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Abstract

In multimedia databases, k-nearest neighbor queries are popular and frequently contain
non-spatial predicates. Among the available techniques for such queries, the incremental
nearest neighbor algorithm proposed by Hjaltason and Samet is known as the most useful
algorithm([15]. The reason is that if k' > k neighbors are needed, it can provide the next
neighbor for the upper operator without restarting the query from scratch. However, the R-
tree in their algorithm has no facility capable of partially pruning tuple candidates that will
turn out not to satisfy the remaining predicates, leading their algorithm to inefficiency. In this
paper, we propose an RS-tree-based incremental nearest neighbor algorithm complementary
to their algorithm. The RS-tree used in our algorithm is a hybrid of the R-tree and the S-tree,
as its buddy tree, based on the hierarchical signature file. Experimental results show that our

RS-tree enhances the performance of Hjaltason and Samet’s algorithm.

1 Introduction

Recently, multimedia applications such as geographic information systems(GISs) and image re-
trieval systems have come to require the efficient processing of k-nearest neighbor queries over a
collection of d-dimensional spatial objects. Many available techniques for such queries have been
introduced[4, 5, 6, 14, 15, 21]. However, most of them have never focused on efficiently evaluating
k-nearest neighbor queries with non-spatial predicates such as:

SELECT *

FROM DISC

WHERE artist = ’Beatles’
ORDER BY distance (color, red)
STOP AFTER k

This query, represented in an extended SQL language, is similar to Fagin’s multimedia query
artist=‘Beatles’ A color=‘red’[l1], meaning “choose k albums by the Beatles whose
cover colors best match red”. It involves the non-spatial predicate(i.e., artist="Beatles’)
as well as spatial proximity(i.e., distance (color, red)). For processing it efficiently, it is

necessary to browse through a collection of color vectors on the basis of their distances from a

fThis work was supported in part by University Research Program supported by Ministry of Information &
Communication in South Korea, entitled “A Study on Extending the Spatial Databases and Its Application to
Spatial Data Warehousing”.



given query object red! until k query answers are obtained. Up to date, Hjaltason and Samet’s
incremental nearest neighbor algorithm is known as the most useful algorithm for processing the

query above[15].

Hjaltason and Samet’s algorithm, using a hierarchical index like the R-tree, has the following
advantage: when the upper operator(e.g., the select operator for artist="'Beatles’) needs
another TID? of tuple with the next neighbor, their algorithm can provide it for the upper operator
without restarting the query from scratch[15]. However, their algorithm may generate a large
number of tuples(or TIDs) that will turn out not to fulfill the remaining non-spatial predicates.
Such worthless tuples generated during the query processing will lead to a longer query response
time, which is on account of their algorithm behaving independently without using the given

non-spatial predicates.

In the study, we propose a new algorithm capable of enhancing Hjaltason and Samet’s algo-
rithm when evaluating k-nearest neighbor queries with non-spatial predicates. Our algorithm is
complementary to their algorithm in the sense that it can partially prune worthless tuples as early
as possible. For this purpose, our algorithm takes advantage of an RS-tree as a hierarchical index,
while their algorithm employs an R-tree without the facility of pruning worthless tuples. The RS-
tree is a hybrid of the R-tree and as its buddy tree, the S-tree based on a hierarchical signature
file index[9] where a non-spatial attribute(e.g., artist) is used as the key. Unlike the R-tree used

in Hjaltason and Samet’s algorithm, the S-tree offers our algorithm the facility mentioned above.

In this paper, we assume that the query contains only one equal selection predicate(i.e, =)
like artist="'Beatles’. The “equal selection” assumption is founded on the fact that the
signature file which the S-tree builds on is used for handling keyword-based queries in informa-
tion retrieval systems. We can relax the “one” constraint so that the query involves a boolean
predicate(i.e, A or V) like artist="Beatles’ OR artist='Sting’ or artist=‘Beatles’
AND artist='Sting’, or that the given non-spatial predicate is in the form of artist="B*’.
However, we believe that our techniques in this paper can be applied to these classes of queries,
since the S-tree inherently supports such queries. For the remainder of this section, we use the
term a mon-spatial predicate as an equal selection predicate. The predicates above often appear
in GIS applications(e.g., Paradise[16] and Dedale[13]), or image retrieval systems(e.g., Chabot[20]
and QBIC[18]).

The rest of this paper is organized as follows: Section 2 sketches the current available techniques
for k-nearest neighbor queries. Section 3 reviews Hjaltason and Samet’s algorithm and indicates

its problem. Section 4 outlines our key ideas capable of overcoming the problem and presents the

L Although it really means red’s d-dimensional feature vector, we use this in the same context.
2A TID denotes the ID of each of tuples stored into for example, a DISC table. It is assumed that each leaf
node in the hierarchical index stores a pair of a spatial object and a TID.



RS-tree as an implementation of our strategies followed by the signature chopping technique to
enhance the performance of the pure RS-tree. Section 5 describes an RS-tree incremental nearest
neighbor algorithm that we propose and proves that our algorithm is theoretically better than
Hjaltason and Samet’s algorithm. Section 6 shows the experimental results, and finally, Section 7

presents our conclusion.

2 Related Work

In multimedia database systems or geographic information systems, a lot of available techniques for
k-nearest neighbor queries were introduced. They include techniques based on multidimensional
indexes(e.g., Voronoi cell based algorithm[5], branch & bound algorithm[21], the incremental near-
est neighbor algorithms[6, 14, 15], multi-step algorithms[22], and so on), the vector approximation
technique for an efficient sequential scan[23], a fast parallel method[3], etc. In many applications,
an approximate query result suffices, so that the approximate nearest neighbor algorithms have

been developed[1], thereby saving the cost in producing the exact query result.

