
Interface/implementation Separation
Mechanism for Integrating

Object-oriented Management
Systems and General-purpose

Programming Languages
EUN-SUN CHO1 AND HYOUNG-JOO KIM 2

1Graduate School of Information and Communication, Ajou University, Suwon, 442-749, Korea
2Department of Computer Science, Seoul National University, Seoul 151-742, Korea

Email: eschough@madang.ajou.ac.kr

When a database is shared in different database applications, it is helpful for data-independence and
program readability to screen off the implementation details of a schema class from the programs
other than the method implementation code. This makes some systems allow their users to define
the schema class in two parts—the interface and the implementation. In this paper, we propose
a preprocessing-based approach with the object model for OODBPLs (object oriented database

programming languages) with interface/implementation separation.

1. INTRODUCTION

‘Class’ in object-oriented terms has two aspects—one is
interface, and the other isimplementation. Interface
represents the semantics of the class, and the information
only with which its users can access the objects of the class.
On the other hand, implementation includes the internal
implementation of the class.

These days, it is not rare to define a class separately into
an interface unit and an implementation unit [1, 2, 3, 4].
For example, with the separate interface only, the clients in
distributed environments are allowed to be served from the
remote servers without knowing the implementation details.

As another example, in the database area, users can
access data as long as they know the schema interface,
while the implementation of a schema class is needed for
implementing the method body of the class and for creating
the objects. In addition, interface/implementation separation
prevents implementation changes from influencing its
interface specification and related programs, which reduces
the schema evolution cost [5].

In this paper, we focus on the interface/implementation
separation in the database area, and propose a preprocessing-
based approach for OODBPLs (object-oriented database
programming languages) with the object model with
interface/implementation separation. The sequence of this
paper is as follows. The way of defining an interface
unit and an implementation unit is introduced in Section 2,
while Section 3 presents the semantics of the hierarchical
relationships between interfaces and implementations. In
Section 4, the semantics of relationships between interfaces

and implementations is elaborated. Each of these sections
covers formal definitions, related works and discussions.
Section 5 concludes the paper. An example of a relatively
complete code segment is in the Appendix.

2. DEFINING INTERFACE AND
IMPLEMENTATION

In this section and the three following sections, we introduce
our preprocessing approach for the interface/implementation
separation for OODBPLs. Before proceeding further we
define terms used throughout this paper. A classdefinition
is usually specified by data structures and method bodies
of a class, but in this paper it is also used to mean the
class declaration, whenever no confusion arises. The
base languageis an OOPL (object-oriented programming
language) that is extended to database access. The base
language is assumed to have a static type system [6], and
must have an object constructor calledclassand user-defined
hierarchical relationships among the classes. Subtyping is
identified by the hierarchical relationship.

In the proposed mechanism, two more object constructors
other than class are introduced—interface and implemen-
tation. An interface is an object constructor consisting of
public data and public method signatures. An implementa-
tion is the implementation part of a schema class, including
internal data structures and method implementations. When
a schema class is divided into an interface and imple-
mentation, it is said that the implementation implements
the interface. If the implementationM implements the
interfaceI , the object created byMis also considered as an

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

SEPARATION MECHANISM FORINTEGRATING OODBMSS AND GENERAL-PURPOSEOOPLS 513

object ofI , andI andMare in animplementing relationship.
When a user explicitly defines the implementing relationship
between an interface and an implementation, the interface
and the implementation are said to beboundto each other,
or in abinding relationship.

A C++-like syntax, which is one of the most popular
APIs (application programming interfaces) for OODBMSs
(object-oriented database management systems) [7, 8, 9, 10,
11], is used throughout this paper. However, for simplicity,
some restrictions are introduced to enable concentration on
database semantics. For type constructors, only the function
type is considered; the pointer type and the array type
are ignored. Template classes, method overloading and
protected attributes/methods [12] are not included either.

2.1. Definitions of interfaces and implementations

In the conventional C++ interface for OODBMSs, the
keyword persistent class [7, 8] or dbclass [13]
is used to specify which class is involved in a schema
construction. For example, usually the persistent class
Deposit could be declared in the conventional C++
interface as follows.

// conventional definition

persistent class Deposit {

private :

money amount;

time issue_date;

public :

number account_number;

money show_amount();

time show_date();

void put_money();

....

};

Similarly, thepersistent keyword is also used in our
approach. However, a persistent class here, unlike the ones
in the previous approaches, consists of itspublic part, that
is, of its interface.

// our mechanism

persistent class Deposit {

public :

number account_number;

money show_amount();

time show_date();

void put_money();

....

};

Interfaces do not have the member property keywords in
them;public is assumed.

To allow different application programs to get information
by sharing only interfaces, each interface declaration should
not contain implementation names in their specification of
the attributes/methods. That is, in order to make users
understand the schema only with the set of interfaces, each
interface declaration should be constructed with only the
names common to those applications, such as primary types
or the interfaces themselves. This property, named theself-
containmentof the set of interfaces, enables users to access
data without knowing concrete implementations.

A definition of an implementation is similar to a
non-database class except for the additional keyword
implements which binds to an interface. This allows one-
to-many mappings from interfaces to implementations. For
example, implementations ofDeposit may be:

class Deposit_Impl1 { // implementation

implements Deposit;

.... // same as declaration in Deposit

(can be omitted)

money amount;

time issue_date;

....

};

or

class Money_Deposit { // implementation

implements Deposit;

...

};

The attributes/methods declared in the corresponding
interface can be omitted or rephrased. If omitted, the
declarations in its interface are automatically copied by the
system.1

In our approach, both interfaces and implementations are
user-defined types. Using interfaces as types is similar
to using classes or tables as types in existing OODBMSs
and RDBMSs, which ensures the right use of the database
classes/tables. Using implementations as types is also
helpful for detecting errors in the use of implementations,
ahead of the run time.

Here, we give a formal description of interfaces and
implementations of our approach. Some definitions of
domains are given before proceeding further. A set of
system-defined types such asint , float and char is
BT. The domain of the names of interfaces isDNI, that of
implementations isDNM, and that of the attribute names and
method names isDNSM. It is assumed that each interface or
implementation has a unique name.

