
Index set: A practical indexing scheme for object database
systems

Jung-Ho Ahn *, Ha-Joo Song, Hyoung-Joo Kim
Department of Computer Engineering, Seoul National University, Shilim-Dong Gwanak-Gu, Seoul 151-742, South Korea

Received 24 June 1999; received in revised form 8 November 1999; accepted 14 February 2000

Abstract

E�cient indexing in a class hierarchy is essential for the achievement of high performance in query evaluation for

object database management systems. In this paper, we present a practical indexing scheme, index set, which provides

good index con®guration for any real database environment. The proposed scheme considers the distribution of key

values, as well as query patterns such as query weight on each class. The index set can easily be applied to any database

system, since it uses the well-known B�-tree structure. We develop a cost model and, through experiments, demonstrate

the performance of the proposed scheme over various class hierarchies. Ó 2000 Published by Elsevier Science B.V. All

rights reserved.

Keywords: Object database systems; Index; Class hierarchy; B�-tree

1. Introduction

1.1. Problems of indexing in object database systems

The commercial success of a data model depends on how well the underlying system is able to
support it. It is also well known that indexing is the key to achieving high performance in query
evaluation. For instance, the value of the relational data model would be diminished without the
e�ciency of B�-tree index structures [4] used to evaluate declarative queries.

However, while they provide optimal performance for queries in one-dimensional space, single-
attribute B�-trees are not suitable for an object-oriented data model. That is, B�-trees cannot
e�ciently support queries on class hierarchies since their answer must be restricted to target
classes as well as to search predicates.

In order to support queries on class hierarchies, several index structures, including the H-tree
[13] and the HcC-tree [15], have been proposed. However, these new structures are seldom used,
since they are complex and require new concurrency mechanisms. A practical alternative was

Data & Knowledge Engineering 33 (2000) 199±217
www.elsevier.com/locate/datak

* Corresponding author. Tel.: +82-2-871-6945; fax: +82-2-888-0269; web: http://oopsla.snu.ac.kr.

E-mail addresses: jhahn@oopsla.snu.ac.kr (J.-H. Ahn), hjsong@oopsla.snu.ac.kr (H.-J. Song), hjk@oopsla.snu.ac.kr (H.-J. Kim).

0169-023X/00/$ - see front matter Ó 2000 Published by Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 9 - 0 2 3 X (0 0) 0 0 0 0 6 - 9

proposed, namely, an indexing scheme based on class-division [14], in which the basic concept is
time-space tradeo�. Although indexing by class-division has the advantage of ease in applicability,
it takes little notice of the number of instances, and none at all of the distribution of key values.
Thus, this approach o�ers no guarantee of performance enhancement for all cases.

As a result, we set out to develop a new indexing scheme, index set, that overcomes the above
problems and gives maximal performance gain with minimal space and update overhead.

1.2. Related work

There have been many studies concerning indexing for object databases [2,3,8,10,12±15]. The
simplest approach for class-hierarchy indexing is the class-hierarchy index [12]. This method
maintains only one index on an attribute of all classes in the class hierarchy. This approach is
based on the fact that one index may in general be more e�cient in evaluating a query whose
access range spans most of the classes in the class hierarchy, than single-class indexes on each
class. The class-hierarchy index has the advantage that it is easy to implement since the structure is
based on the B�-tree. However, it may show critical degradation of performance for a query
against a leaf class, since it has to read many unnecessary index pages.

Some studies have attempted to solve this problem by introducing links or chains in the B�-tree
structure. Examples are the H-tree [13], the HcC-tree [15], and the CG-tree [10]. However, as
mentioned above, these new structures are di�cult to use and they do not guarantee su�cient
enhancement of performance to admit a new data structure. Therefore, only the class-hierarchy
index based on the B�-tree structure has been used in real object database management systems
[14].

Ramaswamy and Kanellakis [14] proposed a practical indexing scheme by class division, which
is a variation of the class-hierarchy index. It divides a class hierarchy into several class divisions by
their division algorithm and heuristics, and builds indexes on each class division. Here, a class can
be included in several divisions simultaneously. That is, the class-division scheme enhances the
performance through the replication of indexes. However, the class-division algorithm is not
applicable to class hierarchies with multiple inheritance. In addition, like all other indexing
schemes, it is not designed to consider the number of instances or the range of key values.

Many indexing techniques for queries on composite hierarchies have also been studied. Bertino
and Kim [3] proposed the nested index, path index, and multi index for queries on composite
objects, and compared their performance. Ishikawa et al. [8] suggested an indexing scheme using
the signature ®le technique. Other types of indexing for the composite class hierarchy such as
access support relation, the object skeleton and the hierarchical join index can be found in [7], [9]
and [17], respectively.

Gudes [5] and Bertino and Foscoli [1,2] proposed an index structure that combined the class-
hierarchy index and the nested index.