The branch & bound algorithm using mindist and minmazdist of [21] and the vector approxi-
mation technique of [23] require that k be known prior to the processing of the query, thus having
to restarting the query from scratch. Therefore it is inefficient to process queries with “distance
browsing” concept described in Section 1. On the contrary, the incremental nearest neighbor tech-
niques can toss incrementally, i.e., one by one, the next neighbor to an upper operator without
exhausting the restart cost. Such techniques as these include [6], [14], and [15], based on the
k-d-tree, LSD-tree, and hierarchical data structures like the R-tree, respectively. Among them,
Hjaltason and Samet’s algorithm is simple, efficient, and general enough to be adapted to any
hierarchical indexes[15]. Also, a multi-step k-nearest neighbor algorithm, which is based on the
incremental algorithm of [15], improved the performance of [17] by way of finding the minimum

number of candidates, optimal dyq,[22].

In relational database systems, there have been several optimizing techniques for processing
top-k queries over traditional tuples[8, 19, 10]. The top-k query refers to the query that selects the
first k tuples based on how they match given query values or scoring functions(e.g., Min, Maz,

Euclidean, Sum, etc.).

Fagin[11] proposed a simple way of answering queries like “artist="Beatles’ A color="red’”.
His approach is under the assumption that sub-systems are involved in evaluating each predi-
cate(e.g., a traditional relational database system and QBIC-like image retrieval system), and
that the non-spatial predicate(e.g., artist="Beatles’) is highly selective. In addition, His
approach corresponds to a sequential scan method without using any spatial index like the R-tree.

On the contrary, we assume in our approach that the non-spatial predicate is so lowly selective



that the query optimizer decides to use the spatial index(Note that Hjaltason and Samet’s algo-
rithm is based on the spatial index). Moreover we also restrict the constraint to the cardinality of

the query result.

3 Incremental Nearest Neighbor Algorithms

In this section, we review Hjaltason and Samet’s algorithm known to be a state-of-the-art algorithm
that can process distance browsing queries efficiently. Then we will indicate the problem of their

algorithm when it is applied to answering such queries.

3.1 State of the Art Algorithm

Hjaltason and Samet[15] presented the R-tree-adapted incremental nearest neighbor algorithm?®(from
now on, RtreeINN). The RtreeI NN algorithm first initializes the priority queue. Then the al-
gorithm traverses the root node in the R-tree, and for each child node in the root node, enqueues,
as a key, the distance from the query object to its MBR* together with pointer pointing at it.
Then the algorithm fetches the next target node (or object) from the front of the queue. The next
target is one of three kinds: a non-leaf node, a leaf node, or an object. If it is a non-leaf node, the
same process as that of the root node above is performed. If it is a leaf node, each object in this
node and its real distance from the query object are inserted into the queue along with additional
TID(for evaluating the remaining predicate, e.g., artist="Beatles’). Lastly, the case where
it is an object indicates that this object has the smallest distance among all objects both existing
in the queue and generated afterwards. Therefore it is returned to the upper operator. Note that
the queue is always sorted based on the distance. The previous processes are repeated until the

upper operator informs the algorithm of “stopping”, or until the queue is empty.

3.2 Performance Drawbacks

Betchtold et al.[4] defined the optimality of the k-nearest neighbor algorithm that uses a hierar-
chical index like the R-tree, and showed that the RtreeI NN algorithm is optimal. Note that the
query result size k is involved in k-nearest neighbor queries, irrelevant to non-spatial predicates.

The definition of optimality is presented below:

Definition 1 Optimality[4]
An algorithm for the k-nearest neighbor search is optimal if the pages accessed by the algorithm

during the k-nearest neighbor search is exactly the pages that intersect SP(Q,r).

3The algorithm assumes the case where the R-tree stores d-dimensional points. A general algorithm for any
spatial object(e.g., polygon, polyline, point, and so on) was described in [15].

4Each R-tree node contains an array of (M BR, pointer) entries where M BR is an hyper-rectangle that minimally
bounds the spatial objects in the subtree pointed at by pointer.



In Definition 1, @ and r are a query object and the distance from @ to the object(O*) which is the
k-th farthest from Q(i.e., r = ||Q — OF||), respectively. SP(Q,r) is a d-dimensional hypersphere

with center () and radius 7.

From now on, we consider k-nearest neighbor queries with a non-spatial predicate. Let o
be the last object that RireeIl NN must search in order to provide the upper operator with the
TID which will be the k-th answer. The problem of RtreeI NN is that most of the k' objects(or
TIDs) would not satisfy the non-spatial predicate evaluated by the upper operator. For discussing
this problem in detail, we derive the rough cost of query processing using RtreeI NN. The total
cost is Coyi = Criree + Crupie, where Criree and Ciypre denote the R-tree node and tuple I/O cost,

respectively®.

By the optimality of RtreeI NN above, the cost Cryee equals the number of R-tree pages
intersected by the sphere SP(Q,r), where r = ||Q — O¥'||. Before finding the cost Clrupie, let us
approximate the number(k’) of objects(or TIDs) that must be tossed to the upper operator. For
the cardinality of the query result k, the approximation of k' is derived as follows: We assume that
the non-spatial attribute(e.g., artist) is not correlated with the spatial attribute(e.g., color).
Let S be the selectivity of a given query value(e.g., ‘Beatles’) and O be an object that satisfies
the i-th query answer. For finding the (i 4+ 1)-th answer, RtreeIl NN must access % more objects,

which are object O’s such that d; < ||Q — O|| < d;y1 where d; = ||Q — O||, intuitively. As a result,

!

approg 1ICT€ases with the

the approximation of k' is k.., = % = = %. The approximation k

slope of % as k grows. Lastly, we approximate the tuple scan cost Cyypie using kprrow. For this

goal, we use the Yao function b(z,y, 2)[24]. The tuple scan cost is Ciypre = b(%, %, %), where
N, B, and T are the number of overall tuples, the page size, and the tuple size, respectively. See
the Appendix for details.

!