In what follows the user-defined interfaces and implemen-
tations of schema classes are defined.

DEFINITION 1. (Set of interfaces and set of implementa-
tions)A user-defined set of interfaces I is a pairI = 〈IN, ν〉
s.t.

IN ⊆ DNI

ν : IN → 2DNSM

whereν is a function which maps each interface name to a
set of attributes/methods.

A user-defined set of implementationsM is a pair M =
〈IMδ, θ〉 s.t.

IM ⊆ DNM

δ : IM → 2DNSM

θ : IM → 2DNSM

1Currently, unless they are inherited from the superclasses, we assume
that all the methods of the implementation are always accompanied by their
code bodies.

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

514 E.-S. CHO AND H.-J. KIM

where δ is a function which maps each implementation
name to a set of private attributes/methods, andθ is a
function mapping each implementation name to a set of
public attributes/methods.

IN is the set of user-defined interface names.I defines the
set of user-defined interfaces, by the names accompanied by
their attribute/method names. The attributes and methods
of an interface namedi can be obtained byν(i). IM
is the set of user-defined implementation names. All
the data and methods of an implementationm can be
obtained fromδ(m) ∪ θ(m). M defines the set of user-
defined implementations, by the names accompanied by the
public/private attribute/method names of them. Usual OOPL
classes belong toIM. We call an element ofIN ∪ IM aclass.

In the following definitions,4I and4M are respectively
the sets of type specifications used in the declarations of
attributes/methods of interfaces and of implementations.

DEFINITION 2. (Type specifications for interfaces)A set
4I is defined inductively as follows:

(i) if a ∈ BT, thena ∈ 4I ,
(ii) if a ∈ IN, thena ∈ 4I ,
(iii) if a0, . . . , an ∈ 4I , then function(n, a0, . . . an) ∈ 4I ,

where an application of the functionFUNCTION to
〈n, a0, . . . , an〉 yields 〈FUNCTION, n, a0, . . . , an〉 for any
ai ∈ 4 (0 ≤ i ≤ n), such that a0 means the
result type-specification, anda1, . . . an mean argument type
specifications for the function.FUNCTION is a system-
defined symbol used in the type specifications.

DEFINITION 3. (Type specifications for implementations)
A set4M is defined inductively as follows:

(i) if a ∈ BT, thena ∈ 4M ,
(ii) if a ∈ (IN ∪ IM), thena ∈ 4M ,
(iii) if a0, . . . , an ∈ 4M , then function(n, a0, . . . an) ∈

4M ,

under the same conditions described in Definition 2.

Note that we define4I and4M separately. According
to the self-containment property mentioned above, only the
interfaces and primary types are allowed to be the type
specifications of interfaces. The elements ofIN or IM shown
in a type specification are calledcomponentsof the type
specification.

2.2. Acceptable binding

At the implements phrase in each implementation
declaration, the definition of the implementation and its
bounded interface are checked if the user-defined binding
destroys the type safety. All destructive bindings are
rejected, otherwise we call themacceptablebindings. By
a check on the involved definitions of interface and the
implementation, the acceptability of a binding can be
syntactically confirmed. For example, we could use the
sufficient condition for the acceptable binding that all
attributes/methods in the involved interface are also defined

in the corresponding implementation in the same way, that
is, with the same type specifications.

However, this condition is so restrictive for database
applications that the implementation could not have at-
tributes/methods of implementation types freely: when the
attributes/methods belong to the interface, an implementa-
tion bound to it can have them only with interface types or
primitive types, with self-containment property of interfaces.
The implementation therefore will miss the chance of more
concrete description of the attributes/methods, by forcing
the interface and the implementation to have the same type
specification for their common attributes/methods.

Consequently, to make it possible to use implementations
and interfaces as type specifications in the implementation,
we make the condition for acceptable bindings less strict
as follows: (1) all attributes/methods in the interface
declaration exist also in the implementation declaration;
and (2) the type specifications of the attributes/methods
in the implementation are identical to their corresponding
type specifications in the interface, or in other binding
relationships with their corresponding type specifications
in the interface, if they are not method argument type
specifications. Note that only the type specifications of data,
and the result of methods in an interface, are allowed to have
variants in the corresponding implementations. Otherwise,
the type correctness could be violated by the covariance in
the argument type specifications [14].

For example, the implementation256Color and
the implementation256ColorImage are bound to the
interfacesColor and ColorImage respectively, in the
following definition.

persistent class Color{ ... };

class 256Color{ ... implements Color; ... };

persistent class ColorImage {

...

Color color(); // return type is Color

};

class 256ColorImage {

...

implements ColorImage;

256Color color(); // 256Color is an

implementation of Color

... // others are same as in the

ColorImage

};

The return type of the methodcolor() is Color in
ColorImage , but is 256Color in 256ColorImage .
However, since256Color is already bound toColor , the
binding of 256ColorImage andColorImage will not
be rejected, if256Color andColor are already accepted
(see Figure 1).

To describe user-defined bindings in a formal way, we
define a functionZ which inductively maps each element
of 4I ∪ 4M to its components according to the definition of
4I ∪ 4M .

DEFINITION 4. (Names in a type specification)For every
ty ∈ 4I ∪4M , a functionZ : 4I ∪4M 7→ 2IN∪IM is defined
by recursion on ty:

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

SEPARATION MECHANISM FORINTEGRATING OODBMSS AND GENERAL-PURPOSEOOPLS 515

FIGURE 1. Example acceptable classes.

(i) if ty ∈ BT, thenZ(ty) is φ,
(ii) if ty ∈ (IN ∪ IM), thenZ(ty) is {ty},
(iii) if there isa0, . . . , an ∈ 4I ∪ 4M s.t.,ty

= function(n, a0, . . . , an), thenZ(ty) isZ(a0).

The interfaces or implementations used in the specifica-
tion of the datasm of a classm are represented by{x |
x ∈ Z(P(m, sm))}. As for functions,Z considers only their
result type specifications.

