
Data & Knowledge Engineering 60 (2007) 361–376

www.elsevier.com/locate/datak
A clustering method based on path similarities of XML data q

Ilhwan Choi a,*, Bongki Moon b, Hyoung-Joo Kim a

a School of Computer Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
b Department of Computer Science, University of Arizona, Tucson, AZ 85721, United States

Received 31 October 2005; received in revised form 31 October 2005; accepted 8 February 2006
Available online 13 March 2006
Abstract

Current studies on the storage of XML data are focused on either the efficient mapping of XML data onto an existing
RDBMS or the development of a native XML storage. Some native XML storages store each XML node in a parsed
object form. Clustering, which means the physical arrangement of objects, can be an important factor in improving the
performance in this storage model. In this paper, we propose a clustering method that stores data nodes in an XML doc-
ument into the native XML storage. The proposed clustering method uses path similarities between data nodes, which can
reduce page I/Os required for query processing. In addition, we propose a query processing method using signatures that
facilitate the cluster-level access on the stored data to benefit from the proposed clustering method. This method can pro-
cess a path query by accessing only a small number of clusters and thus need not use all of the clusters, hence enabling the
path query to be processed efficiently by skipping unnecessary data. Finally, we compare the performance of the proposed
method with that of the existing ones. Our results show that the performance of XML storage can be improved by using a
proper clustering method.
� 2006 Elsevier B.V. All rights reserved.

Keywords: XML storage; Clustering; Path query
1. Introduction

The eXtensible Markup Language (XML) has become the de facto standard for data exchange on Internet.
Recently, XML has become more widely used in various Internet applications, and the importance of XML
repository has increased. XML is based on a new data model that includes structural information in the doc-
ument itself. However, this new data model makes it difficult to store XML data in the existing relational or
object-relational database systems that are widely used for data management. Accordingly, we need to modify
the existing database systems or create a new XML database to manage XML data efficiently, and thus, many
studies have been done on these issues [2,6–8,11,12,14,17,18].
0169-023X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2006.02.004

q This work was supported in part by the Brain Korea 21 project and the Ministry of Information and Communications, Korea, under
the Information Technology Research Center (ITRC) Support Program.

* Corresponding author.
E-mail addresses: ihchoi@oopsla.snu.ac.kr (I. Choi), bkmoon@cs.arizona.edu (B. Moon), hjk@oopsla.snu.ac.kr (H.-J. Kim).

mailto:ihchoi@oopsla.snu.ac.kr
mailto:bkmoon@cs.arizona.edu
mailto:hjk@oopsla.snu.ac.kr

362 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
In previous studies, XML storages have managed XML data with various types of storages including file
systems, relational database systems, object-oriented database systems and native XML database systems
[6,8,12,14,17]. In contrast, current studies are more focused on either the storage of XML data using a rela-
tional database system or the creation of a native XML database system [2,11,18]. One of the storage tech-
niques in the native XML database systems is to store XML data as a collection of objects. It parses an
XML document to generate parsed objects from the nodes such as element and attribute, and then stores them
as objects. In this storage model, the physical arrangement of objects can be an important factor in improving
the performance of the system. In other words, the physical arrangement of XML data can affect the numbers
of page I/Os required for query processing. The technique that considers the physical arrangement of the
object is called clustering. In the object-oriented database system, many studies had been done on the cluster-
ing methods [4]. But few studies have been done on storing XML data. Most XML storages make little
account of the clustering method when they store XML data. They just store XML data in a document order
(Fig. 1). Therefore, in this paper, we studied various clustering methods for storing XML data more efficiently
for the query processing purpose.

The contributions of this paper are as follows. First, we propose a clustering method called PSim clustering
with which to cluster data nodes in a document in the native XML storage. Using this method, we can reduce
page I/Os required for query processing. PSim clustering compares absolute paths of nodes so that the nodes
on the similar paths are stored in the same cluster. But, first, we will introduce two simple clustering methods:
one based on path and the other based on label. These two are simple intuitive methods, and each of them
limits the minimum or the maximum size of the cluster for PSim clustering. Second, we propose a query pro-
cessing method using signatures to benefit from the clustering methods for the processing of path queries.
Using this method, we can process a path query by accessing as small number of clusters as possible. This
method enables us to process a path query more efficiently because we can reduce the search space by skipping
unnecessary data during query processing. Finally, we compare the performance of our proposed method with
that of the existing ones. Our results show that the performance of XML storage can be improved by using a
proper clustering method.

The rest of the paper is organized as follows: Section 2 discusses related work. In this section, we will dis-
cuss about the clustering issues, both on the XML storages and the object oriented database systems. Section 3
defines the data model and explains other background concepts, and then introduces two intuitive clustering
methods. In Section 4, we propose PSim clustering, and Section 5 explains how it is applied to the query pro-
Fig. 1. Storing an XML document with a document order.

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 363
cessing. The results of our experiments are summarized in Section 6 and then conclusions are presented in Sec-
tion 7.
2. Related work

Studies on clustering issues can be broadly classified into two approaches: one based on the structure of a
document and another based on the content of a document. Ref. [1] proposed the well-known structure based
clustering methods. It proposed simple clustering methods, such as a depth-first, a breadth-first and a hybrid
method, based on the structure of a document. Among these methods, the depth-first method is similar to the
document order method in XML. This method stores elements using the same order as in the original text
XML files and many XML storages that make no account of clustering use this method to store an XML doc-
ument. However, these approaches have a limitation considering the irregularity of XML data because they
cluster data based on some fixed structural information.