1.3. Paper organization

The rest of the paper is organized as follows: In Section 2, we introduce our new indexing
scheme, index set for indexing on class hierarchies. Section 3 describes the cost model used in this
study and Section 4 presents the results of the performance evaluation. Finally, conclusions from
our study and areas for future research are given in Section 5.

200 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

2. The index set

2.1. Indexing in a class hierarchy

A query on a class hierarchy may be formulated as a problem of external searching in two-
dimensional spaces: one dimension is an attribute against which a predicate is compared, and the
other dimension is the classes to which target objects belong.

Example 2.1. A query ``Find all students who are 21 years old'' on the class hierarchy of Fig. 1
has the search condition that a person should be a Student as well as the predicate that the
person should be 21 years old. Here, all TAs can also be considered Students by the IS-A re-
lationship imposed on the class hierarchy. Therefore, objects of all classes in the hierarchy rooted
at Student should be searched for this example query. 1

To enhance the performance of this kind of query on class hierarchies, it is necessary to in-
vestigate a new indexing technique that can consider class hierarchies. However, as we have
mentioned above, it is di�cult to introduce a new data structure. In addition, a general multi-key
indexing structure such as the R-tree [6] does not provide satisfactory performance with a query
on a class hierarchy, which is a special case of a two-dimensional search [14].

2.2. Our approach

As far as retrieval performance is concerned, building indexes on the full extent of each class
would improve the query performance dramatically [11]. The full extent of a class is the union of
extents of the class or any of its subclasses and the extent of a class is the set of instances belonging
to the class. For instance, the performance of the query on the class hierarchy in Example 2.1 can
be improved signi®cantly by using the set of indexes on the full extent of each of People,
Professor, Student and TA. Each index is built using the B�-tree structure, which is the best
general purpose index structure for one-dimensional queries.

The above solution naturally requires a high storage overhead in return for improving retrieval
performance. That is, in Example 2.1, the instances of TA should appear in the four indexes built
on the full extents of Person, Faculty, and Student, as well as TA. Moreover, if any new TA
object is created (or deleted), or the index ®eld is changed, four indexes must be updated instead of
one. We should, therefore, investigate how we can maximally improve retrieval performance with
minimal space and update overheads. It is a question of a trade-o� between space and time.

However, it is unreasonable to apply a single trade-o� point to all computing environments,
since an optimal point is very dependent on a real environment, such as the number of indexing
elements and the distribution of key values. The space and update overhead is proportional to
how many times instances are replicated in the set of indexes ± in this paper, we will call this index
replication. In this regard, we consider the degree of index replication as a variable and introduce
the index set scheme that ®nds an optimal set of indexes with a given degree of replication.

1 There are a few alternatives for representing objects in object database systems [11,16]. In this paper, we assume that each class

keeps only its direct instances, since this approach is widely accepted.

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 201

Example 2.2. All possible indexes with classes C1;C2 and C3 are as follows:

M � ffC1C2C3g fC1C2g fC1C3g fC2C3g fC1g fC2g fC3gg;
where fCig denotes an index on the extent of class Ci; and fCj � � �Ckg, an index on the extent of
classes Cj . . . and Ck, respectively. The problem here is to ®nd an index set O, a subset of the set
M, that minimizes the query costs and satis®es the constraint r on the degree of index replication.
The degree of index replication of an index set is r when the extent of a class is indexed by at most
r indexes in the set.

It is intractable to traverse all of the search space, since the number of possible index sets with n
classes is 22nÿ1 ÿ 1. We therefore devise a greedy algorithm to ®nd a near-optimal index set.

2.3. The greedy algorithm

In this section, we ®rst present a basic greedy algorithm for ®nding an index set without
considering replication. We then extend the basic version so it can handle index replications.

In general, when the query frequency of a class is higher than that of its subclasses or when a
class has many more instances than its subclasses, it is bene®cial for the retrieval performance to
maintain one index for a class and all its subclasses rather than several indexes for each class. On
the contrary, it is helpful to build indexes on each class individually for the converse cases [10]. It
depends on the query frequency, the number of instances, and the distribution of key values
whether we should build indexes on every class or one index on all classes. Based on this insight,
our greedy algorithm computes the query cost of every index set and changes the set successively
towards the maximal bene®t to query performance.

The outline of our greedy algorithm is as follows. First, we build an initial index set that
consists of single indexes on each class ± not on full extents. Then, we compute the bene®t of
merging indexes in the index set by considering how the merged index can improve perfor-
mance when evaluating queries. We use the term `merging indexes' when we build one index
on all classes on which the original indexes are built. For each index merge, we compare the
cost of query evaluation and then select the cheapest one. If the selected merge helps, we
include it in the new index set instead of the original indexes, repeating this process until no
possible index merge provides any more bene®t. The resulting index set is the greedy optimal
index set.

Fig. 1. People class hierarchy.

202 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

The detailed algorithm is shown in Algorithm 1.