Then, we introduce a functionP : (IN ∪ IM) × DNSM 7→
4I ∪ 4M which maps the name of an attribute/method of
a class to the type specification of the attribute/method.
That is, P(m, f) symbolizes the type specification of an
attribute/methodf of a classm. P is defined by users
during the class declaration time. Now, the definition
of the functionsπI and πM , which describes the set of
declarations of the attributes/methods in a given interface
and an implementation respectively are in order.

DEFINITION 5. (Set of data and methods of an inter-
face and an implementation)A function πI : IN 7→
DNSM × 4I and a function πM : IM 7→ DNSM ×
4M × {PUBLIC, PRIVATE} are defined by the following
equations:

(i) for all i ∈ IN, πI (i) = {〈sm,P(i, sm)〉|sm ∈ ν(i)},
(ii) for all m ∈ IM, πM(m)

= {〈sm,P(m, sm), PUBLIC〉|sm ∈ θ(m)}
∪{〈sm,P(m, sm), PRIVATE〉|sm ∈ δ(m)}.

This definition is useful for defining the acceptability of
bindings.

DEFINITION 6. (Set of acceptable bindings)� ⊆ IN ×
IM is a subset of user-defined bindings with the following
properties: if〈i,m〉 ∈ �, for eachd1 = 〈sm1, t1〉 ∈ πI (i),
there is a correspondingd2 = 〈sm2, t2, pr〉 ∈ πM(m) s.t.

sm1 = sm2, pr = PUBLIC, Z(t1) = {x1, . . . , xn},
Z(t2) = {y1, . . . , yn} and for all xi , there is corresponding
yi s.t.

(i) xi = yi or 〈xi, yi〉 ∈ � and
(ii) t1[y1/x1][y2/x2] . . . [yn/xn] = t2.

2.3. Related works and discussions

Galileo [15, 16], one of the early active OODBMSs,
provides three object constructors. Among them,abstract

typesand concrete typescorrespond to our interfaces and
implementations, respectively. However, Galileo does not
preserve the self-containment property of the abstract types.

The ODMG-93 object model [17], ade factostandard
object model suggested by OMG (object management
group), is also based on the interface/implementation
separation idea. An ODL (object definition language) [17]
is a specification language which is not dependent on any
specific application programming languages. It requires that
another application programming language such as C, C++,
or Smalltalk implements the classes defined in the ODL [17].
An ODL class may have more than one implementation
in different programming languages. Thus, an ODL
class represents an interface of a schema class, while the
corresponding classes in programming languages are similar
to implementations in our approach. However, bindings of
implementations and ODL classes are preset in ODMG-93,
and the programmers consider the implementation and the
corresponding ODL class identical. This loses the flexibility
of one-to-many mappings, which is discussed further in the
next section.

The interfaces and implementations in our approach look
like those in Java and CORBA. However, we propose a
distinctive way of integrating database classes and general
purpose OOPLs by using interfaces as persistent classes.
This allows database programming under a single object
model, even in general-purpose OOPLs. This approach
contrasts with the current OOPL extensions providing
both CORBA and OODB interface [18, 19, 20], where
the users are expected to be used to the semantics of
database classes and that of separate classes (interfaces and
implementations), simultaneously.

3. HIERARCHIES

3.1. Distinct hierarchies in interfaces and in
implementations

In our approach, each database application program
maintains two hierarchies—one for the schema interfaces
and the other for the implementations and non-database
OOPL classes. The hierarchies for interfaces are based on is-
A relationships, that is, subset relationships of their instance
sets, while those for implementations are for the reuse of the
code bodies.

For example, we can define the interfaceDeposit as a
subclass of another interface as follows.

persistent class Account {

number account_number;

money show_amount();

time show_date();

....

};

persistent class Deposit : Account {... void put_money();

...};

persistent class Loan : Account {... void borrow_money();

...};

The implementationMoney Deposit , which imple-
ments the interfaceDeposit , can be placed in a hierarchy,

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

516 E.-S. CHO AND H.-J. KIM

FIGURE 2. Separated class hierarchies for interfaces and
implementations in the example.

as follows. This is independent of the schema interface
hierarchy includingDeposit , Account andLoan . As-
sume that the classmoneyManager is an existing class for
managing the data of themoney type.

class Money_Deposit : moneyManager { implements Deposit;

... };

These example hierarchies are depicted in Figure 2.
Each of the two hierarchies bears their own inheritance
relationships. Both hierarchies for interfaces and those for
implementations identify subtyping.

Next, we provide the definition of≺I and ≺M , which
specifies type-correct and user-defined inheritance relation-
ships for interfaces and implementations, respectively.

DEFINITION 7. (Inheritance relationships of interfaces
and implementations)≺I⊆ IN × IN is a subset of the user-
defined inheritance relationship set with the property that
if 〈i1, i2〉 ∈≺I and πI (i2) ⊂ πI (i1). ≺M⊆ IM × IM is a
subset of the user-defined inheritance relationship set with
the property that if〈m1,m2〉 ∈≺M , πM(m2) ⊂ πM(m1).

The above definition shows that the re-definition with
inheritance follows the no-variance rule [21]. Access
specifiers likePRIVATEandPUBLIC cannot be re-defined.
We let≺∗

I and≺∗
M denote the transitive and reflexive closure

of ≺I and≺M , respectively.

3.2. Related works and discussions

Our approach has an explicit subclassing mechanism, which
means that the subtyping is identified only by the user-
defined inheritance specification and the transitivity rule.
In some of the existing programming languages [2, 3, 22,
23, 24], subtyping is identified by the structural conformity,
based on signatures of the classes. However, it is more
attractive to us to distinguish subtyping by explicit user
specification of inheritance, since implicit subtyping may
introduce inadvertent relationships between schema classes,
contrary to users’ intentions [25]. Especially for database
applications, subtyping based on explicit user-specification
is preferred, so that the hierarchies defined by schema
designers can be made meaningful in the type system.
Moreover, explicit subtyping of implementations is more

useful when the features of the database are integrated with
a base language like C++ which supports explicit subtyping.