Few studies had been done on clustering issues in the XML storage, but they mostly had content based
approaches to support XML path queries more efficiently. A path in XML consists of the element labels called
‘tag’ and the content based approaches cluster XML data based on their tags. Ref. [19] compared the perfor-
mance of five strategies for storing XML documents. They analyzed the difference in terms of performance of
the five strategies from a clustering viewpoint, and presented three desirable clustering types when storing
XML files: The first type is the clustering of elements corresponding to the same real world object. This
was used in [17]. The second type is the clustering of the same kind of elements together. This type clusters
elements that have common characteristics such as sharing the same tag name, having the parent–child rela-
tionship or the sibling relationship, etc. [8,17] clustered elements using this type. The third type is the docu-
ment order method that is the structure based method as described in the earlier part of this section. Ref.
[15] proposed two clustering methods based on DTD: The first method is storing elements whose node types
are the same. This is similar to the second type reported in [19]. The second method in [15] is storing elements
that are partitioned by their semantic blocks from the schema graph. Semantic blocks are obtained using the
heuristic. But the heuristic is so simple that it does not perform outstandingly compared with the other clus-
tering methods. These approaches can be considered as coarse-grained clustering methods that are simply
based on tags.

On the other hand, [5] proposed a finer-grained clustering method. It proposed PathGuide, a clustered
index based on the path suffix pattern. PathGuide can efficiently process complex path queries including ances-
tor–descendant relationship as well as simple queries by clustering elements with the same path pattern
together. Unfortunately, PathGuide cannot benefit from its clustering method when the query is too complex,
especially with a short suffix pattern. Since PathGuide is built based on the suffix of element’s path, it has the
advantage only when processing queries with a long suffix pattern that is a sequential parent–child
relationship.

Other studies on clustering issues are approaches based on the user query patterns that had been studied in
object-oriented database systems [9,20]. They found the relationship of objects for clustering from the user
query patterns and clustered the frequently used nodes first. These methods showed better performance than
the previous ones especially in processing frequently used queries [4]. However, these studies are not easy to
apply to XML storage because while the information about the frequently used nodes is easily gathered (i.e.
from the member function of an object) in object oriented database systems, it is not easy to obtain these infor-
mations in XML. And, it requires too much overhead to store every access information in nodes whenever
processing a query.
3. Basic concept

In this section, we present a data model for XML documents and some basic clustering methods that will be
used throughout in this paper.

364 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
3.1. Data model and concept definition

In this paper, an XML document is modeled as a rooted tree Td = (V,E, root,k), V = Vi [Vt, where Vi is
the set of nodes (both element and attribute) in the document and Vt is the set of text nodes in the document.
Nodes from V are connected by edges from E � Vi · V to form a tree with a root node root 2 V. The function
k assigns a label to each node in Vi. Fig. 1(a) shows an sample XML tree representation.

A path is a sequence of labels separated by /s. An absolute path of a node x is a path starting at the root of a
given tree, /l1/l2/ . . . /ln, such that we can traverse a path of (n � 1) edges from x to root where k(root) = l1 and
k(x) = ln. Note that the terms ‘path’ and ‘absolute path’ are used interchangeably throughout this paper.

A cluster is a logical partition created by a clustering method. Let C1,C2, . . . ,Cn be clusters created by
applying a clustering method to an XML document Td, N(Ci) is the set of all nodes stored in a cluster Ci. Then
all nodes V in Td, V ¼

Pn
i¼1NðCiÞ.

3.2. Basic clustering methods

In this section, we describe two intuitive clustering methods. These two methods play the role of minimum
and maximum limitation of the cluster size in our proposed clustering method.

The first method is SL (same label) clustering where all nodes with the same tag name are stored in the same
cluster. Data nodes in a cluster are stored according to their document order and each cluster has a label as a
cluster identifier, which is the label of data nodes stored in it. As new clusters are allocated for each label, the
number of clusters created after clustering is the same as the number of distinct labels in the document. This
method is a simple intuitive method and thus can be easily implemented; for example, an inverted index from
structural join can be used. Fig. 2(a) shows the result of SL clustering method that is applied to the XML doc-
ument as shown in Fig. 1(a). In this figure, only two clusters with the labels ‘author’ and ‘title’, respectively are
shown for simplicity.

The second method is SP (same path) clustering where all nodes with the same absolute path are stored in
the same cluster. Data nodes in a cluster are also stored according to their document order as in the SL clus-
tering method and each cluster has an absolute path, which is the absolute path of data nodes stored in it, as a
cluster identifier. This method can be easily implemented using path index such as DataGuide [10] where
nodes with the same absolute path are managed as one target set. As new clusters are allocated for each of
absolute paths, the number of clusters created after clustering is the same as the number of DataGuide nodes,
that is, the number of distinct target sets. Fig. 2(b) shows the result of SP clustering method that is applied to
Fig. 2. SL clustering and SP clustering.