We conducted experiments to identify the tuple candidate estimate, k.., -

In our experi-
ments, we implemented the RtreeI NN algorithm in [15] and ran queries such as “artist="Beatles’
A color=‘red’”. The attribute artist values were generated from Uniform Distribution. For
the attribute color, synthetic or real-life datasets were used(for details, refer to Section 6). Fig-
ure 1 shows that the two curves increases linearly as we expected, and the ratio of the query result
size k to the size of tuple candidates is too high. In this observation, we can estimate that most

of the candidates returned to the upper operator are worthless, resulting in expensive tuple scan

cost.

In short, RtreeI NN is efficient in searching the next neighbor in favor of no restart cost, but

is not so in dealing with k-nearest neighbor queries with a non-spatial predicate owing to the

5Except for two cost factors, the queue I/O and CPU computation cost actually reside in the query processing
cost, but are negligible since they are not dominant compared to the two costs above.
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Figure 1: Observation on the Candidate Size(N=100,000)

generation of many worthless candidates. We believe that such a handicap of RtreeI NN is due

to the fact that the R-tree used in RtreeI NN has no device capable of filtering them.

4 QOwur Approach

In this section, we illustrate our techniques that lessen the deficiencies of Hjaltason and Samet’s
approach. This section is organized as follows: Section 4.1 outlines our key ideas to provide us
a way to get out of shortcomings of their algorithm. Section 4.2 describes the RS-tree as an
implementation of our ideas. Section 4.3 presents the pruning effect of the S-tree. Finally, Section

4.4 proposes the signature chopping technique to improve the performance of the pure RS-tree.

4.1 Key Ideas

As indicated in Section 3.2, the disadvantage of the RtreeI NN algorithm results from the R-
tree with no ability of pruning worthless tuples. For such a ability, the R-tree is required to be
equipped with a new data structure, or a buddy that will help the R-tree reduce the number of
worthless tuples. In Figure 2, the R-tree is responsible for evaluating the spatial predicate, e.g.,
color="Red’, and the S-tree(to be described in Section 4.2) takes charge of partially handling
the non-spatial predicate, e.g., artist="Beatles’. Before the R-tree puts each of the child
nodes in the current target node on the queue(Section 3.1), the R-tree asks its buddy if the subtree
rooted at each child node really includes a given non-spatial value or not. Then the R-tree receives
the answer from its buddy. If the answer is “Yes”, then the R-tree will insert the corresponding
child node into the queue(ST'1 in the figure). Otherwise the R-tree will look upon that child node
as a worthless node and thus prune the subtree rooted at it(ST2 in the figure). Pruning subtrees

like ST'2 will lead to significant additional savings during the query processing, considering that
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Figure 2: An Example of A Buddy Tree

a lot of worthless tuples below such subtrees might otherwise be returned to the upper operator.

In order for the R-tree’s buddy to perform the “inclusion test” well, it is necessary to build a

data structure with the following properties:

1. Hierarchy: The algorithm traverses the R-tree hierarchically and also sends a question to
the R-tree’s buddy in the same fashion. Thus it is advantageous that this buddy has a

hierarchical structure like the R-tree.

2. Transitive inclusion relation: This property is derived from the “hierarchy” property above
and the fact that if a certain subtree includes a query value, then its ancestor subtree must

also include this value.

3. Small storage and inexpensive computation: The performance improvement by virtue of the

R-tree’s buddy should be beneficially traded off with overheads resulting from it.

In the following, we propose the RS-tree that consists of the R-tree and the S-tree as its buddy.

4.2 The RS-tree

4.2.1 Description

The RS-tree is a hybrid of the R-tree and the S-tree based on the hierarchical signature file,
which are used as data structures for the spatial attribute(e.g., color) and for the non-spatial
attribute(e.g., artist), respectively. A tuple generally involves several non-spatial attributes
besides the spatial ones, therefore we can extend the RS-tree to the RS™-tree where the S™-tree

is composed of m S-trees. We describe our new data structure focusing on the RS-tree, i.e., m = 1.

Since the R-tree in the RS-tree is not different from the R-tree used in the RtreeI NN algorithm,
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Figure 3: The Construction of the RS-tree

we pay much attention to the S-tree. The S-tree is a signature hierarchy whose structure is
similar to the R-tree. Each S-tree node contains an array of (key, pointer) entries where key is a
signature(representing a set value) which bounds all the non-spatial values in the subtree pointed
at by pointer. The signatures in the S-tree node are used for signature checking(to be described in
Section 4.3). The reasons why we used the signature technique to represent a set value are from

the properties of the S-tree to be presented later.

Not only the S-tree node but also its entries are symmetric with those of the R-tree. Each
R-tree node contains an extra pointer(e.g., a page number) that points at the corresponding S-
tree node. The R-tree has both non-leaf nodes and leaf nodes, while the S-tree has only non-leaf
nodes(i.e., the level [ > 1), since its storage overhead becomes high if it would store even leaf
nodes. Note that in the R-tree, the storage ratio of leaf nodes to non-leaf nodes is greatly high.
Of course, allowing S-tree leaf nodes can improve the pruning effect of the S-tree, but it may be

impractical due to its huge storage overhead.

Assuming that the S-tree is built at the time when the R-tree is bulk-loaded, we can classify
the construction of the S-tree into two types according to the level of the S-tree, i.e., I = 1 and
I > 1. In the case where [ = 1, a signature of each entry in the S-tree node is created as follows:

1) After an RS-tree bulk-loader generates a certain R-tree leaf node, it promptly looks for a set of



non-spatial attribute values through TIDs in that leaf node. 2) Each value in the set is modified
into a bit stream of a fixed size, i.e., a signature, using a signature hashing function. 3) All
signatures in the hashed set are ORed on a bit-by-bit basis. The ORing result is a signature that
we would like to obtain at the bottom level of the S-tree. At the higher level than 1, a signature
of each entry in the S-tree node is created by ORing all the signatures in the child node pointed
at by pointer. In this manner, the last S-tree root node is generated and the complete S-tree is

constructed.

