; - [Efficient structural joins on indexed XML documents, in:
In thi r, we pr n efficient str ral join _ '
this paper, we propose an efficient structural jo Proceedings of the Conference on Very Large Data Bases, 2002.

technique. We partition nodes.lr? a data t_ree Into sev- [4] IBM XML Generator, http://www.alphaworks.ibm.com/tech/
eral groups, and perform the join operation between = ymigenerator.

nodes that belong to the same group. Grouping the tree[5] Y. Wu, J.M. Patel, H.V. Jagadish, Structural join order selection
nodes allows us to filter out unnecessary groups effi- for XML query optimization, in: EEE International Conference

ciently without scanning the tree nodes, whereas other 0" Data Engineering, 2003.
techniques cannot [6] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman, On sup-

. porting containment queries in relational database management
Performance results show that our technique out- systems, in: Proceedings of the ACM SIGMOD International

performs the existing techniques in most cases. We Conference on the Management of Data, 2001.