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 365
the XML document as shown in Fig. 1. Unlike SL clustering in Fig. 2(a), node 3 and node 11 are stored in
different clusters because they have different absolute paths. Similarly, nodes with the label ‘title’ are stored
in separate clusters according to their own paths.

3.3. Limitations of basic clustering methods

The difference between SL clustering and SP clustering is the granularity of clustering. SP clustering can
perform finer grain clustering than SL clustering, because SP clustering stores nodes into several clusters
according to their absolute path even if they have the same label while SL clustering stores them into one clus-
ter. The difference in the granularity like this can affect query processing. For example, SP clustering is more
efficient for processing a query like ‘/A/D/X’ than SL clustering. If a document is stored by SP clustering
method, only a SP cluster with identifier ‘/A/D/X’ is returned. On the other hand, if the document is stored
by SL clustering method, all elements that have label ‘X’ are stored in the same cluster. In this case, it is dif-
ficult to guarantee that elements which have the absolute path ‘/A/D/X’ will be stored closely, because nodes
that have different absolute path are mixed in the same cluster. In the worst case, if we need n pages (disk
blocks) for a SL cluster with identifier ‘X’, elements having an absolute path ‘/A/D/X’ might be stored scat-
tered through n pages. Meanwhile, SL clustering is more efficient for processing a query like ‘//X’ than SP
clustering. If a document is stored by SL clustering method, only a SL cluster with identifier ‘X’ is returned.
On the other hand, if the document is stored by SP clustering method, all elements having label ‘X’ are stored
in a scattered mannered in several clusters.

As was mentioned above, SL and SP clustering method have a limitation, in that they are effective only on
the specific type of query for each method. So we need more flexible clustering methods that are less dependent
on the type of query. PathGuide [5] is one alternative that can overcome this limitation. It sets nodes whose
absolute paths are the same as a base cluster and then groups clusters sequentially based on their path suffix.
For example, assume there are three clusters C1, C2 and C3 whose absolute paths are ‘/A/X/Y’, ‘/B/X/Y’ and
‘/A/C/Y’, respectively. PathGuide merges cluster C1 and C2 that have the suffix ‘X/Y’ into a new cluster group
G1. Finally, PathGuide completes its clustering by merging C3 and G1 which have the suffix ‘Y’ into a new
cluster group G2. Even after creating a new cluster group, base clusters and cluster groups that are merged
into that group maintain their original path information in them. This makes it efficient to process a query
which has the matching suffix with base clusters or cluster groups.

This PathGuide method can be regarded as the type that it has SP clusters as base clusters, and then creates
a SL cluster by merging SP clusters. In that respect, it is a more flexible clustering method as it can take the
advantages of both SL and SP methods. But PathGuide also has a limitation that it is effective only when the
query has a long suffix pattern. It cannot benefit from its clustering method when the query is too complex,
especially with a short suffix pattern because of its suffix based nature. In the previous example, if a query ‘//X/
Y’ is requested, PathGuide can easily process it by scanning G1. But if another query ‘//A//Y’ is requested,
PathGuide must scan G2, which is the biggest cluster unit, to process it. In particular, even if a specific query
such as ‘/A/B/C/D/E//Y’ is requested, PathGuide scans a large cluster group that have a suffix ‘Y’.

Considering all these limitations, we suggest a more flexible clustering method, PSim clustering method,
which can process various types of queries efficiently and includes all of the advantages of the basic clustering
methods, namely the SL and SP clustering. PSim clustering performs merging based on the path similarity of
nodes, contrary to PathGuide where merge is done based on the path suffix. This enables PSim clustering to be
less dependent on the type of query.

4. PSim clustering

Data nodes stored in a SL cluster can be divided again into one or more SP clusters according to their abso-
lute path. Therefore, a simple method of securing the advantages of both SL and SP clustering is to apply SP
clustering to the data nodes in a SL cluster after applying SL clustering to an XML document; SP clusters
whose identifiers end with the same label are grouped together. In this case, the efficiency of clustering depends
on the arrangement order of SP clusters in a SL cluster. For example, assume there are three SP clusters sp1,
sp2 and sp3 whose identifiers are ‘/A/B/C’, ‘/X/Y/C’ and ‘/D/B/C’ each. When a query ‘//C’ is requested, all

366 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
data stored in sp1, sp2 and sp3 are returned. In this case, the arrangement order of SP clusters has no effect on
the page I/Os required for query processing. On the other hand, when a query ‘//B/C’ is requested, only the
data stored in sp1 and sp3 are returned. So, in this case, it is more efficient to arrange sp1 and sp3 as close as
possible. Accordingly, to process various types of queries flexibly, it is important to arrange SP clusters prop-
erly in a SL cluster. Our method, PSim clustering, compares the identifiers of SP clusters, and then arranges SP
clusters with similar paths very close to one another by merging them into a new cluster. In brief, the process
of the PSim clustering method can be understood as follows: first, data nodes in a SL cluster are divided into
SP clusters, and then rearranged by merging them properly. By doing this, we can secure the advantages of
both SL and SP clustering and thus can process various types of path queries.