Algorithm 1. The greedy algorithm
Onew :� ffC1gfC2g � � � fCngg
repeat

Oold :� Onew

for all I ; J such that I; J 2 Oold and I 6� J do
O :� �Oold [fI [Jg� ÿ fIJg
if Retrieval CostO < Retrieval CostOnew

then
Onew :� O

end if
end for

until Oold � Onew

Onew is the greedy optimal index set

Example 2.3. In this example, we illustrate the execution of our greedy algorithm using the class
hierarchy of Fig. 2. The number of instances of each class is also given in parentheses.

Beginning with the initial index set O � ff1g f2g f3g f4gg, we make successive choices of
indexes to merge. The Retrieval_Cost of each possible cases of merging two indexes in the
®rst iteration is given in the column `Iteration 1' of Table 1. The Retrieval_Cost will be
elaborated in Section 3. In the ®rst round, the index set O4 shows the best performance, so we pick
this set as a new index set.

Next, we examine all candidates that can be derived from the previous selection and calculate
the costs of each set. The costs are shown in the second column in Table 1. In the second iteration,
the winner is the index set O1.

In our third iteration, there is only one case to evaluate, as shown in column `Iteration 3'.
However, the new index set gives no improvement to the retrieval performance and the greedy
selection is therefore O � ff123g f4gg:

Fig. 2. Example class hierarchy.

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 203

The basic algorithm, however, does not allow multiple indexing for a class and this restriction is
likely to limit performance improvement. Instead, we can consider replication when we compute
the performance enhancement of merging two indexes. Algorithm 2 shows the extended greedy
algorithm for handling index replication. In every iteration of the algorithm, we also examine the
candidate sets where the original indexes are retained as well as the merged version after merging.
This is represented by the innermost loop in the Algorithm 2. Here, we evaluate four candidate
con®gurations: when preserving all the original indexes, when preserving only one of them, and
when preserving neither of them.

Algorithm 2. The extended greedy algorithm
==rCi is the replication count for a class Ci. That is, rCi is the number of replications of Ci in an
index set. r is the replication constraint.

Onew :� ffC1gfC2g � � � fCngg
repeat

Oold :� Onew

for all I ; J such that I; J 2 Oold and I 6� J do
for all K such that K 2 ffIJg fIg fJg ;g do

O :� �Oold [fI [Jg� ÿ K
calculate the replication count rCi of O for all classes Ci

O :� �Oÿ ffCig j rCi > rg� [ffCig j rCi < rg where 16 i6 n
if Retrieval CostO < Retrieval CostOnew

and O still satis®es the constraint r then
Onew :� O

end if
end for

end for
until Oold � Onew

remove useless indexes from Onew

resulting Onew is the greedy optimal selection

In the extended greedy algorithm, we also add a single-class index on each class providing the
replication constraint allows it. This is for cases in which the newly added indexes may improve

Table 1

Retrieval_Cost of possible sets at each iteration

Iteration 1 Iteration 2 Iteration 3

O { {1} {2} {3} {4} } 1.2944 { {1} {2 3} {4} } 1.2549 { {1 2 3} {4} } 1.2527

O1 { {1 2} {3} {4} } 1.2782 { {1 2 3} {4} } 1.2527 { {1 2 3 4} } 1.5985

O2 { {1 3} {2} {4} } 1.3291 { {1 4} {2 3} } 1.2647

O3 { {1 4} {2} {3} } 1.3043 { {1} {2 3 4} } 1.5786

O5 { {1} {2 4} {3} } 1.4204

O4 { {1} {2 3} {4} } 1.2549

O6 { {1} {2} {3 4} } 1.5375

204 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

query performance directly or indirectly. That is, they may be involved in a new merge that en-
hances performance.

It should be noted that the extended algorithm may produce an index set that has unnecessary
indexes. This is because, as mentioned above, we preserve indexes that were merged whenever
possible. We do not remove the original indexes if the replication constraint allows it and per-
formance does not degrade, in view of the possibility that they may provide performance en-
hancement in later loops. Therefore, we should delete the unnecessary indexes from the resulting
index set of the greedy algorithm.

This can be achieved by removing indexes that do not a�ect query performance.

Example 2.4. In this example, we show the execution of the extended greedy algorithm with a
replication constraint of 2 on the class hierarchy of Fig. 2. The execution of our extended algo-
rithm is summarized in Table 2. Only one of the index sets resulting from merging is given if the
results are identical.