Example 1: In Figure 3(a), consider a DISC table with both color and artist attributes
that are used as keys of the R-tree and S-tree, respectively. Figure 3(b) shows a signature table
for artist. Figure 3(d) is the RS-tree for a set of bounding rectangles for color in Figure 3(c).
In Figure 3(d), a set of dark nodes linked hierarchically and the rest correspond to the S-tree
and R-tree, respectively. To generate, for example, the signature s2 in SIN2 at the bottom level,
we first chase the R-tree node RIN2 mapped to SIN2 and obtain a set of { ‘Beatles’, ‘Sting’}
through TIDs(i.e., 1 and 2) in RDN1. Then we convert the set of the searched non-spatial values
into the set {01101010, 00111001} using a given signature hashing function and finally perform
an OR operation for two signatures, resulting in 01111011. In the case where [ > 1, for example,
the signature s1 in STN1 is generated by ORing s2, s3, and s4 in the child node SIN2 below it,
resulting in 01111011.

4.2.2 Properties

The S-tree reflects the property requirements described in Section 4.1. Hence, our algorithm(to be
presented in Section 5) can win some advantages over Hjaltason and Samet’s algorithm. Detailed

properties of the S-tree are as follows:

e The S-tree is a set of signatures: A signature is used as a set value, as mentioned above.
e The S-tree is a hierarchical data structure like the R-tree.

e The S-tree supports the good transitive inclusion relation: The two properties above satisfy

this.

e The S-tree has individual storage independent of the R-tree: The S-tree is not subject to
the R-tree with regard to physical storage. Therefore the performance degradation of the

primary R-tree due to associating it with the S-tree never occurs.

e The S-tree has a small storage overhead: A signature size is relatively small[12], and also

the S-tree has pages of the same size as that of the R-tree non-leaf pages.



e The S-tree has inexpensive computation cost: A signature is a simple bit stream with ‘0’ or

‘1’, so the computation cost for AND or OR operations is fully saved[12].

4.2.3 Drawbacks

The RS-tree is subject to some deficiencies including the long bulk-loading time or the slightly
expensive update cost. When a new spatial object is inserted into or deleted from the R-tree in a
dynamic environment, splitting or merging propagation along the hierarchical paths will be done
not only to the R-tree pages but also to the corresponding S-tree pages. Thus the update cost
will be about two times as high as that of the case where only the R-tree is used in the algorithm.
However, it is highly unlikely that multimedia database systems are as dynamic as traditional
relational database systems. Hence, we believe that the performance improvement by the RS-tree

can sufficiently compensate for the deficiencies resulting from the S-tree.

4.3 Pruning Effect of the S-tree

In the following, we present how worthless R-tree nodes and objects(or TIDs) can be partially

pruned by the S-tree in the context of the S-tree-aided RtreeI NN algorithm.

Before proceeding any further, we explain the property of the signature hashing function that
we used in building the S-tree. Each non-spatial value yields m bit positions(not necessarily
distinct) in the range 1-F. The corresponding bits are set to 1, while all the other bits are set
to 0. For example, in Figure 3, the value “Beatles” sets to 1 the bits of positions 2, 3, 5 and

7(m = 4). The signature for each non-spatial value is referred to the

‘word” signature. The
“block” signature is based on superimposed coding[7], that is, ORing a given number of word
signatures. The inclusion test of a word into a block signature is performed as follows: The
signature(= s,) of the word(e.g., “Beatles”) is created. Suppose that the signature contains 1 in
positions 2, 3, 5 and 7. The block signature(= s;) is examined. If the above positions(i.e., 2,
3, 5, 7) of the block signature contain 1, in other words, sq A s; = s, where A denotes an AND

operator(a counterpart of the OR, operator), the block signature is once considered to include the

word. Otherwise, it is discarded.

Let R be the current target node at the front of the queue, and r;(1 < j < C) be its child
node, where C is a fanout of the R-tree node. Before computing the distance for r;, RtreeI NN
performs the “inclusion test” for each signature s; in the S-tree node S corresponding to R. That
is, for the query signature sq(which is generated by hashing the query value, e.g., ‘Beatles’), the
algorithm checks if s, A s; = s,. We refer to this testing as signature checking®. If s; passes the

signature checking for s,, it means that there may be some values equivalent to the query value

SIf the target is an R-tree leaf node or an object, the algorithm does not perform the signature checking since
the S-tree has only non-leaf nodes.
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in the subtree rooted at r;. If not, it is guaranteed that there are no such values in the subtree.
Therefore, we have only to enqueue the child nodes in R whose corresponding s;’s in S pass the

signature checking for s,.

This strategy, based on the S-tree-supported pruning, offers additional savings for handling

k-nearest neighbor queries with a non-spatial predicate, which are as follows:
e Disk I/Os for accessing the pruned R-tree nodes and their child nodes are saved.

e Disk I/Os for accessing the worthless tuples resulting from the pruned R-tree nodes are

eliminated.
e Distance computations for the R-tree nodes pruned are removed.
e Queue management costs are reduced.

Undoubtedly, the S-tree node I/Os are required for the signature checking, but the benefit of

pruning by the S-tree is greater than this cost(See experimental results in Section 6).

Example 2: In Figure 3, let us assume that RIN2 is the current target node. We also assume
that d3 is smaller than d1, d2, and any distance in the queue, where d; denotes the distance from
the query object to the child node RDN; of RIN2. For the query signature s, = 01101010, which
is hashed for ‘Beatles’, the signature checking is performed for s2, s3, and s4, and consequently,
except for s4, s2 and s3 will pass the test since for s4, s; A s4 # s, where s4 = 00111011. There-
fore, only RDN1 and RDN?2 will be inserted into the queue. Note that in the pure RtreeI NN
algorithm, RDN3 will be enqueued, while in the S-tree-aided RireeI NN algorithm, it will be

pruned.