4.1. Base unit

PSim clustering uses a SP cluster instead of a data node as a base unit for clustering. This means that every
node which has the same absolute path is always stored in the same cluster in the PSim clustering method. The
maximum cluster unit for PSim clustering is restricted to the label of a data node. That is, similarly to SL clus-
tering, data nodes with different labels are stored in separate clusters.

4.2. Path similarity

PSim clustering merges SP clusters based on their path similarities. Although it has too much overhead to
calculate path similarities between all data nodes, PSim clustering has less overhead because it uses a SP clus-
ter as a base unit and it compares the identifiers of SP clusters instead of the paths of data nodes. In general,
since one-to-many data nodes are stored in a SP cluster, the number of SP clusters is much fewer than the
number of data nodes.

Each SP cluster has its own unique absolute path as an identifier, and thus, we can compute a path simi-

larity between two SP clusters by comparing their identifiers. To compare identifiers, we use the edit distance
algorithm [13] that is generally used to compare strings except that we use a path instead of a string and labels
in the path instead of words in the string. Given two absolute paths A = /a1/a2/ . . . /an and B = /b1/b2/ . . . /bm,
the edit distance d(A,B) between these two paths can be computed as follows using a dynamic programming
technique [22]. We shall write Ai for /a1/a2/ . . . /ai, Bj for /b1/b2/ . . . /bj and d(Ai,Bj) for di,j. Now we construct a
(n + 1) · (m + 1) edit matrix D = (di,j) with indices running from 0 to n and from 0 to m. The first row and
column are simply given by d0,0 = 0, d0,j = d(e,Bj), di,0 = d(Ai, e). Then, the elements in the edit matrix are com-
puted using the following equation:
di;j ¼ minðdi�1;j�1 þ dðai; bjÞ; di�1;j þ dðai; eÞ; di;j�1 þ dðe; bjÞÞ; ð1 6 i 6 n; 1 6 j 6 mÞ

After computing all elements in the edit matrix, we can get the edit distance d(A,B) = dn,m. Finally, using

the edit distance between two absolute paths, a path similarity between two SP clusters, sp1 and sp2 whose
identifiers are id1 and id2, respectively is computed as follows:
path similarityðsp1; sp2Þ ¼ 1� dðid1; id2Þ
maxðpath length of id1; path length of id2Þ
If id1 and id2 are the same, d(id1, id2) will return 0 and path_similarity(sp1, sp2) will be 1. On the other hand,
if id1 and id2 have no common parts on their path, d(id1, id2) will be the same as max(path length of id1,path

length of id2) and path_similarity(sp1, sp2) will be 0.

4.3. PSim clustering algorithm

Path similarities between SP clusters can be represented as a weighted graph G = (V,E), where V is the set
of SP clusters, E is the set of edges connecting SP clusters and the weight of each edge is the path similarity
between two nodes which are connected by that edge. We call this graph as a path similarity graph. Now, PSim
clustering can be considered as the graph partitioning problem of this path similarity graph. For an XML doc-
ument, there exist path similarity graphs for each distinct label in the document. So, PSim clustering is done by

Fig. 3. Path similarity graph.

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 367
performing partitioning on every path similarity graph. Fig. 3 shows a sample path similarity graph for the
label ‘title’ in Fig. 1(b) (SP clusters in the graph can be seen in Fig. 2(b)).

The graph partitioning problem is an NP complete problem and it is normally solved by using a heuristic.
In this paper, we used the greed algorithm as in [9] to partition the path similarity graph. This PSim clustering
algorithm for a path similarity graph of a label is shown in Fig. 4. The algorithm proceeds with the partition-
ing process sequentially from the edge with the highest weight in the sorted edge list in order to consider the
most similar nodes first (lines 2–14). First, it gets a pair of sp nodes that are connected by the selected edge (line
3). Next, it finds each cluster where the selected nodes are stored. If there is no cluster where the node is stored,
that is, if it is not clustered yet, a new cluster is allocated for that node (lines 4–9). Then it tries to create a new
cluster by merging two clusters (lines 10–11). Note that the size of a cluster is restricted so as not to exceed a
page (disk block) as the benefit in page I/O is no longer meaningful in that case (line 10). Finally, when the
weight of the current edge is below the pre-defined threshold value and the remaining (those which have
not been clustered yet) nodes can be stored in a page, the process is discontinued and the algorithm is com-
pleted after storing them in a new cluster (lines 12–14). This prevents nodes from being fragmented into
numerous pages by grouping the remaining nodes that have relatively less similar paths.

Fig. 4. PSim clustering algorithm.

Fig. 5. The execution process of PSim clustering.

368 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
With this algorithm, the execution process of PSim clustering over the pass similarity graph of Fig. 3 is
shown in Fig. 5. In the figure, for the node pair hSP1, SP2i which has the highest weight, two clusters [SP1]
and [SP2] are created (step 1 in Fig. 5) and merged (step 2 in Fig. 5). Note that elements in the SP cluster
are from Fig. 2(b). Then the algorithm proceeds to the node pair hSP1,SP4i which has the next highest weight
in the sorted node pair list. In this case, only one new cluster [SP4] is created because the node SP1 is already
clustered in the cluster [SP1, SP2] (step 3 in Fig. 5). Note that two clusters [SP1,SP2] and [SP4] are not merged.
If two clusters [SP1,SP2] and [SP4] are merged, the size of the result cluster [SP1, SP2,SP4] will be 6. This
exceeds a page size (which is 4 in Fig. 5). So those two clusters are not merged. The algorithm proceeds to
the rest of the node pairs in the list likewise.
4.4. Update issues

When an update occurs, if there is no schema change, the update overhead of the PSim method is same as
the SP method and PathGuide because they use a SP cluster as the base unit of the clustering. Therefore, the
update process is to find an appropriate cluster among existing ones as follows: (1) Find the cluster where the
original data is stored, and delete the original data. (2) Find the SP cluster that have the same absolute path as
the updated data, and store the data in it. In this case, the update overhead of the SL method is smaller than
other methods. It considers only the labels of elements instead of their individual paths, and thus, the update
process can be simplified as to find the cluster with the corresponding label.