As in the basic greedy algorithm, we calculate the bene®t of each merge, but more candidates
are examined by the extended algorithm, as we have described. For example, the index sets

Table 2

Retrieval_Cost of possible sets at each iteration

Iteration 1

O { {1} {2} {3} {4} } 1.2944

O1 { {1} {2} {3} {4} {1 2} } 1.2599

O2 { {1} {2} {3} {4} {1 3} } 1.2646

O3 { {1} {2} {3} {4} {1 4} } 1.2646

O4 { {1} {2} {3} {4} {2 3} } 1.1196

O5 { {1} {2} {3} {4} {2 4} } 1.2162

Iteration 2

O { {1} {2} {3} {4} {2 3} } 1.1196

O1 { {1} {3} {4} {2 3} {1 2} } 1.1196

O2 { {1} {2} {4} {2 3} {1 3} } 1.1593

O3 { {1} {2} {3} {4} {2 3} {1 4} } 1.0898

O4;1 { {1} {4} {2 3} {1 2 3} } 1.2169

O4;2 { {1} {2} {3} {4} {1 2 3} } 1.0954

O5 { {1} {3} {4} {2 3} {2 4} } 1.1196

O6 { {1} {2} {4} {2 3} {3 4} } 1.2402

O7;1 { {1} {4} {2 3} {2 3 4} } 1.1733

O7;2 { {1} {2} {3} {4} {2 3 4} } 1.1023

..

.

Iteration n

O { {1} {2} {3} {4} {1 2 3 4} } 1.0780

O1 { {3} {4} {1 2 3 4} {1 2} } 1.0780

O2 { {2} {4} {1 2 3 4} {1 3} } 1.1178

O3 { {2} {3} {1 2 3 4} {1 4} } 1.1113

O4 { {1} {4} {1 2 3 4} {2 3} } 1.1353

O5 { {1} {4} {1 2 3 4}{2 4} } 1.2133

O6 { {1} {2} {1 2 3 4} {3 4} } 1.3192

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 205

O4;1 and O4;2 result from merging indexes {1} and {2 3}. The index set O4;1 is the case in which all
of the original indexes ({1} and {2 3}) are preserved and set O4;2 is when only {1} is retained. We
do not show results with the cases in which only {2 3} is retained or when none of the original
indexes are retained, since they are the same as the cases O4;1 and O4;2, respectively.

After several applications of the greedy algorithm in the same manner, we reach the last it-
eration, n, where we cannot ®nd any new index set that improves the cost of the previous result.
Thus, the index set O � ff1g f2g f3g f4g f1 2 3 4gg is the greedy selection. However, we should
remove the indexes {1} and {2} from the results, since they do not contribute.

Therefore, the ®nal index set is O � ff3g f4g f1 2 3 4gg:

2.4. Query evaluation

A class may be covered by several members of an index set simultaneously. Thus, a query can
be evaluated in several ways and a query optimizer should select the indexes that allow a given
query to be evaluated with minimal cost. The optimal execution plan can be obtained by the
following scheme. First, the indexes that are necessary for the query are selected. Then, all of the
combinations of indexes that are not thus far used are traversed and one of them is selected, such
that it requires minimal cost for query evaluation. Although the search space increases expo-
nentially with the number of classes, the number of indexes in the given index set is not very large.
Also, once we achieve optimal execution plans for each target class, we can use them for all
subsequent queries without recreating them. Thus, the method of ®nding execution plans does not
greatly a�ect the performance of query evaluation.

As an alternative, a greedy method again seems appropriate in ®nding optimal query execution
plans. For instance, we can choose execution plans by choosing indexes that cover the most
classes in turn.

3. The cost model

In this section, we present a cost model that evaluates the retrieval and storage costs of an index
set. We ®rst describe the basic assumptions on our cost model and preliminary parameters. Then
we derive the retrieval cost and the storage cost from them. Finally, we show the results of a few
experiments for the veri®cation of our cost model.

Our index set uses the structure of the class-hierarchy index for each index, which is a variation
of the B�-tree structure where class IDs are stored with index entries in the leaf nodes. Therefore,
we have developed our cost model based on the discussion in [12], which proposed the cost model
for the class-hierarchy index.

We make the following assumptions for our cost model:
· All key values have the same (average) length.
· The key values of an attribute are uniformly distributed among the instances of a class.
· Leaf-node records are either all smaller than the size of an index page or all larger.

3.1. Parameters

Database parameters:
· Dcj ± number of distinct values in class Cj,

206 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

· Di ± number of distinct values in index i,
· Ncj ± cardinality of class Cj,
· Ni ± sum of the cardinalities of classes in index i,
· N ± total number of instances in the database

N �
X

for all classes

NCj ;

· Ki ± average number of elements contained in an attribute of index i

Ki � Ni=Di;

· NCi ± average number of classes for an index record of index i

NCi �
X

for all classes in index i

Dcj

Di
;

Index parameters:
· P ± size of an index page,
· f ± average fanout of an internal node,
· kl ± average length of a value for an indexed attribute,
· XLi ± average length of a leaf-node record for index i

XLi � header length� kl� �sizeof�CLASSID� � sizeof�offset� � sizeof�number of OIDs��
� NCi � sizeof�OID� � Ki;

where header consists of record length; key length; overflow page id and number of classes;
· LPi ± number of leaf-node pages for index i (excluding over¯ow pages),
· OPi ± number of over¯ow pages for index i

if XLi6 P LPi � d�Di � XLi�=Pe;
if XLi > P LPi � Di

LPi � OPi � Di � dXLi=Pe;