“Signature saturation” occurs with the growing level of the S-tree, where each bit in a signature
is highly likely to be ‘1’. Since such phenomena raise the phantom effect significantly, it makes the
pruning effect of the S-tree weaker, resulting in a lot of false drops. A false drop refers to a worthless
tuple that will turn out not to satisfy the remaining query predicate, e.g., artist="Beatles’,
although all the signatures along its R-tree hierarchical path will have passed the signature check-
ing. For instance, s3 passes the signature checking for s, = 01101010, in Figure 3, but because
no tuples identified by TIDs(i.e., 3 and 4) in RDN?2 satisfy the predicate, artist="Beatles’,
they result in false drops. This is due to the fact that s3 incurred the phantom effect for s;,. At a
high level of the S-tree, the phantom effect will be severe, and this will mitigate the pruning effect
of the S-tree. In the next subsection, we shall explain how to diminish false drops resulting from

signature saturation.

11



4.4 Signature Chopping

We can identify signature saturation formally: Let ay be the probability that the i-th bit of the
child signature is ‘1’ and Ny, be the number of child signatures ORed for a parent signature. The
probability that the i-th bit of the parent signature is ‘1’ is represented as ap = 1 — (1 —ayr) V2 [9].
Suppose that a relatively small a,, say 0.3, is used(In order to make ay, smaller, the signature of
large size is required.). We can estimate that if Ny becomes larger, ap is likely to be closer to
‘1’. As the level of the S-tree grows, Ny will become larger. Therefore, by the above estimation,
the speed of signature saturation will be more rapid with the growing level of the S-tree. We can
relax the saturating rate by making Ny in the above formula smaller. In the following, we focus

on how to make Ny smaller, which we call the signature chopping technique.

The goal of signature chopping is that by partitioning each signature in the S-tree node into
several signatures according to a given signature chopping function, f(I)(e.g., 2), let N1, be as small
as possible and thereafter the speed of signature saturation be less”. For a signature s;(1 < i < C)
in the S-tree node on level [ where C is the fanout of the R-tree node, s; is partitioned into the
f(l) chopped-signatures s; ;’s, 1 < j < f(I). If f(I) > C on a certain level { of the S-tree, f(I) = C.
The C signatures in the child node below s; are divided into separate buckets by placing the first
(%1 signatures into bucket #1, the next [%1 signatures into bucket #2, and so on. Then each
si.; is generated by ORing the f%] signatures in the j-th bucket. Note that s; = \/fg i
where \/ is an OR operator in the context of the signature technique. As a result, the degree of

1

signature saturation, namely the phantom effect is reduced to about {10} times as small as that of

the non-signature chopping approach.

Example 3: Figure 4(b) shows the S-tree when applying the signature chopping technique to
the S-tree of Figure 4(a), where C = 4 and f(I) = 2!. Let us assume that the R-tree node
corresponding to the S-tree node SIN; is RIN;, and that RIN1, RIN2, and RIN3 will be the
next target nodes. The dark regions in the figure denote the (chopped-)signatures that will pass
the signature checking. s2 on level 2 is divided into four chopped-signatures, s2.1, s2.2, 52.3,
and s2.4, because f(2) = 22 = 4. The bucket size of each of the chopped-signatures is 1, since
[ﬁ] = 1. In the case of s1 on level 3, f(I) is set to 4, since f(3)(=23=28) > C.

In the signature chopping approach, signature checking is performed for each of the f(l)
chopped signatures. Let R be the current target node and S be the S-tree node correspond-
ing to R. Also, let s;;(1 < j < f(I)) be the j-th chopped-signature of the i-th entry in S. If
none of s;;’s passes the signature checking, then the child node(CHILD;) of the i-th entry in

R will be pruned, not be enqueued. For example, none of s3.1, s3.2, s3.3, and s3.4 in Figure 4

TIf (1) is larger, overflow pages in the S-tree may occur. Therefore, it is necessary to choose a suitable f(1).

12
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Figure 4: Signature Chopping

passes the signature checking. Hence, the R-tree node RIN2 corresponding to SIN2 will be
pruned(CHILD; = RIN2). In the other case, CHILD; will be enqueued along with a hint(e.g.,
a bitmap). The hint means that when CHILD; will be the next target node in the future, the
subtrees rooted at the [%1 entries in CHILD; corresponding to the S-tree child node of the
chopped-signature which never passes the signature checking need never be accessed at all. Note
that each s; ; is responsible for the [%1 entries in CHILD;. For example, in Figure 4, $2.2 does
not pass the signature checking. Therefore, the subtree rooted at the second entry in the R-tree
node RIN1 corresponding to SIN1 need never be accessed at all, when RIN1 will be the next

target node in the future. Such information is stored into the hint.

By comparing two figures of Figure 4, we find that in the left figure, the signatures s3, s4, and sy
give rise to the phantom effect, while in the right figure, it is alleviated by employing the signature
chopping technique. The expensive costs saved by the signature chopping technique include disk
I/Os to access the S-tree or R-tree pages caused by for example, s3 and s7, and moreover disk
I/0Os to read a large number of potential worthless tuples resulting from for example, s4.1, s7.1,

and s7.2.

5 RS-tree Incremental Nearest Neighbor Algorithm

In this section, we present the RS-tree incremental nearest neighbor algorithm that is comple-
mentary to the algorithm described in Section 3. Then we make an analysis between the two

algorithms.
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Algorithm 1 RStreeINN(Q,, Q)

0 O Ui LN

©

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/* Qs and Q, denote a given spatial query object and a non-spatial query value, respectively */