On the contrary, if there is a schema change, the update overhead of the PSim method is more complex
than other methods. If the updated data has a new label that no existing elements have such a label, all meth-
ods have the same overhead as the data is simply stored in a new cluster. But if the updated data has a new
absolute path that no existing elements have such a path but the label of the data is same as the already exist-
ing one, then the update process of the PSim method is as follows: (1) Create a new SP cluster for the updated
data. (2) Find SP clusters with the same label as the updated data. (3) Choose the SP cluster that has the high-
est path similarity value with the newly created SP cluster. (4) Merge the new SP cluster into the PSim cluster
where the chosen SP cluster is stored. In this case, the update overhead of the SP clustering method is smaller
than other methods. It simply stores the updated data in a new cluster just as it has done when the updated
data has a new label. In the case of the SL method, the update overhead is same as when there is no schema
change because the cluster with the same label as the updated data already exists. Finally, the update overhead
of the PathGuide is affected by how to choose the group that has the same suffix as the updated data.

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 369
5. Query processing using PSim

When a query is requested, in many cases, data nodes related to that query can exist in the small part of the
whole document. So if we can access only the parts of the data that we need, the query processing can be con-
ducted more efficiently because the search space is reduced by skipping unnecessary data during query
processing.

Fortunately, a cluster, which is the unit of logical partition created by clustering, offers the foundation
which makes it easy to access partial data. That is, if we can select only the clusters that are required to process
a query, the query processing phase can be completed simply by scanning only those data in the selected clus-
ters instead of each and every data in the document. The PSim clustering method partitions a document based
on the path of data. This makes it easy to select needed clusters when processing XML queries where path
queries are used. So, if we know the path information of data stored in each cluster, we can easily select
the relevant clusters to the requested path query. Therefore, in this section, we propose a query processing
method using signatures that facilitate the cluster-level access on the stored XML document to benefit from
the proposed clustering method.

5.1. Cluster signature

A cluster signature is a hint as to the paths of data nodes stored in a cluster. Each cluster is allocated with
one. It helps to decide if data nodes with a particular path exist or not. So when a query is requested, we can
select clusters with the relevant path information to the query using the signature.

A cluster signature is a bit string whose length is the number of distinct labels in the document. Each bit of a
signature corresponds to a label. For example, assume there are n distinct labels l1, l2, . . . , ln in a document.
Then a cluster signature for this document becomes an n-bit length string and the first bit corresponds to
the label l1, the second bit corresponds to the label l2 and the nth bit corresponds to the label ln. If a data
in the cluster includes a label lx in its path, the xth bit of the cluster signature for this cluster is set to 1. So
if a data node has m distinct labels on its path, a total of m bits of the cluster signature are set to 1. Finally,
by executing this bit setting procedure for all of the data nodes in the cluster, the generation of the cluster
signature for that cluster is completed. Likewise, a cluster signature represents the label information on the
paths of all data nodes stored in a cluster.

A cluster signature can be generated with less overhead using SP clusters which organize a PSim cluster
instead of using real data nodes. First, we generate a SP cluster signature for each SP cluster. Since a SP cluster
has an absolute path as an identifier, we can generate a SP cluster signature by setting the bits that corresponds
to all labels on the identifier. This is just like the generation process of the PSim cluster signature. Now, a PSim
Fig. 6. Cluster signatures.

370 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
cluster signature can be generated by bitwise ORing all signatures of the SP clusters stored in a PSim cluster.
Fig. 6 shows an example of PSim cluster signatures being generated from SP cluster signatures. In this figure,
SP clusters and PSim clusters are those in Fig. 5. For simplicity, assume there are only seven labels in the doc-
ument. Then, a cluster signature becomes a 7-bit string. Fig. 6(a) shows SP clusters with the label ‘title’ and
their signatures. And Fig. 6(b) shows the generation process of PSim cluster signatures.

5.2. Cluster selection

Cluster signatures allocated to PSim clusters are stored in a separate index and used to select clusters
needed after a query is requested. When a query is requested, a query signature for that query is generated.
A query signature is also generated by setting the bits which correspond to the labels on the query string
as in the cluster signature. Now, we can select the needed clusters by bitwise ANDing the query signature with
each of the cluster signatures of PSim clusters. If there is a cluster whose result string of the bitwise AND oper-
ation is the same as the query signature, it is selected as a candidate cluster that will be scanned during query
processing. In this case, for every bit position whose value is 1 in the query signature, the value of the same bit
position in the cluster signature is also 1. This means the candidate cluster is a cluster that includes all labels on
the query string and thus may have the result data for the query.