Due to the decoupling of interface hierarchies and
implementation hierarchies, schema evolution in our
approach is made simpler. For example, let us assume that
there is an interface of a persistent classDeposit which
has multiple implementations namedDeposit Impl1 ,
Deposit Impl2 and Deposit Impl3 . In existing
OODBMSs without interface/implementation separation,
such implementations have to be made subclasses of
Deposit in a class hierarchy. This can be represented in
a C++ like syntax as follows.

// a schema class

persistent class Deposit { ... };

// various ways of implementing Deposit

persistent class Deposit_Impl1: virtual Deposit

{ ... };

persistent class Deposit_Impl2: virtual Deposit

{ ... };

persistent class Deposit_Impl3: virtual Deposit

{ ... };

At this time, if a new interfaceSpecialDeposit is
created as a subclass ofDeposit in the schema, it should
be inherited from the three classes.

// a subclass of Deposit

persistent class SpecialDeposit:

Money_Deposit, Deposit_Impl1, Deposit_Impl2 { ... };

In such a case, ambiguities [26] may arise if any
pair of those three subclasses happen to share names of
attributes/methods, which is not rare, and users have to
override them in the classSpecialDeposit .

In our approach, such a schema class can be added in a
simpler and more elegant way. Since a hierarchy for imple-
mentations can be built regardless of the interface hierarchy,
DepositImpl1 , DepositImpl2 andDepositImpl3
in the above example do not have to be subclasses of
Deposit any more. Instead, they are bound toDeposit .

class DepositImpl1{implements Deposit;...};

class DepositImpl2{implements Deposit;...};

class DepositImpl3{implements Deposit;...};

Since the changes in the implementation hierarchy do
not affect the interface hierarchy, andvice versa, the new
interfaceSpecialDeposit can inherit fromDeposit
directly, without consideration of the implementations of
Deposit .

persistent class SpecialDeposit: Deposit{...};

Also, when users want to add/delete/modify the private
attributes/methods in the implementation of the class
Deposit , they do not have to change the whole class
declaration or application programs. Instead, they are
supposed to change only the specific implementation, or add
a new implementation of the interface and use it from then
on. Although this point is also applicable to general non-
database programming, it is especially useful for database
programming where the degeneration of schema evolution
cost is important.

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

SEPARATION MECHANISM FORINTEGRATING OODBMSS AND GENERAL-PURPOSEOOPLS 517

4. IMPLEMENTING RELATIONSHIPS AND
SUBTYPING

4.1. Side-effect of the implementing relationships

Similar to other database programming languages [8, 10,
27], a database object in our approach is created through
an implementation and handled by anobject handler
in application programs. The type of such an object
handler is the pointer to an interface type, and the actual
implementation of the object does not have to be known to
the users of the object handlers. For example, if the interface
Deposit is implemented by bothDeposit Impl1 and
Deposit Impl2 , instances can be created and used as
follows (‘obase ’ means the name of an objectbase).

Deposit * x = new(obase) Deposit_Impl1;

...

if (...)

x = new(obase) Deposit_Impl2;

...

x->put_money(1000);

By the object handlerx , all attributes/methods described
in Deposit can be accessed, whether the actual im-
plementation isDeposit Impl1 or Deposit Impl2 .
Such assignment statements should be allowed only if
Deposit Impl1 andDeposit Impl2 are in implemen-
tation relationships with the interfaceDeposit .

However, if the implementationDepositImpl1 imple-
ments the interfaceDeposit , this does not simply mean
that DepositImpl1 is bound to the interfaceDeposit .
Let us consider more cases of implementation relationships.

First, by the subset property of the schema hierarchy
in OODBMSs, an object of an interface is also con-
sidered an instance of the superclasses of the interface.
Thus, DepositImpl1 also implements the interface
Account , if the interface bound to the implementation
DepositImpl1 is a subclass of the interfaceAccount .

Second, although it appears thatDepositImpl1
implementsX if one of the superclasses ofDepositImpl1
is bound to the interfaceX, it is not always true. It is
because both the subset relationships between interfaces
and the reuse relationships between implementations are
involved in the type system as subtyping, and because such
mixing might cause unexpected side-effects by transitivity
of the subtyping. For example, consider the schema
interfaceZoo Animal which represents animals in a zoo,
bound to the implementationbiologicalinfo record
in the following example. Of course, the object
created bybiologicalinfo record also belongs to
Zoo Animal .

persistent class Zoo_Animal {...};

class biologicalinfo_record { implements Zoo_Animal;

... };

Now, in addition to biologicalinfo record ,
let us consider some other implementations, such
as biologicalinfo and price record and
biologicalinfo and feeding record for the
interfaceZoo Animal . Such implementations are often

defined with inheritance from the existing implementation
biologicalinfo record for code reuse.

class biologicalinfo_and_feeding_record:

public biological_record{...};

class biologicalinfo_and_price_record:

public biological_record{...};

Now, let us assume that there is a new
schema interface Person and an implementation
biologicalinfo and intelligence record is
bound to Person . Also, it is possible that
biologicalinfo and intelligence record is
defined with inheritance from the existing implementation
biologicalinfo record (Figure 3);

persistent class Person {...};

class biologicalinfo_and_intelligence_record :

public biological_record

{ implements Person; ...};

However, the object might be used as an instance of a
wrong interface, if we make intuitive use of both bindings
and subclass relationships for subtyping. In the following
example, an instance ofPerson will be handled by the
handler for theZoo Animal .

// create a ‘Person’ object

biologicalinfo_and_intelligence_record * p2 =

new(obase) biologicalinfo_and_intelligence_record; //

a Person

biologicalinfo_record * p3 = p2;

Zoo_Animal * q0 = p3; // a wrong assignment

This code segment shows that it is expected thePerson
will be handled by the handler for theZoo Animal
object. However, aPerson object should not be
considered as aZoo Animal object, since there exists
no is-A relationship betweenPerson and Zoo Animal
in the schema definition. Actually, such a wrong
assignment is due to the implementations of the two classes,
biologicalinfo and intelligence record and
biologicalinfo record , which are related to each
other by subclassing for code reuse.