Sy := hash(Q,) /¥ a query signature */
Queue := PriorityQueue()
NewElm.pointer := RtreeRootNode; NewElm.dist := 0; NewElm.bitmap.setall()
Enqueue(Queue, NewElm)
while Queue is not empty
Elm := Dequeue(Queue) /* the next target node is fetched from the queue */
if Elm.pointer is a non-leaf node /* the next target node is a non-leaf node */
for each entry(child, mbr) in Elm.pointer
/* check whether current entry was pruned by the previous signature checking or not */
if Elm.bitmap.isset(EntryIndex) is True
/* the corresponding S-tree page is read, ChoppedSignArray is filled with the f(l) chopped
signatures in that page, and signature checking is performed */
NewBitmap := SignChecking(S,, ChoppedSignArray)
/* check whether at least one chopped signature passed the signature checking or not */
if at least one bit in NewBitmap is not zero
NewElm.pointer:=child; NewElm.dist:=DIST(Q s, mbr)
NewElm.bitmap:=NewBitmap
Enqueue(Queue, NewElm)
end if
end if
end for
else if Elm.pointer is a leaf node /* the next target node is a leaf node */
for each entry(object, tid) in Elm.pointer
if Elm.bitmap.isset(EntryIndex) is True
NewElm.pointer := object; NewElm.dist := DIST(Qs, object)
NewElm.tid := tid
Enqueue(Queue, NewElm)
end if
end for
else /* Elm.pointer is an object */
return Elm.tid
end if
end while

Algorithm 2 SignChecking(S;, ChoppedSignArray)

© 00 O Tt WK

S := ChoppedSignArray
for i:=1 to f(l) /* 1 is the current level of the S-tree */
if (Sq AND S;) == S,
for j := i*AllocSize(l) to (i+1)*AllocSize(l)
Bitmap.set(j)
end for
end if
end for
return Bitmap

Algorithms 1 and 2 specify our algorithm and signature checking routine, respectively. Addi-

tional parts in our algorithm are mainly steps identifying what child nodes or objects within the

the next target node were pruned(Steps 9 and 19 in Algorithm 1), and signature checking steps

prior to inserting them into the queue(Step 10 in Algorithm 1). In Algorithm 2, AllocSize(l) de-

notes the number of entries in the R-tree node on level [ allocated to each chopped signature(i.e.,

the size of each bucket in Section 4.4). Our algorithm is not well-suited to queries with range
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Figure 5: R-tree Node Search Space of the RtreeI NN Algorithm

predicates(i.e., < or >). However, for handling such queries, we can apply the RtreeI NN algo-
rithm using the R-tree of our RS-tree without degrading the performance. This is because in the

RS-tree, the R-tree has individual storage independent of the S-tree.

5.1 Analysis

We prove theoretically that the signature-chopping based RStreeI NN algorithm is better than
the RtreeI NN algorithm, and quantify the performance gain of our algorithm over the other.
Note that we do not derive the comprehensive cost models of two algorithms. Deriving them are
complicated, especially for high dimensional spaces. For details, refer to [4, 15].

In the following, we use terms such as k', O* | and SP(Q,r) and their meanings in the same
context as that of Section 3.2. Figure 5 depicts the R-tree node search space after finding the
k-th answer using the RtreeI NN algorithm, where it is assumed that all grids specify R-tree leaf
nodes. As described in Section 3.2, the R-tree node I/O cost(RtreeINN _Cripee) of the Rtree] NN
algorithm is equivalent to all R-tree leaf nodes intersecting the hypersphere SP(Q,r)(the shaded
region in Figure 5)8. Here we can divide RtreeI NN _C,.. into two classes of R-tree leaf nodes, i.e.,
inside(the dark shaded region in the figure) or intersecting(the light shaded region in the figure)
the boundary of SP(Q,r), which we denote PAGE;y,siqe and PAG E;piersect, respectively. Thus
the R-tree node I/0 cost is RtreeI NN _Criree = PAGE;nsiqe + PAGE;ptersect- It is reasonable
to assume that on the average, half of the C points in each leaf node in PAGE;,tersect are
inside the search region, while half are outside[15], where C' denotes the average R-tree leaf node
capacity. The total number of the tuples touched during the query processing is RtreeI NN k' =
C(PAGEinside + sPAGEiniersect)-

We consider the RStreeI NN algorithm exploiting the signature chopping technique presented
in Section 4.4. The main difference between the RtreeI NN and RStreeI NN algorithms is whether

signature checking is performed or not. As mentioned in Section 4.4, a child node in the target node

81f the average leaf and non-leaf node capacities are fairly high, the number of leaf node accesses dominates the
number of non-leaf node accesses[15]. Thus for the R-tree node I/O cost, we approximate the total number of node
accesses by the number of leaf node accesses.
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will be inserted into the queue only when among the f(I) chopped signatures, at least one chopped
signature passes the signature checking. Generally, the probability that a chopped signature will
pass the signature checking corresponds to a false drop probability®, namely Fy.,,, which is often
addressed in the signature file techniques[12]. Thus, assuming that the signature chopping function
f() is in the form of (base)!, say 2!, the probability that at the bottom level(i.e., I = 1) of the
S-tree, at least one chopped signature will pass the signature checking, i.e., a child node in the
target node will be enqueued, is Ppass = 1 — (1 — Fj,.05)"*%¢. As a result, if we apply Ppgss to
RtreeINN Chriree and RtreeINN_K' of the RtreeIl NN algorithm, the R-tree node I/O cost and
the total number of the tuples accessed by the RStreeI NN algorithm are, respectively, bound by
Ppass(PAGEinside + PAGEintersect) and Ppass - C(PAGEinside + PAGEiniersect)-

The tuple I/O cost depends on the total number of the tuples accessed, namely k'(See the Yao
function in Section 3.2). Thus we can use k' as the performance measure for the tuple I/O cost.

Putting the above formulas together, RStreeI NN outperforms RtreeI NN by a factor of Ppiss =

W in terms of both the R-tree node and tuple I/O costs. It is always guaranteed that
op

the performance gain is greater than 1, since 0 < Fyop < 1 and thus W > 1.
rop

6 Experiments

In this section, we study the performance of the two algorithms of Section 3 and Section 5 in
evaluating k-nearest neighbor queries with a non-spatial predicate. The results presented in this
section are based on an extensive experimental study on both a real dataset and synthetic datasets.