· Hi ± internal height of index i (excluding the leaf-node level)

Hi � the number of terms in �LPi � dLPi=f e � ddLPi=f e=f e � � � � � 1�:

3.2. Storage cost model

The storage cost for index i is given by the following equation:

SCi � LPi � �dLPi=f e � ddLPi=f e=f e � � � � � 1� if XLi6 P ;
LPi � OPi � �dLPi=f e � ddLPi=f e=f e � � � � � 1� if XLi > P :

�
Therefore, the total storage cost required for an index set is given by

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 207

SC �
X

for all indexes in the set

SCi:

3.3. Retrieval cost model

Single key query evaluation: The number of index pages accessed to evaluate a single key query
is obviously the height of the index used. Therefore, the retrieval cost for index i is

RCsingle
i � Hi � 1 if XLi6 P ;

Hi � dXLi=Pe if XLi > P ;

�
Thus, the average number of pages accessed for an index set for a query q is

RCsingle �
X

for all indexes used by q

RCsingle
i :

Range query evaluation: The retrieval cost for a range query is proportional to the range
speci®ed for a given query. Thus, we can formulate the number of pages to be fetched for index i
as follows:

RCrange
i � Hi � dquery range� LPie if XLi6 P ;

Hi � dquery range� �LPi � OPi�e if XLi > P :

�
The total retrieval cost for query q is given by

RCrange �
X

for all indexes used by q

RCrange
i :

3.4. Average retrieval cost ratio

The performance of an index set is very dependent on the target classes. Therefore, we need to
introduce a single metric for performance comparison between index sets. For this consideration,
we de®ne average retrieval cost ratio (ARCR), which is the ratio of the average retrieval cost
provided by an index set relative to that of the fully-replicated index con®guration. The fully-
replicated index con®guration here is a set of indexes on the full extent of each class.

Retrieval performance is very dependent on query patterns in a real computing environment.
This means that we should apply query patterns in real world situations to ARCR. Important
considerations in cost evaluation are the ratio of the single-key query and the query ratio of each
class.

The retrieval cost ratio RCi of each class Ci is given by

RCi �
P

for all index Ijused for a query on Ci
HIj

HI full
Ci

� single point query ratio

�
P

for all index Ijused for a query on Ci
LPIj

LPI full
Ci

� �1ÿ single point query ratio�;

where I full
Ci

is the index on the full extent of a class Ci.

208 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

By applying the query weight, we formulate the ARCR as follows:

ARCR �
X
8Ci

RCi � query weight on Ci;

ARCR is used as the Retrieval_Cost in our algorithms.

3.5. Veri®cation of the cost model

We performed several experiments for the justi®cation of our cost model. In these experiments,
we examined the number of index pages accessed for queries on three classes with 100,000 in-
stances each. We ran the queries using two di�erent index con®gurations, one index on all three
classes and three single-class indexes on each class, varying the range of key values, the number of
instances, the single key query ratio, and the query range. Table 3 shows one of the results: the
performance ratio of two index con®gurations. The results were almost the same for the other
experiments with various con®gurations. The table also includes the expected ratio that is cal-
culated with our cost model. Here, the error ratio is computed by

experimental resultÿ expected result

expected result
� 100:

As may be seen in Table 3, the error ratios between the experimental and the expected results are
always within 5%. The error ratio increases somewhat in cases where the query range is narrow or
the single-key query ratio is low. This is due to the assumption of uniform distribution, which is
not met when the size of an answer for a query is small.

4. Performance analysis

We evaluated the performance of our index set on typical class hierarchies depicted in Fig. 3.
These include a simple hierarchy of size ®ve (hierarchy H1), a skinny hierarchy (hierarchy H2), a
bushy hierarchy (hierarchy H4), and a combined hierarchy (hierarchy H3). We also used a 14-class
hierarchy with multiple inheritance (hierarchy H5). Our performance comparison was conducted
for the index set, the class-division scheme and class-hierarchy indexing. We also performed the
same experiments for single-class indexing, where an index is maintained on each class, in order to
compare the behaviors of class-hierarchy indexing and the single-class indexing schemes.

Table 3

The veri®cation of our cost model

Single-key query ratio (%) 5 10 95

Query range (%) 1 5 10 1 5 10 1 5 10

Expected result 1.63 1.63 1.63 1.71 1.71 1.71 2.93 2.93 2.93

Experimental result 1.71 1.61 1.61 1.75 1.70 1.68 2.90 2.90 2.90

Error ratio (%) +4.9)1.2)1.2 +2.3)0.6)1.8)1.0)1.0)1.0

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 209

For each indexing scheme, we computed the relative ratio of (a) retrieval performance for a
query on each class, (b) average retrieval performance, and (c) total storage cost, against an index
set with the fully-replicated index con®guration using our cost model presented in Section 3.
Similarly to the average retrieval cost ratio, the total storage cost ratio is the metric relative to the
fully-replicated index con®guration. Table 4 lists the parameter settings used in the experiments. 2

In all experiments, the single key query ratio is 10% and queries are distributed uniformly over all

2 For the single-class index con®guration, we removed the ®elds CLASSID and number_of_classes from leaf-node record structures.