For database applications, such a result causes more
serious side-effects. Let us consider an additional example:

Set<Zoo_Animal> * S;

Zoo_Animal * x;

forall(x << S) {

x->...

...

};

In the case of the automatic management of the extents
of schema classes, where the extent of a class is
obtained from the database type system, the objects of
biologicalinfo and intelligence record are
in the extent ofZoo Animal ; they can be handled by the
Zoo Animal pointers. Moreover, the extent ofPerson
becomes a subset ofZoo Animal , which means aPerson
is a Zoo Animal . Thus, to ensure the correct results of
queries, we have to investigate how such wrong assignments
may be avoided.

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

518 E.-S. CHO AND H.-J. KIM

FIGURE 3. Example of inheriting from implementations.

TABLE 1. General subtyping rules.

[Refl] ` τ ≤ τ

[Trans]
6; ` τ ≤ τ ′ andτ ′ ≤ τ ′′

` τ ≤ τ ′′

We propose that if an implementation has theimple-
ments phrase, it is semantically related to the bound inter-
face; but the inheritance should be considered as the reuse
of the code of the superclasses. For example,biologi-
calinfo and intelligence record , with imple-
ments phrase, does not implementZoo Animal , which is
an interface of its superclassbiologicalinfo record .
In other words, only the implementations without theim-
plements phrase are considered to be the implementation
of the interfaces of their superclasses. These implementing
relationships can be summarized as follows.

• An implementation implements the interface to which
it is directly bound.

• An implementation implements the superclasses of its
directly bound interface.

• An implementation implements all the interfaces of its
direct superclasses, only when it does not have the
implements phrase in its definition.

Thus, implementing relationships are represented for-
mally as follows.

DEFINITION 8. (Implementing relationships: �∗) If
〈m2,m1〉 ∈≺∗

M and 〈i,m1〉 ∈ �∗, and there is notk s.t.
〈k,m2〉 ∈ �, then〈i,m2〉in�∗.

4.2. Type system

In our approach, the side effect of implementation
relationships is avoided by the type system.

The domains mentioned in the previous sections can
be applied as the domains to the typing rules shown in
Tables 1 and 2. Table 1 shows general rules for a type

TABLE 2. Subtyping rules.

[I-Sub]
6; ` i1 ≺∗

I i2

` i1 ≤ i2

[M-Sub]
6; ` m1 ≺∗

M+ m2

` m1 ≤ m2

[I-M-implementing]
6; ` i �∗ m

` m ≤ i

system, while Table 2 describes typing rules based on the
relationships mentioned in earlier sections. If+ under
the ≺∗

M is ignored temporarily, then the environment6

represents〈I,M,≺∗
I , ≺∗

M+,�∗〉. In fact, + in ≺∗
M+ is

introduced to preserve type correctness with the typing rules
in Tables 1 and 2.

If ≺∗
M+ simply denotes≺∗

M , this expression does not
cause any type error, which allows a wrong handler (of the
typeZoo Animal) for thePerson object in the previous
example.

THEOREM 1. (Type conflict) If ≺∗
M+ denotes≺∗

M , the
type system with the typing rules in Table 2 and the domains
defined in this section are not correct.

Proof. For implementations m1 and m2 such that
〈m2,m1〉 ∈≺∗

M , and interfacesi1 and i2 such that
〈i1,m1〉 ∈ �, 〈i2,m2〉 ∈ � and 〈i2, i1〉 6∈≺∗

I , m2 is a
subtype ofi1 by the rule of [I -M-implementing], [M-sub]
and [Trans].

However, according to the definition of�∗, 〈m2, i1〉 6∈
�∗. So, m2 cannot be a subtype ofi1 by [I -M-
implementing], which contradicts the above statement.

This stems from the fact that subtyping between implemen-
tations is also affected by the subtyping from implementing
relationships.

To consider an implementation as a subtype of its
superclass only when it can implement all the interfaces

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

SEPARATION MECHANISM FORINTEGRATING OODBMSS AND GENERAL-PURPOSEOOPLS 519

of the superclass, we revise subtyping rules on the
implementation hierarchies, by defining≺M+ from ≺M .

DEFINITION 9. (Restricted type relationships between
implementations)For all m1 andm2 ∈ M, 〈m2,m1〉 ∈≺M+,
iff 〈m2,m1〉 ∈≺M , and there exists nok such that〈k,m1〉
∈ �.

≺∗
M+ denotes the transitive closure of≺M+.

Although the proof of the general type correctness of the
type system is an open problem, the type correctness of the
present model can be proved as follows.

THEOREM 2. (Type correctness)In the type system with
the typing rules in Table 2 and the domains in this section
including the definition of≺M+, type crash arising in
Theorem 1 does not occur.

Proof. For them1, m2, i1, and i2 defined in the proof of
Theorem 1,m2 is not a subtype ofm1 by the definition of
≺∗

M+, which disables applying the [M-sub] rule in Table 2.
Thus, the contradiction in Theorem 1 cannot be made.

4.3. Related work and discussion
Thor [28, 29], an OODBMS supporting the inter-
face/implementation separation from scratch uses its own
language Theta [28, 30]. In Theta, every implementation is
forced to have theimplements keyword explicitly, which
means that no implementing relationships are considered
except the user-defined bindings. In addition, implementa-
tion hierarchies, unlike interface hierarchies, do not affect
implementing relationships at all. An implementation in
Theta implements only the interface to which it is directly
bound. The definition of implementing relationships,
denoted by�∗, is as follows.

DEFINITION 10. (Implementing relationships in Theta:
�∗) In Theta, for all 〈i,m〉 in IN × IM, 〈i,m〉 ∈ �∗ iff
〈i,m〉 ∈ �.

According to the definition,≺∗
M+ is defined as follows.