In comparing the two algorithms, we used three metrics: execution time, the number of tuples
accessed, and the number of pages accessed. The second metric denotes the number of tuples(or
TIDs) returned to the upper operator until the k answers are obtained. The third metric specifies
the number of pages accessed for both tuples and R(S)-tree pages during the query processing.
The above metrics were measured in a system that is equipped with a Pentium 133 MHz processor,

128 MB of main memory, and a 6 GB disk drive and operated by the PowerLinux 6.0 version.

6.1 Experimental Setting
6.1.1 Datasets

We defined a simple DISC table that our test queries are performed over and has the following
self-explanatory schema:

DISC (artist, type, country, color)
color has a d-dimensional spatial domain where each value is d*sizeof(float) bytes long. The

remaining attributes defined in the alphanumeric domain are about 30 bytes long, respectively.

1
9The false drop probability is approximated by Fynop = (1) ™

ORed for a chopped signature, and F' is the signature size in bits.

, where D; is the cardinality of signatures
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In all experiments, only color and artist are used as attributes for the test queries. The rest
simply pad the tuples with characters to ensure that each DISC tuple is about 100 bytes long.
A page is 4 KBytes long in storing the DISC table. The size of the cache for accessing tuples to
evaluate test queries is about 1% of the DISC database size, which follows the LRU replacement
policy.

For non-spatial attributes, we systematically generated only synthetic datasets from Zipfian
Distribution with the Zipfian variable z = 0.5, where the number of distinct values of each attribute
shows 0.2% of the number of tuples. For the spatial attribute color, we used both synthetic
datasets and a real dataset: Each synthetic dataset contains d-dimensional points generated using
Uniform Distribution, which are distributed in a [0, 1]¢ space. The dimension d ranges from 2 to
12 since the R*-tree is efficient in low- or middle-dimensional vector spaces. The number of points
within each synthetic dataset is in the range of 100,000 to 500,000. The real dataset contains
16-dimensional Fourier points used in a CAD model[4], of which the size is 200,000.

6.1.2 Test Query Sets

The test query sets consist of about 50 test queries, and each experimental result is the average
over about 50 test queries. Like the example query of Section 1, each test query involves three
values: a d-dimensional point for color, the alphanumeric value of size 30 bytes for artist,
and the query result size k. The spatial query point was randomly selected from the set of color
values in the DISC database. The criteria for choosing the 50 query values of artist from the
DISC database is how low the selectivity of each of them is. If the query value is lowly selective,
the query optimizer is highly likely to use the spatial index rather than a sequential scan, subject
to high sorting cost. Note that in this paper, the RtreeINN or RSTreeINN algorithms are applied

to perform the test queries above .

6.1.3 Data Structures

In this paper, the two algorithms for the distance browsing queries use the R(S)-tree. In our
experiments we make use of a variant called the R*-tree[2] with the key being color. The
S-tree, of which the key is artist, for RStreeI NN was constructed in conjunction with the
bulk-loading of the R*-tree. When building the S-tree, we applied various signature chopping
functions f(I)’s(e.g., 2,3}, etc.) under the constraint that no overflow pages occur except for
particular cases(e.g., d = 2). When generating a signature, we used the hash function of [12]. In
all experiments, we used the signature of a fixed size, i.e., F'=64 bits(= 8 bytes). We believe that
using a larger signature will improve the performance under the condition that overflow pages
never occur. The size of each page is 4 KBytes in storing spatial indexes used in two algorithms,

and the cache of each spatial index accommodates a page in size. The priority queue used in the
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two algorithms was implemented to permit a memory-based data structure for it.

6.2 Experimental Results

In this subsection, we present experimental results of the two algorithms on both synthetic and
real-life datasets. We study the performance of two techniques with respect to the query result

size, the signature chopping function, the dataset size and the number of the dimension.
6.2.1 Synthetic Dataset

This subsection presents experimental results on synthetic datasets. In reality, the R*-tree is
efficient for low- or middle-dimensional datasets. For this reason, we performed experiments for
6-dimensional synthetic datasets containing color feature vectors, except the experiment for the

effect of different dimensions.

Effect of Different Query Result Sizes(k): This experiment studies the performance of the
two algorithms for different query result sizes. Figure 6 shows the execution time, the number of
pages accessed, and the number of tuples retrieved with the following experimental parameters:
the dimension of color d = 6, the Zipfian variable of artist z = 0.5, the number of tuples
N =100, 000, the signature partition function f(I) = 6!, and the signature size F' = 64(Bits).

Figure 6(a) shows the number of tuples retrieved, which corresponds to the number of tuple
candidates that were returned to the upper operator. The curves of both of the algorithms increase
linearly as k becomes larger. However, the curve slope of RStreeI NN is less steep than that of
RtreeINN. The reason for this is that RStreeI NN has the effect of pruning the R*-tree nodes
or objects(or TIDs) using the S-tree. Figure 6(b) reveals the number of pages accessed(i.e., the
R(S)-tree node I/Os plus the tuple access I/Os) until the k¥ answers are obtained. The curves
of both of the algorithms, as shown in Figure 6(a), increase as k grows and resemble those of
Figure 6(a), because for relatively small datasets, the tuple access I/Os affect the number of pages
accessed more than the R(S)-tree node I/Os do.

In Figure 6(c), we find that the difference in the number of tuples accessed between the two
algorithms is reflected in the execution time of Figure 6(c). However, the two graphs are not
so exact as we expected them to be, since RStreeI NN accesses the R-tree pages and the S-tree
pages alternatively and therefore must pay off the random disk I/O cost. Nonetheless, RStree] NN
outperforms RtreeI NN by about 100%.

Effect of Different Signature Chopping Functions(f(l)): In this experiment, we study
the impact of the signature chopping function on the performance of the two algorithms, where
experimental parameter values, except for the signature chopping function are equivalent to those

of the previous experiment.
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Figure 6: Performance vs. Query Result Size k (d=6, N=100,000, 2=0.5, f(I)=6!, F=64)

We can expect that the performance of RStreeINN will be affected by the degree of signature
chopping(i.e., f(1)) and maybe will be in proportion to it. However, we must also consider that
overflow pages subject to a large f(I) may degrade the performance of the algorithm. We experi-
mented the signature chopping function f(I) to such an extent that f(I) does not give rise to the
overflow pages. The results are like in Figure 7, where the query result size k= 5 or 10.