For example, let us assume that a query Q1:‘//book//section//title’ is sent to the document in Fig. 6. Then a
query signature ‘0100101’ is generated for this query and the results of bitwise ANDing the query signature
with each of cluster signatures ‘1110111’ and ‘1001001’ are ‘0100101’ and ‘0000001’ respectively. So the cluster
C1 is selected as a candidate cluster because it has the same result string as the query signature: ‘0100101’.
Now, the query processing is done only on the candidate cluster C1. Cluster C2 is not considered anymore
as the query processing proceeds. In Fig. 6, we can also confirm that ‘/bib/book/chapter/section/subsection/
title’, which is the result of Q1, exists only on cluster C1.

Likewise, the cluster selection using the cluster signature has the advantage in that the search space can be
reduced by skipping unnecessary data during query processing. However, since the cluster signature is gener-
ated without considering the order of labels on the path, unnecessary clusters that have no relevance to query
may be selected as candidate clusters. For example, when a query ‘//A/B//C’ is requested, a cluster which
includes data nodes with the path ‘/B/A/C’ can be selected as a candidate cluster. To avoid this, we can also
take the ordering into consideration by maintaining additional information in addition to the signature. For
example, we can maintain an order list among signature bits or even generate an integer array as a signature
where each slot of the array implies the ordering information. However, additional overheads are incurred to
maintain and process this ordering information. What is worse, even if we use signatures which take the order-
ing into consideration, unnecessary clusters still can be returned as candidate clusters. But consider the pur-
pose of using the signature in this paper is to reduce the search space required to process a query by selecting
‘candidate clusters’ rather than ‘exact clusters’. From this point of view, it may rather cause an unnecessary
overhead to use the signature with the ordering information, and thus, we decided to use the proposed signa-
ture method that is simple but considers no ordering information. The experiment that will be discussed in the
following section shows that in many case the proposed method can significantly reduce the search space of
data.

6. Performance analysis

In this section, we compare the performance of the PSim clustering method with other clustering methods
mentioned in this paper. Four other methods were compared in this section: ‘RAW’ which stores XML data in
a document order, two basic clustering methods ‘SL’ and ‘SP’ of Section 3.2, and ‘PG’ which means Path-
Guide [5].

6.1. Experiment environment

We used an XML document generated by XMark [16] and the document had 200,000 elements. For que-
ries, we used 1000 randomly generated path queries with ‘//’, which means the ancestor–descendant relation-

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 371
ship. In our experiments, all XML documents were stored in XDBox [21], which is the object based XML stor-
age. XDBox stores XML data nodes as a collection of objects and supports XPath [3] query language. We set
the page size as 4 KB and the size of buffers as 20.

6.2. Performance analysis of various clustering methods

We first evaluated the performance of various clustering methods on the queries in Fig. 7. Queries in Fig. 7
show various patterns in their path lengths, pattern lengths, suffix lengths and numbers of the ancestor–
descendant relationship. Q1, Q2 and Q3 are simple queries with short path lengths. Q4, Q5 and Q6 are queries
with relatively long path lengths. Among them, Q6 is a query with a very long suffix pattern. On the other
hand, Q4 is a query with a very long prefix but a short suffix pattern. More complex queries with two or more
ancestor–descendant axes are shown in the latter part of query samples, from Q7 to Q12. Fig. 8 shows the page
I/Os required to process queries in Fig. 7. Each query was executed on the same five XML documents where
each of the documents was clustered using the respective clustering methods: RAW, SL, SP, PG and PSim.

In this experiment, PSim showed the best performance (with the fewest page I/Os) for all queries except Q1,
Q3, Q6 and Q10. Among them, Q1 is a simple query to find all elements with the label ‘description’. So, both
PG and PSim, which have ‘label’ as the largest clustering boundary, showed the same page I/Os as SL. But SP
showed more page I/Os than other methods as we expected in Section 3.3. Q6 and Q10 are queries with rel-
atively long suffix patterns and PG showed the best performance with these types of queries. Q3 is a query with
the suffix pattern ‘item/description’, but unlike Q6 or Q10, PG did not show a better performance than PSim
because the query length was too short and thus could not have a specific suffix pattern in it. In particular,
PSim showed an outstanding performance for queries Q4, Q5, Q8 and Q9. These are queries that have a rel-
atively long prefix and a short suffix pattern. This result showed that PSim could efficiently cluster elements
with common patterns (in this case, a long prefix) independent of the location where the common patterns
are, while PG clustered elements with common patterns only in the suffix parts of their paths. As for basic
methods, SP showed a better performance than SL when the query has a long path pattern in it.

Next, we executed our experiment on the randomly generated path queries (Fig. 9). Total 1000 random
queries were used where from one to five //s are included (200 queries respectively for each of the number
of //s included in a query). In the figure, the x-axis shows how many //s are included in a query, that is,
Fig. 7. Query samples used in our experiments.

Fig. 8. Performance analysis for sample queries.

Fig. 9. Performance analysis for random queries.

372 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
the number of the ancestor–descendant relationship in a query. And the y-axis shows the sum total of page I/
Os required for query processing.