DEFINITION 11. (Restricted type relationships between
implementations in Theta)In Theta, for all〈m2,m1〉 ∈≺∗

M ,
〈m2,m1〉 is in ≺∗

M+ iff there isi2 andi1 s.t. 〈m2,m1〉 ∈≺∗
M ,

〈i1,m1〉 ∈ �, 〈i2,m2〉 ∈ � and〈i2, i1〉 ∈≺∗
I .

However, in this approach, non-database classes and the
implementations without theimplements phrase are
disallowed for use as subtypes of their superclasses [28, 29].

THEOREM 3. (Types of non-database classes in Theta)If
the base language has their own subtyping rules like C++,
non-database classes cannot be involved in the type system
of Theta, without type correctness.

Proof. Since non-database classes do not have the imple-
mentation phrase, it is impossible for the non-database
classes to satisfy the condition in Definition 11.

In our approach, all the implementations including the
ones without theimplements phrase and the non-database
classes can be subtypes of their superclasses, whenever

they satisfy the conditions mentioned earlier. In addition,
the following property enables our approach to be used as
DBPLs based on the general purpose OOPLs.

THEOREM 4. (Type systems for non-database classes)In
our approach, the type system in this paper follows the
subtyping rules in the base languages, in the non-database
programs without interface/implementation separation.

Proof. Since the non-database classes are regarded as
implementations in our approach, they follow the subtyping
rules for implementations. However, none of them have
the implements phrase, so their subtyping is identified
by the user-defined class hierarchies of Definition 9. Thus,
the type system in non-database programs follows that
of the base language, since it is assumed that the user-
defined hierarchies identify the type system in the base
language.

Accordingly, Theta is not appropriate for database
application programs in general purpose languages such as
C++, because usual OOPL classes, which are non-database
classes, cannot be used as types in the programs. Thus, our
approach is better than Theta for database programming in
general-purpose OOPLs like C++. Moreover, Theta is so
dedicated to a specific system that it lacks user-friendliness
which compared with C++.

In contrast to our approach, in most interface/imple-
mentation separation supports in programming languages,
implementations do not identify types [2, 31, 32, 33, 34, 35].
Even in the languages that allow the types identified by
implementations, implementation hierarchies do not affect
subtyping [28, 30]. Such type systems are so simple
that it is not necessary to elaborate on the effects of the
semantics of implementation relationships on their typing
rules in this section. POOL-I [36] and Java [1] are the
exceptions we have found, which allow both interfaces
and implementations to distinguish types and both interface
hierarchies to identify subtyping. Java [1] allows all the
relationships inferred from bindings identifying subtyping,
which results in the side-effect mentioned earlier. In POOL-
I [36] signatures of interfaces and implementations, instead
of their names and user-defined relationships, distinguish
types, subtyping and implementation relationships. One
of the distinguishing features of POOL-I is a collection
of identifiers, calledproperty, which is augmented to the
specification of an interface or an implementation by the
programmer, and gives more information than the signature
alone. Thus, by defining properties appropriately, the type
system in this paper is also achieved. However, in this case,
defining properties is so complicated that it will considerably
increase the user’s burden. For example, to make user-
defined inheritance identify the subtyping, the identifiers
in the properties of the roots have to be defined in their
descendants, and all leaf nodes in the hierarchy have all
the identifiers that their direct/indirect superclasses have.
It also requires the complicated combination of a massive
number of identifiers in order that properties make user-
defined bindings, and that implementation relationships be

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

520 E.-S. CHO AND H.-J. KIM

Implementations
Interfaces

Java

Subclassing but not subtyping

Subtyping from bindings

Subtyping from subclassing

The proposed modelThetaODMG-93

FIGURE 4. Comparisons among the semantics of Java, ODMG-
93 and our approach.

able to identify subtyping without the side-effects mentioned
in this paper.

The comparisons among the semantics of implementation
relationships in Java, ODMG-93, Theta and our proposed
separation mechanism are provided in Figure 4. Java is
a general purpose language and uses implementations as
independent type units, but it uses the naive definition of
implementation relationships, which is inappropriate for
OODBMSs. The ODMG-93 object model supports class
separation, but interfaces and implementations are mapped
only on a one-to-one basis in a given program. Our
approach presents some restriction on the implementation
relationships in order to avoid side-effects. In Theta,
the inheritance between the implementations can identify
subtyping only when their bound interfaces identify
subtyping, which is not appropriate for database application
programs based on a general purpose language like C++.

5. CONCLUSION

In this paper, we propose a preprocessing-based ap-
proach with its object model for OODBPLs with inter-
face/implementation separation. We define the syntax and
the semantics of the interface/implementations definitions
in such a way that interfaces represent the users’ view of
the database schema classes. Interfaces preserve the self-
containment property in order to allow the users to access
the objects of the class only through the interfaces. The
interfaces/implementations identify types in the type system;
distinct hierarchies in interfaces and in implementations
identify subtyping. This paper suggests a way of subtyping
based on the user-defined bindings between interfaces and
implementations without side-effects, which is especially
useful for database applications where the extents of classes
are automatically obtained from the database type sys-
tem. Although there may be other approaches to achieve
interface/implementation separation, we believe that ours
is a most reasonable way to the seamless integration of

separation semantics and general purpose languages in
database programming.

Currently, we realize our approach here on an OODBMS
named SOP(SNU OO-DBMS Platform) [5, 37], which
was developed between 1992 and 1996 at Seoul National
University, based on the ODMG-93 model. We are planning
to extend our model to cover class templates.

ACKNOWLEDGEMENT

This work is supported by Brain Korea 21 Project.

REFERENCES

[1] Arnold, K. and Gosling, J. (1996)The Java Programming
Language. Addison-Wesley, Reading, MA.

[2] Black, A., Hutchinson, N., Jul, E., Levy, H. and Carter,
L. (1987) Distribution and abstract types in emerald.ACM
Comput. Surveys, 19, 105–190.

[3] Cox, B. J. and Novobilski, A. J. (eds) (1991)Object-Oriented
Programming—An Evolutionary Approach(2nd edn).
Addison-Wesley, Reading, MA.

[4] DEC, HP, HyperDesk, NCR, O Design, and SunSoft (1997)
The Common Object Request Broker: Architecture and
Specification. OMG Group.