Fig. 3. Class hierarchies used in the experiments.

210 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

classes. The distribution of key values was totally inclusive in the range of 1±500,000 and we give
the number of instances of each class in parentheses in Fig. 3.

4.1. Comparison

We ®rst applied our greedy algorithm to each hierarchy, varying the replication constraint.
Table 5 shows the resulting con®gurations of our index sets and the corresponding replication
constraints. It also shows the results of the class-division algorithm. IS-i denotes an index set with
replication i. CD, CH and SI represent indexing by class-division [14], class-hierarchy indexing
[12], and single-class indexing [12], respectively.

The graphs in Fig. 4 illustrate the performance of each indexing technique. The graphs on the
left side show the retrieval performance for queries on each class (including its subclasses). The
graphs on the right show the average retrieval cost ratio and total storage cost ratio of each
technique.

We will comment on several aspects of each technique. First, the performance curves of class-
hierarchy indexing and single-class indexing are exactly opposite to each other. Obviously, CH
should fetch many more index pages as a query targets fewer classes, although it is the best so-
lution for a query on an entire class hierarchy. Therefore, the performance of CH is extremely bad
for leaf classes. On the contrary, SI is e�cient providing there are only a few classes in the target
class domain. This result reveals that neither of these two indexing schemes is suitable for queries
on class hierarchies.

As we expected, indexing by class-division achieves good retrieval performance through the
replication of indexes. However, the index con®guration of the class-division scheme requires
more space and update overhead than our index set scheme. That is, the retrieval performance
of class-division is worse than that of an index set with similar or smaller storage cost. For
example, in Fig. 4(a), while the average retrieval cost ratio and total storage cost ratio of IS-3
for hierarchy H2 are 1.022 and 0.784, respectively, CD shows the total storage cost ratio
0.951, higher than IS-3, and the average retrieval cost ratio of 1.028 for CD is worse than that
for IS-3.

Table 4

Parameters used in the experiment

Parameters Values

P 4096

f 255 � �4096=�8� 4�� � �3=4��
kl 8

sizeof(OID) 8

sizeof(CLASSID) 4

sizeof(Page_id) 4

sizeof(o�set) 2

sizeof(number_of_OIDs) 2

sizeof(record_length) 2

sizeof(key_length) 2

sizeof(number_of_classes) 2

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 211

As for our index set, not surprisingly the retrieval cost decreases as IS uses more replications.
However, the performance enhancement is not linear with storage overhead, as is apparent in Fig.
4. Therefore, it is important to select a degree of replication that provides a signi®cant speed up
with small overhead. In our experiments, IS with a replication constraint of 2 or 3 o�ers good
performance improvement over a partitioned con®guration. However, we experienced only small
performance enhancements with more replications.