In this experiment, under RAW method, where no clustering method was applied to, over 10 times more
page I/Os occurred than under other methods. This confirms that any of the above-mentioned clustering
methods can improve the performance of the XML storage for the query processing purpose. In the basic clus-
tering methods, in the case of small number of //, SP showed better performance than SL as we expected in
Section 3.3 because queries still had long path patterns in them. On the other hand, as the number of //
increased, SL, which is a course grained clustering method, showed better performances as we also expected
in Section 3.3. Among the various clustering methods, PG and PSim which are the advanced clustering meth-
ods showed outstanding performance. This is due to the fact that the advanced clustering methods secure the
advantages of the basic methods and furthermore overcome the limitations of the basic ones. In particular,

Fig. 10. The size of the search space required for query processing.

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 373
PSim showed much better performance than PG in all cases and this performance gap between the two meth-
ods had increased as the number of // increased. One of the major factors that caused the performance gap
between these two methods is the size of the search space and this will be discussed in the next section. In con-
clusion, this result confirms that the PSim clustering method is a more flexible method which can process var-
ious types of queries efficiently than any other methods mentioned in this paper.

6.3. Comparison of the search space

Fig. 10 shows the size of the search space required for query processing when using two clustering methods,
PG and PSim, respectively. We compared only the size of both methods since other methods provide no search
space reduction method. In this figure, ‘Total’ represents the full size of the search space required when no
search space reduction method applied to. In this experiment, we executed 1000 queries and recorded the accu-
mulated number of the stored pages of data which needed to be accessed for processing those queries. As
shown in the figure, both methods could reduce the size of the search space compared with ‘Total’. In partic-
ular, PSim required much less search space than PG during query processing. Although PG could reduce the
search space when a query has a long suffix pattern, it was still possible to search unnecessary data in many
cases due to its limitation of the suffix based nature. Consequently, this result confirms that the proposed clus-
ter selection method in Section 5.2 can reduce the search space required for query processing more efficiently
than any other methods mentioned in this paper.

6.4. Scalability

To evaluate the scalability of our method, we scaled-up the document size from 10 M to 50 M and 100 M.
Fig. 11 shows the performance comparison of various clustering methods for query samples in Fig. 7 on these
three different sized documents. The graph for each query shows the result page I/Os on 10 M, 50 M and
100 M sized documents, respectively. In the figure, page I/Os of each method increased linearly in proportion
to the size of the document on most queries. And PSim still showed a better performance than other methods
for most queries in spite of the increase in the size of the document. In particular, PSim showed a lower
increasing rate than other methods on queries Q4, Q5, Q8 and Q9. As we described in Section 6.2, these were
queries that had a relatively long prefix and a short suffix pattern, and unlike other methods, PSim could effi-
ciently cluster those elements required to these queries. Moreover, in this case, the result set sizes were small
and PSim could get the result set by accessing fewer elements using only a small part of the total search space.
The graph showed that this performance gain increased as the size of the document became larger.

Fig. 11. Scale-up performance analysis for query samples.

374 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
7. Conclusion

We studied clustering issues for XML storage. In this paper, we proposed PSim clustering which is a
clustering method that clusters the data nodes with similar paths and thus can reduce page I/Os required
for query processing. Proposed method set the data nodes that have the same absolute paths as a base
cluster unit, and then compares the path similarity between those units. Finally, clustering is done by
applying the graph partitioning technique to the path similarity graphs. Through our experiments, we
proved that the PSim clustering method is a flexible method which can process various types of queries
efficiently.

In addition, we proposed a query processing method using signatures to benefit from the proposed cluster-
ing method. Cluster signatures facilitated the cluster-level access on the stored data, and thus, we could pro-
cess a path query by accessing as small number of clusters as possible. In this method, each cluster has its own
signature that stands for the path information of stored data nodes. We can select needed clusters to process a
query by comparing their signatures with the query signature. As a result, the query processor need not search
for clusters unrelated to the query, which in turn means that the search space of data can be reduced
significantly.

Based on the foregoing, the PSim clustering method shows good performance in query processing. How-
ever, the proposed method assumes that the stored document is not updated frequently. So, further studies
on the clustering method for frequently updated XML document will need to be conducted. And efficient
query optimization techniques for the clustered document such as an indexing technique will need to be stud-
ied as well. When a query is processed by using one of the existing indexing techniques, the clustered document
can still be more effective than the unclustered one because the result can be stored close to each other. How-
ever, most of the existing techniques were primarily studied on the base of the unclustered document. Thus
more efficient indexing technique will need to be studied that takes advantage of partitioned data in the clus-
tered document.
References

[1] J. Banerjee, W. Kim, S.-J. Kim, J.F. Garaza, Clustering a DAG for CAD databases, IEEE Trans. Software Eng. 14 (11) (1988) 1684–
1699.

I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376 375
[2] D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo, P. Rodriquez-Gianolli, ToX – The Toronto XML Engine, in: Proc.
WIIW’01, Brazil, 2001, pp. 66–73.

[3] A. Berglund, S. Baog, D. Chamberlin, et al., XML Path Language (XPath), ver. 2.0, W3C Working Draft, Tech. Report, 2001,
Available from: <http://www.w3.org/TR/4>.