[5] Cho, E., Han, S. Y. and Kim, H. J. (1997) A new
data abstraction layer required for OODBMS. InProc. Int.
Database Eng. Applic. Symp., Montreal, Canada, pp. 144–
148.

[6] Brodnik, A. and Xiao, H. (1992)Typing in OODBS. Technical
Report, University of Waterloo.

[7] Agrawal, R. and Gehani, N. H. (1989) ODE (object database
and environment): the language and the data model. InProc.
ACM SIGMOD Conf. on Management of Data, Portland, OR,
pp. 36–45.ACM SIGMOD Record, 18(2).

[8] Agrawal, R. and Gehani, N. H. (1989) Rationale for the
design of persistency and query processing facilities in the
database programming language O++. In 2nd Int. Workshop
on Database Programming Languages, Portland, OR, pp. 25–
40.

[9] Atkinson, M. P. and Buneman, O. P. (1987) Types
and persistence in database programming languages.ACM
Comput. Surveys, 19, 105–190.

[10] Atwood, T. (1990) Two approaches to adding persistence
to C++. In 4th Int. Workshop on Persistent Object Systems,
Martha’s Vineyard, MA, pp. 369–383.

[11] Obj (1994) Objectivity/DB: Getting Started with C++.
Objectivity Inc.

[12] Stroustrup, B. (ed.) (1991)The C++ Programming Language
Second Edition. Addison-Wesley, Reading, MA.

[13] Richardson, J. E., Carey, M. J. and Schuh, D. T. (1989)
The Design of the E Programming Language.Technical
Report No 824, Computer Science Department, University of
Wisconsin-Madison.

[14] Cook, W. R. (1990) Inheritance is not subtyping. InProc.
SIGPLAN Conf. on Principle of Programming Languages,
San Francisco, CA, pp. 125–135.

[15] Albano, A., Cardelli, L. and Orsini, R. (1985) Galileo: a
strongly typed, interactive conceptual language.ACM Trans.
on Database Systems, 10, 230–260.

[16] Albano, A., Cardelli, L. and Orsini, R. (1986)Galileo Ref-
erence Manual, VAX/UNIX Version 1.0. Servizio Editoriale
Universitario di Pisa.

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

SEPARATION MECHANISM FORINTEGRATING OODBMSS AND GENERAL-PURPOSEOOPLS 521

[17] Cattell, R. G. G. (1993)Object Database Standard: ODMG-
93. OMG Group. Morgan Kaufmann.

[18] ION. (1996) Orbix+ObjectStore Adapter. IONA Technolo-
gies Ltd.

[19] Kilic, E. et al. (1995) Experiences in using CORBA for
a multidatabase implementation. InProc. of the 6th Int.
Conf. on Database and Expert System Applications (DEXA),
London.

[20] Reverbel, F. (1996)Persistence in Distributed Object
Systems: ORB/ODBMS Integration. PhD Thesis, University
of New Mexico.

[21] Stroustrup, B. (ed.) (1997)The C++ Programming Language
Third Edition. Addison-Wesley, Reading, MA.

[22] Balter, R., Lacourte, S. and Riveill, M. (1994) The Guide
language.Comp. J., 37, 519–530.

[23] Hagimont, D.et al. (1994) Persistent shared object support
in the guide system: evaluation and related work.ACM
SIGPLAN NOTICE, 29(10), 129–144.

[24] Topper, A. (1994) Object-oriented COBOL standard.Object
Magazine, 3, 39–41.

[25] Connor, R., Brown, A., Cutts, Q. and Dearle, A. (1990) Type
equivalence checking in persistent object systems. InProc. of
the 4th Int. Workshop on Persistent Object Systems, Martha’s
Vineyard, MA, pp. 154–167.

[26] Ellis, M. A. and Stroustrup, B. (eds) (1990)The Annotated
C++ . Addison-Wesley, Reading, MA.

[27] Lamb, C., Landis, G., Orenstein, J. and Weinreb, D. (1991)
The ObjectStore database system.Commun. ACM, 34, 64–77.

[28] Liskov, B. (1993) Specifications and their use in defining
subtypes.ACM SIGPLAN NOTICE, 28,16–28.

[29] Liskov, B.et al.(1996) Safe and efficient sharing of persistent
objects in Thor.ACM SIGMOD Record, 25, 318–329.

[30] Myers, A. C. (1995) Bidirectional object layout for separate
compilation.ACM SIGPLAN NOTICE, 30(10), 124–139.

[31] Black, A. P. and Hutchinson, N. (1991)Typechecking
Polymorphism in Emerald. Technical Report, DEC and UCB.

[32] Brancha, G. and Cook, W. (1990) Mixin-based inheritance.
ACM SIGPLAN NOTICE, 25(10), 303–311.

[33] Cardelli, L., Donahue, J. and Glassman, L. (1992) Modula-3
language definition.ACM SIGPLAN Notices, 8, 15–42.

[34] Raj, R. K. et al. (1989) The Emerald Approach to
Programming. Technical Report 88-11-01, University of
Washington.

[35] Freeman, S. (1995) Partial revelation and Modula-3:
importing only necessary class features.Dr Dobb’s Journal,
20, 36–42.

[36] America, P. (1990) A parallel object-oriented language with
inheritance and subtyping.ACM SIGPLAN NOTICE, 25,
161–168.

[37] Ahn, J. and Kim, H. J. (1997) Seof: an adaptable object
prefetch policy for object-oriented database systems. InProc.
of the 13th Conf. on Data Engineering, Birmingham, UK,
pp. 4–13.

[38] Emmerich, W., Kroha, P. and Schafer, W. (1993) Object-
oriented database management systems for construction of
CASE environment. InProc. of the 4th Int. Conf. on Database
and Expert System Applications (DEXA), Prague, Czech
Republic.

[39] Bancilhon, F., Delobel, C. and Kanellakis, P. (1991)
Object-Oriented Database System—The Story of O2. Morgan
Kaufmann Publishers.