Table 5

Index con®gurations for the index set and class-division methods

Index con®guration

(a) Hierarchy H1

IS-1 { { 1 ± 3 } { 4 5 } { 6 7 } }

IS-2 { { 1 ± 7 } { 1 ± 3 } { 6 7 } { 5 } }

IS-3 { { 1 ± 7 } { 2 3 } { 6 7 } { 3 } { 5 } { 7 } }

CD { { 1 ± 7 } { 2 3 } { 4 5 } { 6 7 } { 3 } { 5 } { 7 } }

(b) Hierarchy H2

IS-1 { { 1 10} { 2 3 9 } { 4 8 } { 5 6 } { 7 } }

IS-2 { { 1 2 9 10} { 3 ± 8 } { 6 } { 7 } { 8 } { 9 } { 10 } }

IS-3 { { 1 ± 10} { 5 ± 7 } { 6 } { 7 } { 8 } { 9 } { 10 } }

IS-4 { { 1 ± 10} { 4 ± 8 } { 5 ± 7 } { 6 } { 7 } { 8 } { 9 } { 10 } }

IS-5 { { 1 ± 10} { 3 ± 9 } { 4 ± 8 } { 5 ± 7 } { 6 } { 7 } { 8 } { 9 } { 10 } }

CD { { 1 ± 10} { 3 4 8 9 } { 5 ± 7 } { 2 10 } { 4 8 } { 6 } { 7 } { 8 } { 9 } { 10 } }

(c) Hierarchy H3

IS-1 { { 1 ± 5 } { 6 12 } { 7 8 } { 9 10 } { 11 13 } { 14 } }

IS-2 { { 1 ± 5 } { 6 11 ± 13 } { 7 8 } { 9 10 } { 5 } { 8 } { 10 } { 12 } { 13 } { 14 } }

IS-3 { { 1 ± 5 } { 6 ± 14 } { 4 5 } { 7 8 } { 9 10 } { 11 12 } { 5 } { 8 } { 10 } { 12 } { 13 } { 14 } }

IS-4 { { 1 ± 5 } { 6 ± 14 } { 6 ± 13 } { 3 ± 5 } { 4 5 } { 7 8 } { 9 10 } { 11 ± 13 } { 5 } { 8 } { 10 } { 12 }

{ 13 } { 14 } }

CD { { 1 ± 14 } { 2 ± 5 } { 6 ± 10 } { 11 ± 13 } { 4 5 } { 7 8 } { 9 10 } { 3 } { 5 } { 8 } { 10 } { 12 } { 13 }

{ 14 } }

(d) Hierarchy H4

IS-1 { { 1 ± 4 } { 7 8 } { 10 13 } { 11 12 } { 14 16 } { 5 } { 6 } { 9 } { 15 } }

IS-2 { { 1 ± 6 } { 7 ± 9 } { 10 ± 13 } { 14 ± 16 } { 4 } { 5 } { 6 } { 8 } { 9 } { 12 } { 13 } { 15 } { 16 } }

IS-3 { { 1 ± 9 } { 10 ± 16 } { 3 ± 6 } { 7 ± 9 } { 11 ± 13 } { 14 ± 16 } { 4 } { 5 } { 6 } { 8 } { 9 } { 12 }

{ 13 } { 15 } { 16 } }

CD { { 1 ± 16 } { 5 ± 8 } { 3 4 } { 5 6 } { 7 8 } { 11 12 } { 15 16 } { 2 } { 4 } { 5 } { 6 } { 8 } { 9 } { 10 }

{ 12 } { 13 } { 14 } { 15 } { 16 } }

(e) Hierarchy H5

IS-1 { { 1 ± 3 } { 5 ± 7 } { 4 8 ± 11 } { 12 14 } { 13 } }

IS-2 { { 1 ± 3 } { 4 12 ± 14 } { 5 ± 7 } { 8 ± 11 } { 3 } { 7 } { 10 } { 13 } { 14 } }

IS-3 { { 1 ± 4 12 ± 14 } { 1 ± 3 } { 4 12 ± 14 } { 5 ± 8 } { 9 ± 11 } { 6 7 } { 9 10 } { 3 } { 7 } { 10 } { 13 }

{ 14 } }

IS-4 { { 1 5 ± 11 } { 2 ± 4 12 ± 14 } { 4 12 ± 14 } { 2 3 } { 5 ± 7 } { 9 ± 11 } { 12 ± 14 } { 6 7 } { 9 10 }

{ 3 } { 7 } { 10 } { 13 } { 14 } }

IS-5 { { 1 ± 14 } { 1 ± 3 } { 5 ± 11 } { 12 ± 14 } { 5 ± 7 } { 9 ± 11 } { 6 7 } { 9 10 } { 3 } { 7 } { 10 } { 13 }

{ 14 } }

212 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

One interesting result is that on the skinny hierarchy H2, IS-2 performance is sharply improved
over IS-1. However, the performance is nearly unchanged with more replicates. This is because
with replication 2, the index set could provide optimal performance on leaf classes and also
reasonably good retrieval performance on super classes in this skinny hierarchy.

Our index set technique also presents good results on the class hierarchy with multiple inher-
itance. We do not show the result of the class-division scheme for hierarchy H5, since it cannot be
used on a hierarchy with multiple inheritance.

Finally, our IS-1 schemes also provide uniformly good performance in comparison with CH
and SI schemes over all the example hierarchies. These results indicate that we can obtain
performance enhancement simply by using a proper index con®guration without any storage
and update overhead and our greedy algorithm can ®nd good index sets even for nonreplication
cases.

Fig. 4. The performance of indexing techniques.

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 213

4.2. Performance of the greedy algorithm

The results of our experiments indicate that our greedy algorithm can generate good index
sets on various hierarchies. However, the greedy algorithm may naturally stop at a local
optimum. To avoid this behavior, we can use a look-ahead technique in the greedy algo-
rithm. In additional experiments for evaluating the performance of our greedy algorithm, we
obtained optimal solutions with 1-look-ahead in almost all cases. Even without look-ahead,
our algorithm also gives optimal con®gurations in most cases. In addition, locally optimal
results are comparable to optimal ones. This is due to the fact that queries on a class hi-
erarchy usually target classes that are connected directly or indirectly with each other. The
greedy algorithm can, therefore, ®nd a good con®guration simply by merging indexes step by
step.

Fig. 4. (continued).

214 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

5. Conclusion and future work

The performance of the object database systems is the key to the commercial success of them
and e�cient indexing on a class hierarchy is essential for improving the performance.

In this study, we present the index set scheme, which ®nds a near optimal index con®guration,
within a speci®ed replication constraint using the greedy algorithm. The index set provides a good
index con®guration for any real database environment, since it considers the distribution of key
values, as well as query patterns such as query weight on each class. Essentially, our index set can
also be easily applied to a system since it uses the B�-tree structure.