Figure 7(a) shows that for the number of pages accessed, the curve of RStreeI NN declines
significantly as the signature partition degree(i.e., the base in Figure 7) increases. In Figure 7(a),
the curve of RtreeI NN is stationary regardless of f(I). The incremental difference of the heights of
the two curves as the degree of f(I) grows is reflected in the execution time of Figure 7(b). However,
in the case where f(I) = 2!(i.e., base = 2 in Figure 7(b)), the performance of RStreeI NN is worse
than that of RtreeI NN since the benefit of pruning by the S-tree does not compensate for the
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damage of the random disk I/Os done for accessing the S-tree nodes. Putting them together, when
a somewhat large {(1) is used, RStreeI NN can obtain a more significant performance improvement
compared to RireeINN.

Figure 7(c) shows the entire queue size according to f(I) where k = 10. NoSign and base > 2
correspond to RtreeI NN and RStreeI NN, respectively. In the figure, the upper and lower
numbers, respectively, denote the entire queue size and the number of R-tree nodes inserted into
the queue during the query processing. The difference between the two numbers corresponds to
the number of objects(or TIDs) enqueued during the query processing. In Figure 7(c), we find
that the amount of both R-tree nodes and the objects inserted into the queue decreases with the

growing degree of signature chopping, meaning that in the S-tree, the signature chopping lowered
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the speed of signature saturation and hence reduced the phantom effect. This fact explains that

RStreeI NN outperforms RtreeI NN as f(l) increases(Figure 7(a-b)).

Effect of Different Dataset Sizes(IN): In this experiment, we study the performance of the
two algorithms for different dataset sizes. The experimental parameter values are d = 6,z = 0.5,
f(I) = 6!, and F = 64. Figure 8 shows that as the dataset size is larger, RStreeI NN is significantly
better than RtreeI NN. Also, as the dataset size grows, the curve slope of execution time of
RStreeI NN increases gradually, while that of RStreeI NN increases abruptly. Based on this

fact, we know that RStreeI NN guarantees good performance irrespective of the dataset size.

Effect of Different Dimensions(d): The goal of this experiment is to measure the difference of
the two algorithms as the number of the dimension is varied. We used the experimental parameter
values: N = 10,000, z = 0.5, f(I) = 6!, F = 64. In this experiment, in the case where d = 2,
overflow pages for storing the signatures of the S-tree occurred and the overall storage of the S-tree
was twice as large as that of the other cases(i.e., d > 2).

Figure 9 displays that RStreeI NN is better than RtreeINN. We also find from the figure
that the difference of the performance between the two algorithms decreases as the number of the
dimension grows. In fact, the capacity(or fanout) of the high-dimensional R*-tree node is relatively
small'®. Hence, TIDs of tuples with the query value(e.g., ‘Beatles’) may be evenly distributed over
most R-tree leaf nodes, which consequently makes the probability of passing signature checking
higher. For this reason, in high-dimensional vector spaces, RStreeI NN accesses a lot of R-tree

nodes.

10The capacity of the 12-dimensional R-tree leaf node is a little under a forth times as large as that of the
2-dimensional one.
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6.2.2 Real Dataset

In this experiment, we study the performance of the two algorithms with respect to the query result
size. As a real dataset, we used 16-dimensional Fourier points used in a CAD-model[4], which
correspond to feature vectors of color. For other non-spatial attributes, synthetic data were
generated from Zipfian Distribution with z = 0.5. The rest of the experimental parameter values
are N = 200,000, f(I) = 6!, and F = 64. We believe that comparison between the performance of
the two algorithms is reasonable, although the performance of the high-dimensional R-tree is not
so efficient.

Figure 10 plots the execution time versus the query result size for the two algorithms. The
graphs show that RStreeI NN is superior to RtreeI NN, and that the performance gap increases as
the query result size grows. Therefore we know that RStreeIl NN applying the signature chopping

technique behaves favorably for the real-world dataset as it does for the synthetic datasets.

7 Conclusion

In this paper, we present the RS-tree-based incremental nearest neighbor algorithm to improve
Hjaltason and Samet’s algorithm based on the R-tree, when processing k-nearest neighbor queries
with a non-spatial predicate. In their algorithm, since the R-tree does not have any facility to
prune the tuples that would not satisfy non-spatial predicate, many unnecessary I/Os for accessing
worthless tuples and R-tree nodes occur. In contrast, our algorithm can partially prune them using
the RS-tree, and its performance is significantly enhanced by applying the signature chopping
technique. As a result, our algorithm showed better performance than Hjaltason and Samet’s

algorithm, which was illustrated through our experimental results.
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A Brief Description of the Yao Function

In order to estimate the number of block accesses in a database organization where records are

grouped into blocks in secondary storage, Yao[24] presented the following theorem?!?.

Theorem 1 Let n records be grouped into m blocks(1 < m < n), each containing p = n/m records.
If t records are randomly selected from the n records, the expected number of blocks hit(blocks with
at least one record selected) is given by

b(m, p,t) = { nm1[1 e (n=—p—i+1)/(n—i+1)] ii ZZZ

According to the derivation in Section 3.2, it is satisfied that m = %, p= %, and t = %

where NV, B, and T are the number of overall tuples, the page size, and the tuple size, respectively.

By the above function, the tuple scan cost approximates to Cyypie = b(%, %, %)

11We use the notation and some of the conditions in the paper “Kyu-Young Whang, Gio Wiederhold, and Daniel
Sagalowicz. Estimating Block Accesses in Database Organizations: A Closed Noniterative Formula, Communica-
tions of the ACM, 26(11), Nov. 1983.” which slightly modified those of [24].

25