APPENDIX A

An example: CASE repositories

The following is an example of our approach for CASE
repositories. The classincrement represents the subtrees
of the abstract syntax graph for a document, which are units
of manipulation of the user interface. An example of an
increment is a definition of the functionf with its identifier
and parameter list. It is determined by the grammar of the
language in which the document is written.

This example is originally from [38] using O2 [39]. Here
we begin with the transformation of the codes into ODMG
C++ binding ODL codes. Each terminal and non-terminal
symbol of the grammar is translated into a class.

class increment {

Ref<increment> father;

public:

increment(Ref<increment> f);

Ref<increment> get_father;

void set_father(Ref<increment> f);

};

Symbols that appear on the right-hand side of an
alternative production are transformed into subclasses of
the classes representing the symbols on the left-hand sides.
When the grammar rule is as follows,

parameterlist : identifier| parameter | parameter_list

parameter : cbv

the classes are defined thus [38].

class parameter_list : public increment{

List<parameter> pl;

public:

parameter_list(Ref<increment> f);

void add_parameter(Ref<parameter> par);

void delete_parameter(Ref<parameter> par);

void insert_parameter(Ref<parameter> par);

boolean parse(String t; Ref<parameter_list> pl);

String unparse;

};

class parameter : public increment{

Ref<identifier> name;

Ref<identifier> type;

public

boolean expand_name(String t);

boolean expand_type(String t);

boolean change_name(String t);

boolean change_type(String t);

boolean parse(String t, Ref<parameter> p);

String unparse;

};

class identifier : public increment {

String value;

public:

boolean scan(String t);

String unparse;

};

However, we notice that a function parameter list in a
declaration is similar to a function parameter list in a func-
tion implementation and a template parameter list in a

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

522 E.-S. CHO AND H.-J. KIM

definition of a template type. For example, let us consider
the case in which a user may want to change the list
manipulation of all the parameter lists into a variable length
manipulation. In ODMG C++ binding, we have to modify
all the method definitions in each definition of the class
parameter list , class parameter list decl ,
classtemplate parameter list in decl and class
template parameter list . It is also impossible to
make the classparameter list in decl a subclass
of the classparameter list for code sharing, since
it destroys the model represented by the schema where a
superclass and its subclass mean the symbol on the left-hand
side and right-hand side of a production rule, respectively.

In our approach, such modification can be done more
elegantly. With interface/implementation separation, the
above schema definitions are changed into the ones without
private data, and we have another class hierarchy for
implementation of the classes. First, the schema definitions
in our approach are as follows.

persistent class parameter_list : public increment{

parameter_list(Ref<increment> f);

void add_parameter(Ref<parameter> par);

void delete_parameter(Ref<parameter> par);

void insert_parameter(Ref<parameter> par);

boolean parse(String t; Ref<parameter_list> pl);

String unparse;

};

persistent class parameter : public increment{

// without the declaration of name and type

...

};

persistent class identifier : public increment {

// without the declaration of value

...

};

persistent class parameter_list_in_decl :public incre-

ment {...};

persistent class template_parameter_list : public incre-

ment {...};

persistent class template_parameter_list_in_decl : pub-

lic increment{...};

The implementations of these schema are as
follows. First, we define an implementation
Parameter List manipulations for the list
manipulation.

class Parameter_List_manipulations{

List<increment> pl;

Parameter_List(Ref<increment> f){...}

void add_parameter(Ref<parameter> par){...}

void delete_parameter(Ref<parameter> par){...}

void insert_parameter(Ref<parameter> par){...}

};

Then, we make the implementations of the mentioned
schema classes derived from it.

// for list implementation

class ImplList_parameter_list:

Parameter_List_manipulations{

implements parameter_list;

boolean parse(String t; Ref<parameter_list> pl) {...}

String unparse;

};

class ImplList_parameter_list_in_decl:

Parameter_List_manipulations{

implements parameter_list_in_decl;

...

};

class ImplList_template_parameter_list:

Parameter_List_manipulations{

implements template_parameter_list;

...

};

class ImplList_template_parameter_list_in_decl:

Parameter_List_manipulations{

implements parameter_list_in_decl;

...

};

The modification of the implementations
are simply done by the addition of new
implementations. Let us consider another implementation
Parameter Varray manipulations for the array
manipulation.

class Parameter_Varray_manipulations{

List<increment> pl;

Parameter_List(Ref<increment> f){...}

void add_parameter(Ref<parameter> par){...}

void delete_parameter(Ref<parameter> par){...}

void insert_parameter(Ref<parameter> par){...}

};

Then, by deriving from it, we add the implementations of
the mentioned schema classes, as follows.

// for list implementation

class ImplVarray_parameter_list:

Parameter_Varray_manipulations{

implements parameter_list;

boolean parse(String t; Ref<parameter_list> pl) {...}

String unparse;

};

class ImplVarray_parameter_list_in_decl:

Parameter_Varray_manipulations{

implements parameter_list_in_decl;

...

};

class ImplVarray_template_parameter_list:

Parameter_Varray_manipulations{

implements template_parameter_list;

...

};

class ImplVarray_template_parameter_list_in_decl:

ImplVarray_template_parameter_list {

implements template_parameter_list_in_decl;

...

};

So there exist two distinct implementations for the class
parameter list ; ImplList parameter list and
ImplVarray parameter list . These behave as two

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

SEPARATION MECHANISM FORINTEGRATING OODBMSS AND GENERAL-PURPOSEOOPLS 523

versions of implementations of the class. Similar to this are
the cases forImplList parameter list in decl ,
implList template parameter list and Impl
List template parameter list in decl .

Note that the class ImplVarray template
parameter list in decl is inherited from
ImplVarray template parameter list instead
of Parameter Varray manipulations . In this

case, althoughImplVarray template parameter
list in decl is a subclass of ImplVarray
template parameter list , the instance of the
ImplVarray template parameter list in decl ,
which is explicitly bound totemplate parameter
list in decl , is not an element oftemplate
parameter list by the definition of implementation
relationships.

THE COMPUTER JOURNAL, Vol. 43, No. 6, 2000