We have developed a cost model and analyzed the performance of the new index technique
with various class hierarchies. In these experiments, the index set showed the best retrieval
performance than any other technique. In particular, the index set provided better space-time
tradeo� than the class-division scheme. The index set scheme also showed very good retrieval
performance even without replication in comparison to the class-hierarchy indexing and the
single-class indexing schemes. Although the performance of the index set technique improved
with more replications, we could get the most performance enhancement in the case of replication
2 or 3.

We are currently developing a new algorithm which uses both greedy algorithm and genetic
algorithm to produce better index sets for nonreplication cases, which can provide relatively good
performance without additional update cost. We are also devising a new method to gather the
statistical informations more e�ciently.

Acknowledgement

This research was supported by the Brain Korea 21 Project.

Fig. 4. (continued).

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 215

References

[1] E. Bertino, B. Catania, L. Chiesa, De®nition and analysis of index organizations for object-oriented database systems,

Information Systems 23(2) (1998).

[2] E. Bertino, P. Foscoli, Indexing organizations for object-oriented database systems, IEEE Trans. Knowledge Database Eng. 7 (2)

(1995).

[3] E. Bertino, W. Kim, Indexing techniques for queries on nested objects, IEEE Trans. Knowledge Database Eng. 1(2) (1989).

[4] D. Comer, The ubiquitous B-tree, ACM Comput. Surveys 11 (2) (1969).

[5] E. Gudes, A uniform indexing scheme for object-oriented databases, in: Proceedings of the International Conference on Data

Engineering, 1996.

[6] A. Guttman, R-TREES: a dynamic index structure for spatial searching, in: Proceedings ACM SIGMOD Conference, 1984.

[7] K.A. Hua, Object skeletons: an e�cient navigation structure for object-oriented database systems, in: Proceedings of the

International Conference on Data Engineering, 1994.

[8] Y. Ishikawa, H. Kitagawa, N. Ohbo. Evaluation of signature ®les as set access facilities in OODBs, in: Proceedings of the ACM

SIGMOD International Converence on Management of Data Washington, DC, USA, 1993.

[9] A. Kemper, G. Moerkotte, Access support relations: an indexing method for object bases, Information Systems 17(2) (1992).

[10] C. Kilger, G. Moerkotte, Indexing multiple sets, in: Proceedings of the International Conference on Very Large Data Base, 1994.

[11] W. Kim, Introduction to Object-Oriented Databases, MIT Press, Cambridge, 1990.

[12] W. Kim, K.-C. Kim, A. Dale, Object-oriented Concepts Databases and Applications, Addison-Wesley, Wokingham, 1989

(Chapter: Indexing techniques for object-oriented databases).

[13] C.C. Low, B.C. Ooi, H. Lu, H-trees: a dynamic associative search index for OODB, in: Proceedings of the ACM SIGMOD

International Conference on Management of Data San Diego, CA, 1992.

[14] S. Ramaswamy, P.C. Kanellakis, OODB indexing by class-division, in: Proceedings of the ACM SIGMOD International

Conference on Management of Data San Jose, CA, USA, 1995.

[15] B. Sreenath, S. Seshadri, The hcC-tree: an e�cient index structure for object oriented databases, in: Proceedings of the

International Conference on Very Large Data Bases, 1992.

[16] M. Stonebraker, P. Brown, D. Moore, Object-relational DBMSs: tracking the next great wave, Morgan Kaufmann, Los Altos,

CA, 1998.

[17] Z. Xie, J. Han, Join index hierarchies for supporting e�cient navigations in object oriented databases, in: Proceedings of the

International Conference on Very Large Data Bases, 1994.

Jung-Ho Ahn received his B.S., M.S., Ph.D. degrees in computer engineering from Seoul National University,
Seoul, Korea, in 1991, 1993, and 1998, respectively. He is currently a senior engineer in the Telecommuni-
cation R&D Center at Samsung Electronics. His research interests include object-oriented databases, real-time
databases, and telecommunication.

Ha-Joo Song received his B.S. and M.S. degree in computer engineering from Seoul National University,
Seoul, Korea, in 1993 and 1995, respectively. He is currently enrolled in the Ph.D. program in computer
engineering at Seoul National University. His research interests include object-oriented databases, transaction
processing, and multimedia databases.

216 J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217

Hyoung-Joo Kim received his B.S. degree in computer engineering from Seoul National University, Seoul,
Korea, in 1982 and his M.S. and Ph.D. in computer engineering from University of Texas at Austin in 1985
and 1988, respectively. He was an assistant professor of Georgia Institute of Technology, and is currently a
professor in the Department of Computer Engineering at Seoul National University. His research interests
include object-oriented databases, multimedia databases, HCI, and computer-aided software engineering.

J.-H. Ahn et al. / Data & Knowledge Engineering 33 (2000) 199±217 217