[4] E. Bertino, A.A. Saad, M.A. Ismail, Clustering techniques in object bases: a survey, Data Knowledge Eng. 12 (3) (1994) 255–
275.

[5] J. Cheng, G. Yu, G. Wang, J.X. Yu, PathGuide: an efficient clustering based indexing method for XML path expressions, in: Proc.
DASFAA’03, IEEE Computer Society, Kyoto, 2003, p. 257.

[6] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructured data with STORED, in: Proc. SIGMOD 1999, ACM Press,
Philadelphia, 1999, pp. 431–442.

[7] Excelon Corp., Excelon – the EBusiness Information Server, Available from: <http://www.exln.com/>.
[8] D. Florescu, D. Kossman, Storing and querying XML data using an RDBMS, IEEE Data Eng. Bull. 22 (3) (1999) 27–34.
[9] C. Gerlhof, A. Kemper, C. Kilger, G. Merkotte, Partition-based clustering in object bases, in: Proc. FODO’93, Lecture Notes in

Computer Science, vol. 730, Springer, Chicago, 1993, pp. 301–316.
[10] R. Goldman, J. Widom, DataGuides: enabling query formulation and optimization in semistructured databases, in: Proc. VLDB’97,

Morgan Kaufmann, Athens, 1997, pp. 436–445.
[11] H.V. Jagadish, S. Al-Khalifa, A. Chapman, Laks V.S. Lakshmanan, A. Nierman, S. Paparizos, J.M. Patel, D. Srivastava, N.

Wiwatwattana, Y. Wu, C. Yu, TIMBER: a native XML database, VLDB 11 (4) (2002) 274–291.
[12] C.C. Kanne, G. Moerkotte, Efficient storage of XML data, in: Proc. ICDE’00, IEEE Computer Society, San Diego, 2000,

p. 198.
[13] V. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, Sov. Phys. Dokl. 10 (8) (1966) 707–

710.
[14] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: a database management system for semistructured data,

SIGMOD Record 26 (3) (1997) 54–66.
[15] X. Meng, D. Luo, M.L. Lee, J. An, OrientStore: a schema based native XML storage system, in: Proc. VLDB’03, Morgan Kaufmann,

Berlin, 2003, pp. 1057–1060.
[16] A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey, I. Manolescu, R. Busse, XMark: a benchmark for XML data management, in: Proc.

VLDB’02, 2002, pp. 974–985.
[17] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, J.F. Naughton, Relational databases for querying XML documents:

limitations and opportunities, in: Proc. VLDB’99, Morgan Kaufmann, Edinburgh, 1999, pp. 302–314.
[18] Software AG. Tamino Information Server for Electronic Business, Technical Whitepaper, Available from: <http://www.tam-

iono.com/tamino/Download/tamino.pdf>.
[19] F. Tian, D.J. DeWitt, J. Chen, C. Zhang, The design and performance evaluation of alternative XML storage strategies, SIGMOD

Record 31 (1) (2002) 5–10.
[20] M.M. Tsangaris, J.F. Naughton, A stochastic approach for clustering in object bases, in: Proc. SIGMOD, ACM Press, Colorado,

1991, pp. 12–21.
[21] J. Kim, I. Choi, H.-S. Lee, H.-J. Kim, XDBox: implementation of XML object repository, in: Proc. KISS Spring, Jeju,

2003.
[22] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, ACM 21 (1) (1974) 168–173.

Ilhwan Choi is a Ph.D. candidate at the School of Computer Science and Engineering, Seoul National University.
His current research is focused on developing efficient clustering methods for XML database systems. He is also
interested in XML indexing and database management systems. He received his M.S. degree in School of
Computer Science and Engineering from Seoul National University in February 1998.

Bongki Moon is an Associate Professor of Computer Science at the University of Arizona. His current research is

focused on developing high performance database systems and scalable web servers for large scale, data-intensive
applications. He is also interested in XML indexing, data mining and warehousing, and parallel and distributed
processing. He won the career award from the National Science Foundation in April 1999. He received his Ph.D.
degree in Computer Science from University of Maryland, College Park, in December 1996.

http://www.w3.org/TR/4
http://www.exln.com/
http://www.tamiono.com/tamino/Download/tamino.pdf
http://www.tamiono.com/tamino/Download/tamino.pdf

376 I. Choi et al. / Data & Knowledge Engineering 60 (2007) 361–376
Hyoung-Joo Kim is a Professor of the School of Computer Science and Engineering at Seoul National University.
His current research is focused on the database system for Gene Ontology. He is also interested in XML, object-
oriented systems and database management systems. He received the B.S. degree in Computer Engineering from
Seoul National University in 1982, and the M.S. and Ph.D. degrees in Computer Science from The University of
Texas at Austin in 1985 and 1988, respectively.

	A clustering method based on path similarities of XML data
	Introduction
	Related work
	Basic concept
	Data model and concept definition
	Basic clustering methods
	Limitations of basic clustering methods

	PSim clustering
	Base unit
	Path similarity
	PSim clustering algorithm
	Update issues

	Query processing using PSim
	Cluster signature
	Cluster selection

	Performance analysis
	Experiment environment
	Performance analysis of various clustering methods
	Comparison of the search space
	Scalability

	Conclusion
	References

